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Abstract: A significant challenge for designing a coordinated and effective protection architecture
of a microgrid (MG) is the aim of an efficient, reliable, and fast protection scheme for both the
grid-connected and islanded modes of operation. To this end, bidirectional power flow, varying
short-circuit power, low voltage ride-through (LVRT) capability, and the plug-and-play characteristics
of distributed generation units (DGUs), which are key issues in a MG system must be considered;
otherwise, a mal-operation of protection devices (PDs) may occur. In this sense, a conventional
protection system with a single threshold/setting may not be able to fully protect an MG system. To
tackle this challenge, this work presents a comprehensive coordinated adaptive protection scheme for
AC MGs that can tune their protection setting according to the system states and the operation mode,
and is able to switch the PDs’ setting. In the first step of the proposed adaptive algorithm, an offline
setting will be adopted for selective and sensitive fault detection, isolation, and coordination among
proposed protective modules. As any change in the system is detected by the proposed algorithm in
the online step, a new set of setting for proposed modules will be performed to adapt the settings
accordingly. In this way, a new set of settings are adapted to maintain a fast and reliable operation,
which covers selective, sensitive, and adaptive requirements. The pickup current (Ip) and time
multiple settings (TMS) of directional over-current relays (DOCR), as well as coordinated time delays
for the proposed protection scheme for both of the grid-connected and islanded modes of operation,
are calculated offline. Then, an online adaptive protection scheme is proposed to detect different
fault types in different locations. The simulation results show that the proposed method provides a
coordinated reliable solution, which can detect and isolate fault conditions in a fast, selective and
coordinated adaptive pattern.

Keywords: adaptive protection; digital protection; directional over-current relay; fault detection;
microgrids; symmetrical/asymmetrical faults

1. Introduction

Low-voltage active networks and microgrids (MGs) are often asymmetric and unbal-
anced three-phase systems including distributed generation units (DGUs), storage systems,
and loads, which can act as a controllable entity. They can disconnect from/connect to the
grid at the point of common coupling (PCC) to operate in islanded and grid-connected
modes [1,2]. Although MGs have proposed a large number of benefits from distributed
generation architecture for conventional distribution networks and power systems, they
have changed fundamental concepts for protection and control methods, which implies that
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more sophisticated methods for the control, monitoring, energy management [3,4], cyber
security [5], and especially protection of MG for a reliable and safe operation need to be
investigated, such that DC MGs protection is reviewed in[6]. The concepts to be considered
in the MG protection are explained in detail in [7]. In the same way, recent developments
and challenges in MG protection [8], advances in conventional and adaptive protection
schemes [9], and a review on the protection of MG and its difference with conventional
power systems [10] have been proposed so far.

The protection of an MG is a complex and challenging task, because of different
factors such as the MG operation modes and its bidirectional power flow, varying fault
current contribution, limited and low level of fault current in power electronics-based
power converter DGUs, high impedance faults (HIF), variable configuration of MG due
to plug and play characteristics of DGUs [11,12], and low-voltage ride through (LVRT)
requirements during a fault to prevent from system collapse [13]. In addition, the capacity
and location of DGUs are important to define the setting of directional over current relays
(DOCR) [14], which may influence the setting of protection devices (PD), such as pickup
current (Ip), and time multiplier setting (TMS). Moreover, different connection mode of
an MG may cause different challenges. For instance, in the grid-connected mode, a large
current amplitude contribution of the grid may lead to the malfunction of in-coordination
of PDs of MG side including fully power electronic-based DGUs [15]. In the islanded
mode, conventional PDs such as fuses and overcurrent relays (OCRs) may not properly
operate [16], due to significant decrease in DGUs fault current in high penetrated power
electronic converters [17] and current limitation block in the primary inner current control
loop [18].

Various research works have been conducted in the area of protection of MGs. How-
ever, there are still many challenges and issues that need to be investigated for having
an effective and comprehensive protection scheme, i.e., a mechanism that can detect and
isolate faults in a fast and coordinated way for both of the operation modes [19,20]. In this
way, group setting of DOCRs by using the sensitivity matrix is proposed by [21]. The dual
setting of DOCR for protection and coordination of MGs is presented in [22]. The coordina-
tion of the over-current relay (OCR) is being studied by different researchers to minimize
the operating time of the primary and backup relay [23,24]. A communication-assisted
protection scheme for MGs is proposed for both the grid-connected and islanded modes
of operation in [25]. The dual setting of DOCR by considering multiple fault locations
is investigated and the protection coordination problem is solved by using optimization
algorithms with voltage constraints [26,27].

It should be noted here that when the fault path impedance is high, the current di-
rection may not change, which makes the directional protection ineffective. To address
this concern, recently, the superimposed component-based DOCR setting methods have
gained attention from researchers. In [28], a superimposed current-based DOCR protection
is proposed while the superimposed component of transient energy has not been utilized
for DOCR protection. The DOCR protection scheme proposed in [29] is based on the modi-
fied squared poverty gap (MSPG) index calculated using the superimposed component
of current.

Moreover, a fault current limiter (FCL) based approach is proposed for coordination of
DOCR in [18]. In [30,31], a protection system by using DOCR and an FCL is proposed for
both of the connection modes of operation. In [32], by employing artificial neural networks
(ANNs) and a transient monitoring function (TMF), fault is detected discriminated that
the output current magnitudes of DER units are limited, and after fault clearance, the
microgrid is restored to its normal operating conditions.

An adaptive OCR protection based on micro-phasor measurement units (µPMUs)
for MGs system is proposed in [33]. The µPMUs are installed at PCC and other parts of
the MGs system to detect any change in the system and outage of line. The monitored
data by µPMUs are sent to the phasor data concentrators and then OCRs coordination
is updated accordingly. The line outage, DG disconnection, and network configuration
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changes are monitored by Thevenin impedance estimation at PCC. An adaptive zonal
protection algorithm is proposed for ring MGs that updates the relay settings according to
the line current and DG status [34]. Moreover, an adaptive protection scheme for MGs is
proposed by using a signal processing-based fault detection method to detect the changes in
the system network and optimally identify the pickup current. This method is implemented
by using a fast recursive discrete Fourier transform (FRDFT) algorithm and fuzzy logic
interface for a fast and effective fault detection [35].

Lack of a comprehensive protection scheme is sensed in most of the MG protection
researches. For example, ref. [36] proposes a voltage-based protection scheme for an
inverter-based MGs; however, it only considers the islanded mode of operation. In [37,38],
sequence components of current are used for fault detection of islanded MGs. In a simmilar
manner, authors in [39] have proposed a protection scheme for LV MGs, which is applicable
for autonomous operation of an MG. In addition, single-phase tripping is supported.
However, all of the downstream elements of a feeder should be tripped of a fault in
the feeder’s zone, which is a drawback and undesirable for sensitive loads. In [40], a
comprehensive protection scheme is proposed, although its parameters are not set properly
based on the system’s feature.

The communication system failure and its impact on adaptive protection of MGs
are investigated in [41], where MGs fault detection and recent development in protection
systems along with adaptive protection have been briefly reviewed. Authors have shown
studies carried out to identify the optimal pickup current (Ip) setting and minimized
approaches of coordination time interval (CTI) of the primary and backup relays. It has
been revealed that a number of the reviewed methods are depended to the operation mode,
and in some others, because of employing one directional OCRs, all of the downstream
DGUs are tripped. In this regard, a fast and reliable protection scheme for MGs system
identify, and isolate fault conditions in a coordinated manner is required.

In this paper, a comprehensive and coordinated protection scheme based on digital
PDs to efficiently satisfy protection coordination requirements in both the grid connected
and islanded modes of operation of AC microgrids is proposed. The proposed scheme
covers PCC, feeders, lines, and DGU protection requirements for various type of fault. Its
coordination settings are set adaptively, according to the MGs and DGU features. To do so,
in an offline procedure, coordinated time delays for various type of employed relays are
defined; then, an online adaptive protection algorithm is developed so that switch the PD
setting automatically based on the information received by the system, and meanwhile, the
algorithm calculates the optimal pickup current and TMS setting in a real-time progress. It
means that an offline (calculated and stored) as well an online (measured and calculated in
real-time) data are used for reliable, coordinated, and fast fault detection. Briefly, the main
contributions of the proposed protection scheme are:

• A coordinated adaptive digital protection scheme is derived. The proposed scheme
contains various protective modules such as DOCR, DOCR-NSC, DOCR-THD, DFRs
and UVRs, which facilitate detecting various faults.

• Coordinated protection modules for different modes of an MG results in reliable,
selective, and coordinated protection, which is appropriate to detect all types of faults.

• In addition to coordinate the DOCRs, coordination of the NSC, THD, and UVR
modules have been conducted through appropriate time delays tuned by an adap-
tive algorithm.

• The coordination is performed through an adaptive scheme, which includes offline
and online steps. In the offline step, as the first step of the proposed adaptive scheme,
all the settings are adopted for a selective and coordinated scheme among proposed
protective modules. Then, in the online procedure, after detection any change in the
system topology, a new set of setting for proposed modules will be performed to
adapt the settings accordingly.

• The proposed method is appropriate not only for the grid-connected mode, but also
for the islanded-mode of the operation.
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The rest of the paper is organized as follows. Section 2 proposes protective modules
for each region of an MG, with the implementation of them. Section 3 presents the proposed
coordination algorithm. Simulations have been performed to validate the merits of the
proposed protection scheme in Section 4. Furthermore, lastly, the conclusion and potential
directions are discussed in Section 5.

2. Proposed Protection Schemes

MG systems as active distribution networks are needed to be protected in directional
way, such that the employed PDs should be coordinated to isolate the faulted area. To this
end, upstream relay trip signal is transmitted to all of the downstream DGUs. The following
coordinated scheme not only supports directional requirements for MG protections, it also
employs single-phase trip commands which are an appropriate solution for low-voltage
MGs including unbalanced loads.

2.1. PCC Protection

As mentioned before, due to operational situations, an MG can be operated in both
the grid connected and islanded modes. However, to improve the power quality of
loads in faulty conditions or abnormal events of the up-stream grid, the MG can be
disconnected through an intentional or unplanned manner. Isolation detection procedure
is mainly performed by PCC relays. Conventional OCRs, which are solely sensitive to the
fault current amplitude, are not a suitable fault detector. To deal with this problem, the
comprehensive fault detection scheme for the PCC relay shown in Figure 1 is presented.
The PCC relay involves the following three main relays.
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Figure 1. The proposed PCC protection scheme.

2.1.1. Inverse Time DOCR

Due to the large current contribution of the main grid for faults occurring in the MG,
inverse time OCR is employed. In the proposed scheme, an inverse time OCR is used for
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each of the phases. The inverse time OCR relay per phase outputs join to a logical OR gate,
then the trip signal is prepared.

2.1.2. Instantaneous DOCR for Negative Sequence of Current

By this module, the negative sequence of component (NSC) of current is used as a
detection tool for asymmetrical faults. It is worth highlighting that the reason for employing
a directional element is to discriminate between the faults occurring in the main grid
(upstream) and the MG (downstream). Consequently, respective CTIs are tuned in offline
mode in Section 3. For the grid side faults, a very small CTI as the forward time delay
is defined, i.e., CTI = 0.12 s, which is responsible for fast isolation of the MG from the
main grid. For the faults occurring in the MG-side, CTI = 0.5 s. for this direction is
employed long enough, such that it keeps the coordination between the PCC and other
MG protection relays.

2.1.3. Directional UVR

During three-phase symmetrical voltage sags or faults in the grid-side, both of the
relays mentioned in the PCC protection scheme fail to detect the fault or voltage drops. To
cope with this issue, a directional UVR for each phase is employed, which is based on the
grid codes and appropriate coordination between the PCC and MG relays, and appropriate
time delays for reverse and forward directions are defined.

2.2. Feeder Protection

Figure 2 shows the proposed digital protection scheme suggested as backup protection
for lines and loads. As it can be observed, this protection scheme is installed at the beginning
of feeders, and generates feeder protection trip. During a faulty condition, When the feeder
protection relay trips, the corresponding feeder will be disconnected and a the generated
trip signal FPTrip will be sent to all downstream DGUs and lines on the feeder. As can
be observed, the feeder protection relay consists of a directional OCR and a directional
NSC-OCR, which are described in the following.

Directional Element
vc

ic

Inverse time OCR 51

OCR  tdr

Directional Element
va

ia

Inverse time OCR 51

OCR  tdr

Directional OCR Module

Directional OCR Module

Directional OCR Module
vc

ic

vb

ib

Directional Element
vb

ib

Inverse time OCR 51

OCR tdr

Phase a

Phase b

Phase c

Directional Element
va

ia

Instantaneous 
OCR 50

Neg. 
Seq.

ib
ic

OCR  

Nt dr

OCR  

Nt df

Forwa rd Mode  N eg. Seq. D el ay

Revers e M ode N eg. Seq. D el ay

Directional NSC-OCR  Module

O
r

FPT rip

Figure 2. The proposed Feeder protection scheme.

2.2.1. Directional Inverse Time OCR

The proposed directional inverse time OCR not only can properly detect the grid-side
faults but can also, by an appropriate time delay definition for reverse mode, achieve a
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proper coordination. Then, per phase directional OCR signals join to a logical OR gate to
generate the trip signal. By the inverse time feature of the relay, grid-side faults, which
have a large fault current contribution, will be detected faster. It is worth highlighting here
that due to the reduced fault current in MG-side in islanded mode, this module cannot
operate properly and in a reasonable time. This issue is addressed by the next module,
described in the following section.

2.2.2. Directional Negative Sequence Current OCR

An NSC is employed here to detect asymmetrical faults in both of the reverse and
forward directions. By passing the output signals of the OCR 50 and directional element
through a logical AND gate, fault direction is discriminated as well. Lastly, appropriate
time delays are defined to provide the relay coordination.

2.3. Line Protection

Differential current-based relays (DFRs) are employed for protecting the all lines to
which, in their downstream at least, a grid-forming DGU is connected [42]. As can be
observed from Figure 3, all communicated signals from line DFRs join to a logical AND
gate, and then they join again with the feeder protection trip signal FPTrip to generate the
line and feeder’s trip command FED& LineDFRT.

Line xx

Differential 
Relay

iabciabc

Sending end R ec iving end

rese

DFRT  line 12 phas e a

DFRT  line 12 phas e b

DFRT  line 12 phas e c

DFRT  line xx ph as e a

DFRT  line xx ph as e b

DFRT  line xx ph as e c

FPT rip

FED&Line-DFRT

DFRT  line xx 

(a)

(b)

Figure 3. The proposed protection scheme for lines. (a) DFR protection scheme for line protection as
main protection, and (b) FED&Line-DFRT signal command creating for DGU’s back up protection.

2.4. DGU Protection

In order to provide comprehensive DGU protection, communication-based trip com-
mands as external command, and local-based trip commands as internal commands, are
provided as follows.

2.4.1. DGU External Trip Command

These commands come from the feeder and line protection schemes through a com-
munication infrastructure, to all DGUs located in the feeder/line downstream. It is worth
noting that if each one of the sending end circuit breakers fails to operate, the faulty line
will be disconnected from the downstream, while it will still be fed from its upstream. In
this condition, downstream loads are fed by downstream DGUs; however, a DS-DFRT trip
command should be sent to its relevant DGU. The same procedure will be performed when
a receiving end circuit breaker faces with a fault, and consequently, a US-DFRT should be
used as an interruption for the downstream DGUs, as shown in Figure 4.
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Figure 4. The proposed external protection scheme for DGUs. (a) sending-end and receiving-end
protection commands, and (b) upstream and downstream command selection for DGU external
command purposes.

2.4.2. DGU Local Trip Command

As can be observed from Figure 5, the employed structure for grid-forming power
converters protection scheme is utilized as explained in the following. A UVR for detecting
voltage sags and solid faults is employed. Then, an OCR is utilized for high impedance and
overload conditions. Due to the heating effect of the fault current during high impedance
faults or overload conditions, a long delay is considered here, such that for each phase,
an OCR and a long enough delay are considered. The proposed OCR per phase module
can detect asymmetrical overcurrent and faults as well. The last module presented in
the local trip command for DGUs is voltage and current THD blocks, which protects the
inverter from distorted voltage and currents. The importance of this block is not only for
fault condition, but is also for overload conditions, when the inner current control loop
of the inverter limits the current amplitude and leads the DGU to a distorted current and
voltage waveforms. Figure 6 shows a complete DGU trip command which includes local
and external trip commands.
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Figure 5. The proposed local DGU protection scheme.
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Local-DGT

O
r

O
r

DS-DFRT

FED&Line-DFRT

US-DFRT

Communication Failure

DGTrip

External-DGT

And

Figure 6. The proposed comprehensive DGU protection scheme configured by external and local
trip commands.

3. Relays Coordination

In the previous section, we presented a comprehensive protection scheme not only for
PCC, feeders and lines, but also for DGUs. In order to provide reliable protection, all the
protection relays must be coordinated properly; otherwise, it leads to unwanted trips of
out-of-zone faults. It is worth highlighting that PDs of line and loads are the fastest PDs,
which independently operate from the other PDs. On the other side, the rest of protection
schemes such as PCC, feeder, and DGUs, as backup protection for loads and lines, are
coordinated regarding them.

The proposed coordination method works based on two different approaches—an
offline method and online approach in real-time. According to the first approach, adequate
time delay settings for each one of the forward and reverse relays are determined offline
according to the structure of the MGs system configuration with the help of load flow
and circuit analysis. The generated data are stored. Then, by using these data, the pickup
current (Ip) for each upstream and downstream relay are calculated by utilizing the load
current and fault current considerations. Next, the TMS for each forward and reverse relay
are chosen in such a way each relay works as primary protection and provides a backup
protection to upstream and downstream relay for forward and the reverse relay. Different
settings for the defined network structure of MGs system are stored in each determined
time delay unit. In the second approach, an adaptive technique for online calculation
method is adopted that can calculate the pickup for each DOCR relay in real-time and
the result of both approaches is compared and the best of these or nearest time delay is
adopted for fast fault detection isolation. The flow chart of offline and online approaches
is shown in Figure 7, respectively. In addition, the time-current characteristics of DOCR
relays located in the PCC and feeders are depicted in Figure 8. The following sections
briefly describe the proposed offline Dual setting of DOCR and its implementation along
with the online adaptive protection approach.

Start

Network Identification

Network Parameters estimation

Load flow and short circuit analysis

Determining Ip based 
on fault currents

Determining Ip based 
on load currents

Trip time calculation for primary 
and backup PDs

CTI calculation

Start

Network Status Detection

Network configuration identification

Load flow and short circuit analysis 
for new configuration

Trip time, TDS, and TMS 
calculation for primary and backup 

PDs

Is detected any change ?

Adaption of PDs setting for new 
network configuration

Offline settings are 
valid

End

No

Yes

(a) (b)

Figure 7. The proposed algorithm for MG protection: (a) offline mode setting, and (b) adaptive
online mode for setting DOCRs.
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3.1. Offline Analysis and Setting

In the offline setting, after simulating the MG system shown in Figure 9 with the
electrical and control parameters listed in Table 1 for both of the grid connected and islanded
modes, the load flow and short circuit faults shown in Figure 7 are carried out to calculate
the pickup current (Ip) and time dial setting (TDS) by using IEC characteristics (2). For
each case study, Ip and TDS parameters are stored in relay settings as the offline condition
mode. As can be observed, in the first step, the network configuration is considered, which
defines the MGs system connection and structure identification. Next, the capacity of each
source such as grid and DGU, lines, and load is identified; after that, the load flow analysis
is considered for normal condition, and then regarded data is recorded and sorted. After
simulating shown faults in Figure 9, the short circuit analysis data are recorded and stored.
Then, the normal load flow data and by using the maximum fault current, minimum fault
current, the pickup current (Ip) for each forward as well reverse relay are calculated, and
appropriate time delays for NSC, THD, and UVR modules are defined. In the next step, the
TDSs for each pair of forward as well as reveres relay trip time are calculated, as described
in Section 3.3.
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Figure 9. Configuration of AC MG test system and fault locations.
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Table 1. Parameters of the test system.

Electrical Parameters
Parameters Symbol Value
DC Source Voltage VDC 650 V
Nominal voltage magnitude VMG 325 V
Nominal Frequency f 50 Hz
Switching Frequency fs 10 kHz
Capacitance of LCL filter C f 25 µF
Inductances of LCL filter Li/Lo 1.8 mH
Load 1 and Load 4 Z1 and Z4 43 Ω, 0.3 H
Load 2 and Load 3 Z2 and Z3 124 Ω, 0.1 H
Line 11 Z11 0.4 Ω, 3.6 mH
Line 12 Z12 0.8 Ω, 1.8 mH
Line 23 Z23 0.4 Ω, 1.2 mH
Line 34 Z34 0.8 Ω, 3.6 mH

Inner loop coefficients and other control parameters
Control Parameters DGU: 1 and 3 DGU: 2
P−ω droop coefficient 0.001 rad/W.s 0.002 rad/W.s
Q− v droop coefficient 0.005 V/VAr 0.01 V/VAr
Current proportional/resonance terms 1000/0.5 1000/0.5
Voltage proportional/resonance terms 120/0.05 120/0.05

3.2. Online Settings and Switching Mechanism

For the online setting phase, the real-time measurement and adoption algorithm is
implemented to achieve a coordinated backup and selective protection scheme. In the
first step of the proposed adaptive algorithm shown in Figure 7, the offline setting will
be adopted for selective and sensitive fault detection, isolation, and coordination among
proposed modules. As any change in the system is detected by the proposed algorithm.
Then, a new set of settings for proposed modules will be performed to adapt the settings
accordingly. This approach is mainly based on the information received by DGUs, lines,
feeders, PCC, and load. It should be noted that the minimum trip time (TT) of 80 ms is
selected for the first back up feeder, i.e., Feeder #1 or Feeder #2. Then, the coordination
of back up setting is performed for them. Relays coordination among PCC and Feeder
devices are given in Table 2.

Table 2. Time delays and protective parameter descriptions.

Protection Module Parameter Description Value
OCRNtd f TD for NSC Instantaneous OCR 50 in forward direction 0.035 s
OCRNtdr TD for NSC Instantaneous OCR 50 in reverse direction 0.350 s
UVRNtd f TD for PCC UVR in forward direction 0.005 s

Time Delay
(TD)

UVRNtdr TD for PCC UVR in reverse direction 0.200 s
Ip Pick-up current for OCR 10 A
Ip−NSC Pick-up current for NSC-OCR 1 A

PCC

Current
Settings TMS OCR Time multiplier setting 1.06

OCRtdr TD for Inverse time OCR 51 in reverse direction (0.3 , 0.3, 0.5) s
OCRNtd f TD for NSC Instantaneous OCR 50 in forward direction (0.08 , 0.12, 0.08) sTime Delay

(TD) OCRNtdr TD for NSC Instantaneous OCR 50 in reverse direction (0.35 , 0.35, 0.50) s
Ip Pick-up current for OCR (12, 10,9) A
Ip−NSC Pick-up current for NSC-OCR (1.2, 1,1) A

(Feeder #1,

Feeder #2,

Bus #3)
Current
Settings TMS OCR Time multiplier setting (0.8, 0.93,0.86)

OCRtd TD for Instantaneous OCR 50 2.00 s
OCRtdi TD for Instantaneous current THD OCR 50 0.15 sTime Delay

(TD) OCRtdv TD for Instantaneous voltage THD OCR 50 0.15 s
Ip Pick-up current for OCR 10 A
Ip−ithd Pick-up current for Instantaneous current THD OCR 50 1.1 A

DGUs
Current
Settings Ip−vthd Pick-up current for Instantaneous voltage THD OCR 50 1.1 A

Lines Current Settings Imin Minimum differential current required to operate the DFR (0.2, 0.15, 0.22, 015) A

3.3. DOCR Principle and Setting

In order to minimize the overall clearing time for different faults in the online proce-
dure, the following objective function for coordinating the DOCR is employed. Based on
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the linear or nonlinear modeling, different optimization tools can be used. The expressed
optimization problem is a function of two variables, i.e., the pickup current (Ip) and time
dial setting (TDS).

min
{TDSpm

i ,TDSbk
i ,Ipi }

∑(c,i,j)
(tpm

i (ISC
j,c )) + ∑K

k=0 (t
bk
i (ISC

k,c )) (1)

subject to the IEC 60255 standard inverse time relays characteristic, expressed as follows:

tij = TDSi
A

(ISC
i,j /Ipi

)
B − 1

(2)

where ISC is the short circuit current, i and j are the relay and fault location indices, and
k stands for the backup relay numbers. Superscripts pm and bk stand for primary and
backup protection, and c determines the operation mode of the MG, such that for grid
connected has a zero value, while it is set to one for islanded mode. tij is the operating
time of relay i when a fault is happened in location j. A and B are relay’s tripping curve
coefficients, whose values are 0.14 and 0.02, respectively, [43]. In addition, the expressed
objective function should fulfill the following constraint in both of the grid connected and
islanded modes.

tbk
i (Ik,c

SC)− tpm
i (I j,c

SC) ≥ CTI ∀ i, j (3)

where CTI stands for the minimum coordination time interval required for discriminating
between pm and bk for the same fault in j, recommended to be CTI ∈ [0.2–0.5] in most of
the contexts, as [43]. In the same way, for the pickup setting and TDS of DOCRs, following
constraints should be considered.

1.1 · IL
i ≤ Ibk

pi
≤ I j

SC (4)

1.1 · IL
i ≤ Ipm

pi ≤ I j
SC (5)

TDSmin ≤ TDSbk
i ≤ TDSmax (6)

TDSmin ≤ TDSpm
i ≤ TDSmax (7)

where IL
i is the maximum load current sensed by relay i. TDSmin and TDSmax stand for

the minimum and maximum values for pm and bk relay’s TDS.

4. Case Studies and Simulation Results

In this study, a modified test system, as shown in Figure 9, is used. In the studied
MG, three DGUs operated as droop-based grid forming power converters, controlled by
hierarchical droop, voltage, and current controller, are employed. A current saturation
block is utilized for safe operation of power electronic converters in the current control
layer. The electrical parameters of the system are shown in Table 1. It is worth noting that
some concepts and control strategies such as type of earthing system [44], hierarchical
control and operation of MG systems have been explained and described before in most
contexts such as [4]. In comparison with the comprehensive method in [40], the proposed
method not only presents an adaptive scheme for coordination, but also hierarchical control
as well as current limitation of DGUs are considered in the simulations, which leads the
case studies to be closer to the real world operational MGs.

In order to evaluate the merits and effectiveness of the proposed comprehensive
MG protection scheme, the illustrated MG in Figure 9 is simulated in Matlab/sim-power
systems environment. Then, all types of fault such as LG, LL, LLG, and three-phase fault
are examined in different locations for both of operation mode, i.e., islanded and gird-
connected modes. By employing the proposed protection scheme, all the PDs operate and
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isolate the faults in a coordinated scheme. Furthermore, DGUs and loads are allowed by
the proposed protection scheme to service after clearing the fault.

4.1. Grid Connected Mode

For line faults, DFR current-based PDs operates as main PD. These devices detect the
fault conditions in one cycle. The PCC and feeder protection relays are considered as back
up protections.

In the grid connected mode, Fault #1 in the grid-side, Fault #2 occurred in Feeder #2
and Bus #3, and Fault #3 occurred between Feeder #1 and Bus #1 are investigated. Although
all results are extracted for different types of faults, waveform results of an ABG fault at
the location of Fault #2 is depicted in Figure 10.
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Figure 10. Voltage and current waveforms of DGU #2 during an ABG fault and coordinated trip
signals for Fault #2 in grid-connected mode.

As can be observed from Figure 10, the upstream grid experience a voltage sag with
30% voltage drop in the location of Fault #1. Injected current from DGU #1 is shown in
which, in its inner loop, a current limitation block is employed. The current limitation
allows 20% over-current for fault and overload steady-state conditions, as it can be observed
from the current wave forms. For the mentioned fault, DGU #1 feeds the fault. As can be
expected, the current saturation of the DGU’s inner loop, limits the fault current, and it
leads to distortion of current waveforms. As can be observed from Boolean type waveform
trip signals, the trip command coordination can be observed for Feeder PD, DGU PD, and
PCC PD. They are coordinated based on their contribution for feeding the faults. It is
worth highlighting that to analyze all the protection schemes, all the trip commands have
been intentionally blocked, and thereby, the faults remains active for 2 s, which leads us to
check the coordination procedure. As shown in subplots, after the occurred fault at t = 4 s,
the DFR protection scheme for Line #11 issues the trip command after 0.003 s; then, the
protection scheme for Feeder #1 operates, due to its directional OCR at t = 4.056 s, and
consequently, Feeder #1’s NSC protection scheme trips at t = 4.083 s. After that, the first
DGU which contributes in feeding the faults is recognized as DGU #1 which its UVR and
THD protection schemes trip at 4.112 and 4.150 s. After these, the protection schemes of the
PCC relay, Feeder #2 and Bus #3 respond to the fault as the can be observed from Figure 10.
The illustrated sequence of trip commands demonstrates a coordinated protection manned
for an L-L grid-side fault.

More faults in grid connected mode are also investigated to verify the proposed
protection scheme. The investigated faults are not only symmetric/asymmetric faults in
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the grid-side location, but also include faults occurred in the MG and downstream region.
These faults and coordination assessing are given in Table 3, where for Fault #1 located in
the grid side, all the fault types are considered. Faults #2 and #3 located in the downstream,
as shown before in Figure 9, are also investigated the coordination point of view of the
proposed protection scheme in the grid connected mode. As can be seen, DFR protection
is the main PD, and all the backup PDs can operate in a coordinated way based on their
contribution in feeding the fault.

Table 3. Simulation results under different fault conditions in grid connected mode.

Fault Location: Fault #1 Fault #2 Fault #3
Fault Type: Main and Backup Relays OT (s) Main and Backup Relays OT (s) Main and Backup Relays OT (s)

AG

PCC Trip (NSC Module)
Feeder #2 Trip
Feeder #1 Trip
PCC Trip (UVR Module)
Bus #3 Trip

4.039
4.355
4.357
4.505
4.504

DFR Line #11 Trip
Feeder #1 DOCR Trip
Feeder #1 NSC Trip
DGU Trip #1 (OCR-THD)
DGU Trip #1 (UVR)
PCC Trip (DOCR)
Feeder #2 Trip
Bus #3 Trip

4.003
4.035
4.085
4.150
4.185
4.245
4.353
4.535

DFR Line #21 Trip
Feeder #2 DOCR Trip
Feeder #2 NSC Trip
DGU Trip #1 (OCR-THD)
PCC Trip (NSC)
Feeder #2 Trip
PCC Trip (DOCR)
Bus #3 Trip

4.003
4.055
4.123
4.179
4.355
4.367
4.393
4.505

AB

PCC Trip (NSC Module)
PCC Trip (UVR Module)
Feeder #2 Trip
Feeder #1 Trip
Bus #3 Trip

4.038
4.118
4.354
4.356
4.506

DFR Line #11 Trip
Feeder #1 DOCR Trip
Feeder #1 NSC Trip
DGU Trip #1 (UVR)
DGU Trip #1 (OCR-THD)
PCC Trip (DOCR)
Feeder #2 Trip
Bus #3 Trip

4.003
4.056
4.086
4.112
4.150
4.308
4.350
4.530

DFR Line #21 Trip
Feeder #2 DOCR Trip
Feeder #2 NSC Trip
DGU Trip #2 (OCR-THD)
PCC Trip (NSC)
PCC Trip (DOCR)
Feeder #1 Trip
Bus #3 Trip

4.003
4.062
4.123
4.225
4.353
4.358
4.363
4.504

ABG

PCC Trip (NSC Module)
PCC Trip (UVR Module)
Feeder #2 Trip
Feeder #1 Trip
Bus #3 Trip

4.037
4.117
4.355
4.359
4.508

DFR Line #11 Trip
Feeder #1 DOCR Trip
Feeder #1 NSC Trip
DGU Trip #1 (THD)
PCC Trip (DOCR)
DGU Trip #1 (UVR)
PCC Trip (NSC)
Feeder #2 Trip
Bus #3Trip

4.003
4.045
4.082
4.150
4.242
4.308
4.352
4.365
4.530

DFR Line #21 Trip
Feeder #2 DOCR Trip
Feeder #2 NSC Trip
DGU Trip #2 (OCR-THD)
PCC Trip (NSC)
Feeder #1 Trip
PCC Trip (DOCR)
Bus #3 Trip

4.003
4.068
4.128
4.175
4.352
4.360
4.383
4.504

ABC PCC Trip (UVR Module) 4.035

DFR Line #11 Trip
Feeder #1 DOCR Trip
DGU Trip #1 (UVR)
PCC Trip (DOCR)
PCC Trip (UVR)

0.003
4.045
4.116
4.235
4.705

DFR Line #21 Trip
Feeder #2 DOCR Trip
DGU Trip #2 (OCR-THD)
Feeder #1 Trip
PCC Trip (DOCR)
Bus #3 Trip

4.003
4.058
4.175
4.360
4.383
4.504

4.2. Islanded Mode

The same fault types have been also considered to investigate proper cooperation of
the proposed protection scheme in the islanded mode. It is worth noting again that the
DFR devices are the primary PDs which detect the fault, and then the cooperated backup
protections operate. To show the coordinated results, a number of simulations for islanded
mode are carried out, and results are shown in Table 4. In the following, one of the LG fault
(for example phase A to ground fault) occurred in the location of Fault #2 is explained.

After the AG fault occurred in the fault location #2, the DFRs for line protection trip
the fault signals in 4.003 s. As with the grid connected mode, to analyze the coordination
of PDs, the trip command of the protection relays have been blocked during the fault and,
thereby, the fault is continued. Feeder #1’s NSC protection scheme trips at 4.073 s, then
the OCR-THD and UVR employed in DGU #1 create trip signals at 4.150 s and 4.185 s.
Subsequently, trip commands from Feeder #2, Bus #3, and DOCR of Feeder #1 send out
their trip commands at t = 4.353 s, t = 4.503 s, and t = 6.352 s, respectively.

It is worth highlighting that the proposed protection scheme works in the both grid-
connected and islanded modes, without a mode switching procedure and recalculation.
These validated features for both of the grid connected and islanded mode operation
of MGs, as well as its comprehensiveness, specify the proposed protection scheme for
practical applications as a comprehensive adaptive digital protection scheme.



Appl. Sci. 2021, 11, 7066 14 of 17

Table 4. Simulation results under different fault conditions in island mode.

Fault Location: Fault #1 Fault #2 Fault #3
Fault Type Main and Backup Relays OT (s) Main and Backup Relays OT (s) Main and Backup Relays OT (s)

AG

DFR Line #11 Trip
Feeder #1 NSC Trip
DGU Trip #1 (OCR-THD)
DGU Trip #1 (UVR)
Feeder #2 Trip
Bus #3 Trip
Feeder #1 DOCR Trip

4.003
4.073
4.150
4.185
4.353
4.503
6.325

DFR Line #21 Trip
Feeder #2 NSC Trip
DGU Trip #1 (OCR)
Feeder #2 Trip
Bus #3 Trip

4.003
4.124
4.181
4.361
4.505

DFR Line #12 Trip
Feeder #1 NSC Trip
DGU Trip #1 (OCR-THD)
Feeder #2 Trip
Bus #3 Trip

4.003
4.083
4.152
4.352
4.512

AB

DFR Line #11 Trip
Feeder #1 NSC Trip
DGU Trip #1 (UVR)
DGU Trip #1 (OCR-THD)
Feeder #2 Trip
Bus #3 Trip
Feeder #1 DOCR Trip

4.003
4.073
4.150
4.183
4.353
4.503
5.669

DFR Line #21 Trip
Feeder #2 NSC Trip
DGU Trip #1 (OCR)
Feeder #1 NSC Trip
Bus #1 NSC Trip

4.003
4.123
4.233
4.358
4.504

DFR Line #12 Trip
Feeder #1 NSC Trip
DGU Trip #1 (OCR-THD)
Feeder #2 Trip
Bus #3 Trip

4.003
4.083
4.150
4.352
4.510

ABG

DFR Line #11 Trip
Feeder #1 NSC Trip
DGU Trip #1 (UVR)
DGU Trip #1 (OCR-THD)
Feeder #2 Trip
Bus #3 Trip
Feeder #1 DOCR Trip

4.003
4.073
4.150
4.183
4.353
4.503
5.335

DFR Line #21 Trip
Feeder #2 NSC Trip
DGU Trip #1 (OCR)
Feeder #1 Trip
Bus #1 Trip

4.003
4.123
4.179
4.358
4.504

DFR Line #12 Trip
Feeder #1 NSC Trip
DGU Trip #1 (OCR-THD)
Bus #3 Trip
Feeder #2 Trip

4.003
4.083
4.163
4.510
4.523

5. Conclusions

In this paper, a digital adaptive protection scheme for low voltage MGs was provided.
In the proposed method, different protective digital relay schemes for different locations
of MGs, such as the PCC, feeders, lines, and grid-forming droop based DGUs , were
introduced and they have been coordinated through an adaptive scheme. The proposed
adaptive scheme includes two steps. First, the offline step, as the first step of the proposed
adaptive scheme, wherein all the settings are adopted for selective and sensitive fault
detection, isolation, and coordination among proposed protective modules. Then, in an
online procedure, any change in the system is detected, and thus a new set of setting for
proposed modules will be performed to adapt the settings accordingly. The proposed
digital protection modules covers various fault types, such as DOCR, NSC, THD, and
UVR relays, which facilitates detecting various faults. Offline and online algorithms for
adaptive setting and coordination of the proposed relays were developed. Due to its
credible capability of the proposed method for operation in both of the grid-connected and
islanded mode, it presents a free-mode switching feature, which is able to clear the faults
from double sides as well as single phase faults. Protection modules for different nodes of
the MG system were introduced as one of the main contributions, which results a reliable,
selective, and coordinated protection, and facilitates detecting several types of faults, for
grid-connected and islanded modes of the operation. In order to show the effectiveness of
the proposed method, various simulations were performed. Simulation results show a safe,
selective, reliable, and coordinated protection under several fault scenarios. The future of
research mainly focuses on the convex optimization approaches to find a strict optimal
point for the DOCR relays, as well as extending the proposed method for interconnected
MGs with meshed topology.
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Abbreviations
The following abbreviations are used in this manuscript:

CTI Coordination time interval
DFR Differential current-based relay
DGU Distributed generation unit
DOCR Directional over-current relay
DOCR-NSC Directional over-current relay for negative sequence current
DOCR-THD Directional over-current relay for total harmonic distortion
HIF High impedance faults
ESSs Energy storage systems
FRDFT Fast recursive discrete Fourier transform
LVRT low voltage ride-through.
MG Microgrid
NSC Negative sequence current
µPMU Micro-phasor measurement unit
OCR Over-current relay
OT Operating Time
PD Protective device
PCC Point of common coupling
PI Proportional integral
PR Proportional Resonant
PC Primary control
RES Renewable energy source
THD Total harminc distortion
TMS Time multiple settings
TMF Transient monitoring function
UVR Under voltage relay
VSC Voltage source converter
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