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Magnetoplasmon resonances in nanoparticles

Thomas Garm Pedersen *

Department of Materials and Production, Aalborg University, DK-9220 Aalborg Øst, Denmark
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Nanoparticle plasmon resonances can be controlled using external magnetic fields or internal magnetization.
The modified resonance condition is complicated, however, by the induced anisotropy of the dielectric response.
Working within the electrostatic regime, we formulate a simple eigenvalue problem for the magnetoplasmon
resonances. Subsequently, a semianalytical perturbative solution valid for weak magnetic fields is obtained for
the resonance shift. We apply the approach to Drude metal nanodisks and show that resonance shifts are generally
smaller than for nanospheres and nanoellipsoids. Finally, energy-dependent effective masses in Dirac materials
are shown to reduce shifts compared to free-electron-like materials.

DOI: 10.1103/PhysRevB.102.075410

I. INTRODUCTION

Plasmon resonances in metallic nanoparticles are of im-
portance for a range of phenomena and applications includ-
ing sensing [1,2] and photovoltaics [3–5]. Depending on
the application, plasmon resonances in the infrared, visible,
or even ultraviolet may be desired. For a nanoparticle, the
spectral position of the resonance is determined by a number
of factors. Primarily, material properties are of importance.
Hence, the overall spectral scale is set by the conduction
electron plasma frequency that, in turn, increases with carrier
density and inverse effective mass. Similarly, materials are
characterized by their interband screening, which reduces res-
onance frequencies. Thus, metals such as Al with high carrier
density and low screening lead to resonances in the ultraviolet
[6] while doped semiconductors [7] and graphene [8] support
infrared plasmon due to their low plasma frequencies. Second,
particle shape affects plasmon resonances. In the electrostatic
or nonretarded regime, however, scale invariance means that
plasmon resonances are independent of absolute size [9–12].
Hence, the resonance of all small spheres of a particular
material are identical. In disks and ellipsoids, resonances
split into separate short- and long-axis modes. This leads to
a certain degree of freedom when designing nanoparticles
to support resonances in specific spectral ranges. Moreover,
coupling between modes in neighboring particles can shift
resonances into desired spectral locations [12].

In passive plasmonics, resonances are completely fixed
by nanoparticle shape and composition. In contrast, active
plasmonics allows for tunable resonances. An important case
is found in two-dimensional materials, in which gating can
control plasmons via carrier density [8]. Similarly, physical
movement of a particle can be applied to shift resonances [13].
Finally, it has long been realized that an external magnetic
field (or internal magnetization) leads to a split of plasmon
modes due to cyclotron motion of electrons [14–19]. Such
magnetoplasmons have been envisioned for dedicated sensing
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applications [14,16–18]. In this respect, it is important to
understand the effect of particle shape and composition on
the splitting. For carriers in a parabolic band with effective
mass me, the characteristic quantity when placed in a magnetic
field B is the cyclotron frequency ωc = eB/me. In fact, in the
electrostatic regime, the resonances of spheres and ellipsoids
all split by precisely ± 1

2ωc independent of particle elongation
[20–23]. Hence, for this class of particle shapes, geometry
cannot be applied to tune the shift. As we will show in
the present work, however, this conclusion is only valid for
spheres and ellipsoids. Hence, also plasmon splitting can be
tuned by particle shape. This is highly relevant for practical
applications since these often rely on nanodisks rather than
ellipsoids or spheres [14,17,18].

In the present work, we formulate the magnetoplasmon
resonance condition in the electrostatic regime as an eigen-
value problem using the surface charge prescription of May-
ergoyz and co-workers [9–12]. The problem is significantly
simplified for cylindrically symmetric particles in a magnetic
field aligned along the symmetry axis [24–27]. For fields
of arbitrary strength, a complicated resonance condition is
found. However, for relatively small fields, i.e., whenever
ωc � ω for an excitation of frequency ω, we find that vertical
resonances polarized along the symmetry axis are unaltered
while a simplified resonance condition is found for horizontal
modes. A compact perturbation expression is then found
to completely capture the magnetoplasmon resonance shift.
Thus, only the solution to the zero-field problem is required
to evaluate the magnetoplasmon resonances.

II. MAGNETOPLASMON RESONANCES

As mentioned above, the problem is greatly simplified in
the case of cylindrical symmetry. We therefore consider the
geometry in Fig. 1. Here, a nanoparticle with a rotational
symmetry axis z is assumed and the homogeneous and static
external magnetic field is aligned with the symmetry axis �B =
Bẑ. In general, internal magnetization along the z axis leads to
an equivalent problem. In the absence of an external field, the
nanoparticle is assumed isotropic with a frequency-dependent
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FIG. 1. Cylindrically symmetric metal nanoparticle in magnetic
field aligned along the symmetry axis. The optically anisotropic
particle is embedded in an isotropic medium with dielectric
constant ε1.

dielectric constant ε(ω). In this case, the tensorial dielectric
response in the presence of the field is of the gyrotropic form
[28],

↔
ε =

⎛
⎝ εxx εxy 0

−εxy εxx 0
0 0 εzz

⎞
⎠. (1)

We will return to the field dependence of the tensor elements
below. In addition, we take the particle to be embedded in
a homogeneous medium with dielectric constant ε1. In the
surface charge approach, charges σ (�r′) at position �r′ produce
a potential at �r proportional to σ (�r′)/|�r − �r′|. In turn, in the
electrostatic approximation, the electric field is proportional
to

�g(�r, �r′) = −∇ 1

|�r − �r′| = �r − �r′

|�r − �r′|3 . (2)

This integral kernel is singular, however, and the associated
field depends on the manner, in which the limit �r → �r′ is
taken. Accordingly, for �r′ and �r on the particle surface, the
fields on either side are given by the surface integral [9–12]

�Eout/in(�r) = 1

4πε0

∮
�g(�r, �r′)σ (�r′)dS′ ± n̂

σ (�r)

2ε0
, (3)

where + and – go with the fields infinitesimally outside
and inside the particle, respectively, n̂ is the outward unit
normal vector, and dS′ is an infinitesimal surface element
at position �r′. Importantly, here and throughout, principle-
value integrals are assumed. Hence, the discontinuity is en-
tirely contained in the last term, which reflects the electro-
magnetic boundary conditions, i.e., the discontinuity of the
normal component. For a cylindrically symmetric particle,
n̂ = (nx cos ϕ, nx sin ϕ, nz ) with azimuthal angle ϕ; cf. Fig. 1.
Projecting onto the normal direction and defining Eout/in

a ≡
â · �Eout/in(�r), the boundary condition is then

ε1Eout
n (�r) = n̂ · ↔

ε · �E in(�r) = εxxE in
n (�r) + εxynxE in

ϕ (�r)

+ (εzz − εxx )nzE in
z (�r). (4)

Combined with Eq. (3), this means that

σ (�r) = 1

2π
(
εxxn2

x + εzzn2
z + ε1

)
∮

{(εxx − ε1)gn(�r, �r′)

+ εxygϕ (�r, �r′) + (εzz − εxx )gz(�r, �r′)}σ (�r′)dS′, (5)

where we have defined the projected Green’s functions via
ga(�r, �r′) = paâ · �g(�r, �r′) with prefactors pn = 1, pz = n̂ · ẑ =
nz, and pϕ = n̂ · (x̂ŷ − ŷx̂) · ϕ̂ = nx. Also, we use the con-
vention that unprimed quantities in integrals such as the
normal vector components nx,z are evaluated at position �r
while primed ones are evaluated at �r′. Equation (5) is the
eigenvalue problem to be solved for a gyrotropic nanoparticle.
In the isotropic case εxx = εzz = ε and εxy = 0, this leads to
the usual eigenvalue problem with λ = (ε − ε1)/(ε + ε1) as
eigenvalue [9–12,24–26].

We now specialize to the cases of vertical and hor-
izontal polarization, i.e., excitation by vertically or hor-
izontally polarized fields. In the former case, cylindri-
cal symmetry ensures a surface charge independent of ϕ.
In the latter, modes varying as exp(±iϕ) are sought. In
the case of vertical polarization σ (�r) = σ (θ ), we define
G(v)

a (θ, θ ′) = (2π )−1
∫ 2π

0 ga(�r, �r′)dϕ′. The nanoparticle sur-
face is parametrized by r = r(θ ) and r′ = r(θ ′). Performing
the azimuthal integral using elementary geometrical relations
we find

G(v)
n (θ, θ ′) = [nz(r cos θ − r′ cos θ ′) + nxr sin θ ]

× F0,1(x, y) − nxr′ sin θ ′F1,1(x, y),

G(v)
z (θ, θ ′) = nz(r cos θ − r′ cos θ ′)F0,1(x, y),

G(v)
ϕ (θ, θ ′) = 0, (6)

where x = r2 + r′2 − 2rr′ cos θ cos θ ′, y = −2rr′ sin θ sin θ ′,
and we have introduced the functions

Fm,n(x, y) ≡ 1

2π

∫ 2π

0

cosmϕ dϕ

(x + y cos ϕ)(2n+1)/2 . (7)

Explicit expressions for the lowest (m, n) cases and computa-
tional prescriptions can be found in Ref. [24]. The surface area
element is dS = S(θ )dθdϕ with area function [26] S(θ ) =
r2(θ ) sin θ/(nx sin θ + nz cos θ ). Hence, upon integration over
ϕ′,

σ (θ ) = 1

εxxn2
x + εzzn2

z + ε1

∫ π

0

{
(εxx − ε1)G(v)

n (θ, θ ′)

+ (εzz − εxx )G(v)
z (θ, θ ′)

}
σ (θ ′)S(θ ′)dθ ′. (8)

The case of horizontal polarization is slightly more compli-
cated due to the off-diagonal εxy response coupling the field
components. The general eigenmode is of the form σ (�r) =
σ±(θ ) exp(±iϕ) and we therefore define real and imaginary
parts

G(h)
a (θ, θ ′) = 1

2π

∫ 2π

0
ga(�r, �r′) cos(ϕ − ϕ′)dϕ′,

F (h)
a (θ, θ ′) = 1

2π

∫ 2π

0
ga(�r, �r′) sin(ϕ − ϕ′)dϕ′. (9)

Hence, with three possible vectors, a total of six projected
Green’s functions result. However, after integration only three
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nonvanishing components remain:

G(h)
n (θ, θ ′) = [nz(r cos θ − r′ cos θ ′) + nxr sin θ ]

× F1,1(x, y) − nxr′ sin θ ′F2,1(x, y),

G(h)
z (θ, θ ′) = nz(r cos θ − r′ cos θ ′)F1,1(x, y),

F (h)
ϕ (θ, θ ′) = nxr′ sin θ ′[F0,1(x, y) − F2,1(x, y)]. (10)

In terms of these, the eigenproblems for σ±(θ ) read

σ±(θ ) = 1

εxxn2
x + εzzn2

z + ε1

∫ π

0

{
(εxx − ε1)G(h)

n (θ, θ ′)

+ (εzz − εxx )G(h)
z (θ, θ ′) ± iεxyF (h)

ϕ (θ, θ ′)
}

× σ±(θ ′)S(θ ′)dθ ′. (11)

Generally, Eqs. (8) and (11) can be solved by sweeping
over frequency. This is a rather cumbersome task, however.
We therefore now utilize the assumption that the material is
isotropic in the absence of a magnetic field such that εxx =
εzz = ε and εxy = 0 at B = 0. In the presence of a weak
field [17,29], εzz − εxx = O(B2) while εxy = O(B). Hence,
retaining only first-order corrections, we find for the vertical
case

σ (θ ) = ε − ε1

ε + ε1

∫ π

0
G(v)

n (θ, θ ′)σ (θ ′)S(θ ′)dθ ′, (12)

while for the horizontal case

σ±(θ ) = ε − ε1

ε + ε1

∫ π

0

{
G(h)

n (θ, θ ′) ± iεxy

ε − ε1
F (h)

ϕ (θ, θ ′)
}

× σ±(θ ′)S(θ ′)dθ ′. (13)

In these simplified relations, ε is now the zero-field isotropic
response. Hence, the vertical eigenproblem is unaffected by
the magnetic field but the horizontal case is still perturbed
by the off-diagonal correction. This demonstrates that, to
linear order, magnetoplasmon shifts are absent for vertical
eigenmodes in cylindrically symmetric geometries. For the
horizontal modes, the unperturbed problem reads

σ0(θ ) = λ0

∫ π

0
G(h)

n (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′. (14)

Here, σ0(θ ) is the unperturbed eigenfunction and λ0 =
[ε(ω0) − ε1]/[ε(ω0) + ε1] the unperturbed eigenvalue that, in
turn, provides the unperturbed resonance ω0. In addition, one
may define the adjoint (or left) eigenfunction σ

†
0 (θ ) via

σ
†
0 (θ ′) = λ0

∫ π

0
G(h)

n (θ, θ ′)σ †
0 (θ )S(θ ′)dθ. (15)

Note the change in integration variable here. We normalize
these such that

∫ π

0 σ
†
0 (θ )σ0(θ )S(θ )dθ = 1. Importantly, these

unperturbed eigenproblems are easily solved using standard
routines.

In the presence of the magnetic field, the resonance fre-
quency shifts from ω0 to ω corresponding to an eigenvalue
λ = [ε(ω) − ε1]/[ε(ω) + ε1]. In relatively weak magnetic
fields, perturbation theory allows for a straightforward so-
lution in terms of the zero-field eigenmode, which is easily

obtained. Collecting first-order terms in Eq. (13), we find

λ ≈ λ0 ± iεxy(ω0)λ0(λ0 − 1)

2ε1

×
∫ π

0

∫ π

0
σ

†
0 (θ )F (h)

ϕ (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′dθ. (16)

We stress that the perturbative regime is defined by ωc � ω.
However, for resonances in the visible and applying the free-
electron mass me = m0, a ratio of ωc/ω = 10−3 still requires a
substantial field of B ≈ 17T and, thus, the perturbative result
remains accurate in nearly all cases.

III. APPLICATION TO NANODISKS

The theory formulated so far is quite general. To provide
quantitative results for realistic geometries, we now consider
a screened free-electron-like metal. The interband dielectric
constant is ε∞ and to all orders in the cyclotron frequency
ωc = eB/me [17,29]

εxx(ω) = ε∞ − ω2
p

ω

ω + iγ

(ω + iγ )2 − ω2
c

,

εzz(ω) = ε∞ − ω2
p

ω(ω + iγ )
, (17)

εxy(ω) = iωcω
2
p

ω

1

(ω + iγ )2 − ω2
c

.

Here, ωp is the plasma frequency and a phenomenological
line broadening γ was included. We now adopt these results
to the perturbation approach by retaining only first-order
effects of the magnetic field. As mentioned above, there is
no linear contribution to the diagonal anisotropy and, in the
collision-less limit, εxx = εzz ≈ ε with ε(ω) = ε∞ − ω2

p/ω
2

and εxy(ω) ≈ iωcω
2
p/ω

3. The perturbation result Eq. (16) then
directly translates into resonances given by ω = ω0 ± 1

2
ω

with


ω ≈ ωc
λ0

λ0 − 1

∫ π

0

∫ π

0
σ

†
0 (θ )F (h)

ϕ (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′dθ.

(18)
The unperturbed solution {σ0, λ0} is completely indepen-

dent of material properties and, in fact, Eq. (14) is a scale-
invariant equation, which is indifferent to the absolute particle
size. Material properties only enter whenever the eigenvalue
is translated into a resonance frequency via λ0 = [ε(ω0) −
ε1]/[ε(ω0) + ε1]. Hence, the normalized shift 
ω/ωc is ac-
tually independent of the material properties and entirely
determined by geometry. The absolute shift is obviously en-
hanced in materials with a low effective mass via the cyclotron
frequency. Also, it is seen that the split resonances are always
symmetrically positioned above and below ω0. If losses are
retained via γ in Eqs. (17), the resonance expression Eq. (18)
is multiplied by a factor � = [1 + iγ /(2ω0)]−1. Since |�| < 1,
the presence of losses will reduce the magnitude of the shift
slightly.

As a technologically relevant example [14,17,18], we con-
sider nanodisks such as the one shown in the lower inset of
Fig. 2. Here, the geometry is defined by height h and width
w and the edges are rounded by quarter circles with radius
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FIG. 2. Normalized magnetoplasmon shift for the nanodisk
shown in the lower inset. Different curves correspond to different
rounding radii on the edges. Surface fields for two cases are shown
at the top.

R� h/2 producing a smooth profile with continuously varying
surface parametrization r(θ ) and normal vectors �n. Due to the
above-mentioned scale invariance, we fix h and measure w

and R in units of h. We also note that for 2R = w = h the
shape is that of a perfect sphere. We solve Eqs. (14) and (15)
by discretizing on an equidistant angular grid using up to 3000
grid points. The singular diagonal elements of the Green’s
functions are found but integrating between grid points using
a 50 times denser grid designed to avoid the singularity.

The shift 
ω/ωc is shown for various nanodisk geometries
in Fig. 2. It is seen from the figure that 
ω/ωc is generally
below unity and, intriguingly, seems to approach a common
value ∼0.95 for wide disks irrespective of rounding radius.
We emphasize that these are completely general curves that
apply to any material that can be accurately modelled by
the screened Drude model Eq. (18). Moreover, a shift of

ω/ωc = 1 is found in the limit of a perfect sphere 2R =
w = h. Also, it is known that for disks of vanishing thickness
w/h → ∞, such as graphene quantum dots, a shift 
ω/ωc =
1 is obtained [30]. For finite height h, Fig. 2 shows that the
normalized shift is generally less than unity. In agreement
with previous work [16,20–23], we find that 
ω = ωc for all
spheres and ellipsoids.

To rationalize the difference between disks and spheres, it
is instructive to consider the local surface field, i.e., Eq. (3)
evaluated immediately inside the nanoparticle surface. The
azimuthal behavior of the local field is dictated by the incident
excitation. However, even for strictly horizontal excitation
aligned along θ = π/2, the local field may, in general, display
a more complicated θ behavior. Thus, the local field may
point in directions deviating significantly from θ = π/2, in
particular near corners. The exceptions to this are precisely
spheres and ellipsoids. As shown in the left-most upper inset
in Fig. 2, the surface field is strictly horizontal for a sphere.
Hence, there is no coupling to the z component of the dielec-
tric constant. In contrast, a nanodisk (right-most upper inset)
is characterized by local fields with a significant z component
near the corners. We now recall that only the (x, y) motion is
affected by the magnetic field to first order, while the vertical

FIG. 3. Relative magnetoplasmon shift vs density for ZnO disks
(red curves) and spheres (blue curves) in air taking B = 1T. For both
geometries, Dirac and free-electron dispersion results are illustrated
by solid and dashed lines, respectively. The upper inset shows the
Dirac energy dispersion.

dielectric response εzz is unaffected. Hence, nanoparticles
characterized by local fields contained in the (x, y) plane
are expected to feel the magnetic effects more strongly than
those with a significant z component of the response. It may
be conjectured, then, that 
ω/ωc � 1 for arbitrary shapes
and that only ellipsoids (and spheres) exhaust the inequality.
The physical interpretation is that only spheres and ellipsoids
allow all electrons to move in a plane perpendicular to the
magnetic field, thereby maximizing the Lorentz force. This
is of consequence for design of nanoparticles having a large
magnetoplasmonic response. Presumably, no shape is better
than ellipsoids in the electrostatic limit, at least for Drude
metals.

IV. DIRAC MATERIALS

The previous section only applied to free-electron-like ma-
terials with a parabolic dispersion. In certain technologically
relevant doped semiconductors such as ZnO [7], as well as
graphene and phosphorene [31], the dispersion is of the Dirac
type. For gapped Dirac materials, the dispersion can be written

as [7] E =
√

E2
0 + h̄2k2E0/me. Hence, the band structure is

that of a hyperboloid, which is approximately parabolic at
small k with an effective mass me. However, as k increases, the
dispersion approaches a linear band with asymptotic velocity
v = √

E0/me. This behavior can be viewed as an effective
mass that increases with energy. Hence, high-energy electrons
with large effective masses are expected to feature a small
cyclotron frequency and, consequently, a smaller magneto-
plasmon shift than electrons near the bottom of the band.
The constant E0 is the minimum energy, i.e., band edge,
measured from the intersection of the asymptotes as shown
in Fig. 3. We will now assume a homogeneous and isotropic
three-dimensional Dirac material, for which semiclassical
Boltzmann theory predicts an unperturbed dielectric constant
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given by

ε(ω) = ε∞ + e2

4π3ε0ω2

∫
v2

x f ′(E )d3k. (19)

Here, we again neglect losses and band velocities should be
evaluated as h̄vi = dE/dki. Moreover, f ′(E ) is the energy
derivative of the Fermi-Dirac distribution and we have added
a constant interband term ε∞. Similarly, to first order in the
magnetic field, the optical Hall response becomes

εxy(ω) = − ie3B

4π3ε0 h̄ω2

∫
f ′(E )vy

{
∂vx

∂kx
vy − ∂vx

∂ky
vx

}
d3k.

(20)

At low electron density n, these response functions resemble
their free-electron counterparts as the occupied portion of the
band structure is nearly parabolic. However, at high density,
marked deviations are found. We measure the Fermi level EF

from the band edge as seen in Fig. 3. In terms of the low-
density plasma frequency ωp = (e2n/ε0me)1/2 and cyclotron
frequency ωc = eB/me, we find with η ≡ (1 + EF /E0)−1

ε(ω) = ε∞ − ω2
p

ω2
η, εxy(ω) = iωcω

2
p

ω3
η2. (21)

Hence, η � 1 is a measure of the deviation from free-electron-
like behavior, which is only expected whenever η ≈ 1. To
relate η to the electron density n, we note that EF =√

E2
0 + h̄2k2

F E0/me with Fermi wave vector kF = (3π2n)1/3.

Thus, it follows that η = [1 + (n/n0)2/3]−1/2 with character-
istic density n0 = (meE0)3/2/(3π2h̄3) ≈ 1.2×1020cm−3 ob-
tained by fitting to full band structure data for ZnO [7]. Signif-
icant fingerprints of the Dirac dispersion are expected when-
ever n ∼ n0. In Fig. 3, we illustrate this fact by investigating
the ratio 
ω/ω0 between shift and resonance frequency. Solv-
ing the eigenvalue relation λ0 = [ε(ω0) − ε1]/[ε(ω0) + ε1],
we see that the unperturbed resonance is

ω0 = ωp
√

η√
ε∞ + ε1

λ0+1
λ0−1

. (22)

Similarly, a perturbation analysis using Eq. (21) readily shows
that for a Dirac material, the shift Eq. (18) is replaced by


ω ≈ωcη
λ0

λ0 − 1

∫ π

0

∫ π

0
σ

†
0 (θ )F (h)

ϕ (θ, θ ′)

× σ0(θ ′)S(θ ′)dθ ′dθ. (23)

It follows that an analysis of magnetoplasmons in Dirac
materials is just as simple as in the free-electron-like case.
Below, we evaluate 
ω/ω0 ∝ η1/2 as a function of density
and compare to the parabolic case η = 1 using the expressions
derived above.

In the numerical results shown in Fig. 3, we have assumed
a field of B = 1 T and consider spheres as well as disks with
w = h and R = h/16, i.e., a nearly square cross section. Also,
for ZnO [32], ε∞ ≈ 3.85 and we take ε1 = 1 corresponding
to nanoparticles in air. In the limit of small density, the un-
perturbed plasmon resonance ω0 vanishes while the shift 
ω

remains finite. Hence, their ratio diverges as n → 0 but around
the characteristic density n ≈ n0, a ratio of order 
ω/ω0 ≈
10−3 is found. In the high-density regime n > n0, noticeable
differences between Dirac and free-electron materials are
observed. As 
ω/ω0 ∝ η1/2, Dirac materials clearly support
a smaller magnetoplasmon shift for a given density. At the
largest density n = 15×1020 cm−3 in Fig. 3, this reduction is
by a factor η1/2 ≈ 2.5. Hence, we conclude that highly doped
semiconductors with a pronounced Dirac energy dispersion
are less sensitive to magnetic fields than might be expected
from their generally small effective mass at the band edge.

V. SUMMARY

We have presented a theory of magnetoplasmon reso-
nances in cylindrically symmetric nanoparticle geometries
valid within the electrostatic limit. A resonance condition
for general gyrotropic dielectric response is formulated. For
weak magnetic fields, a perturbation expression for the shift
of plasmon resonances is found. This allows for a simple
evaluation of the magnetoplasmon response that, furthermore,
is universally valid for all Drude-like materials. The theory
has been applied to nanodisks, which are generally found to
be less sensitive to magnetic fields than ellipsoids and spheres.
Finally, magnetoplasmon shifts in materials with a Dirac-like
energy dispersion are shown to be smaller than those of free-
electron-like structures.
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