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Pareto Optimal Weighting Factor Design of
Predictive Current Controller of a Six-Phase
Induction Machine based on Particle Swarm

Optimization Algorithm
Hector Fretes, Jorge Rodas, Senior Member, IEEE, Jesus Doval-Gandoy, Member, IEEE, Victor Gomez, Nicolas

Gomez, Mateja Novak, Member, IEEE, Jose Rodriguez, Life Fellow, IEEE, and Tomislav Dragičević, Senior
Member, IEEE

Abstract—Finite-set model predictive control (FS-MPC) as
predictive current control (PCC) is considered an exciting option
for the stator current control of multiphase machines due to their
control flexibility and easy inclusion of constraints. The weighting
factors (WFs) of PCC must be tuned for the variables of interest,
such as the machine losses x − y currents, typically performed
by trial and error procedure. Tuning methods based on artificial
neural network (ANN) or the coefficient of variation were
proposed for three-phase inverter and motor drive applications.
However, the extension of this concept to the multiphase machine
application is not straightforward, and only empirical procedures
have been reported. In this context, this paper proposes an
optimal method to tune the WF of the PCC based on the
multi-objective particle swarm optimization (MOPSO) algorithm.
A Pareto dominance concept is used for the MOPSO to find
the optimal WF values for the PCC, comparing parameters
of root-mean-square error of the stator tracking currents. The
proposed method offers a systematic approach to the WF
selection, with an algorithm of easy implementation with direct
control over the size of the search space and the speed of
convergence. Simulation and experimental results in steady-state
and transient conditions are provided to validate the proposed
offline tuning procedure of the PCC of a six-phase induction
machine. The improvements of RMSE can be more than 500%
for x− y subspace, with minor effect in α−β subspace. Finally,
the proposed method is extended to a more complex cost function,
and the results are compared with an ANN approach.

Index Terms—Model predictive control, multiphase induction
machine, pareto optimal, particle swarm optimization, stator
currents control, weighting factor.
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I. INTRODUCTION

MULTIPHASE machines can be found today in several
commercial products such as wind turbines, electric

buses, high-speed elevators, ships, among others [1]. The
main advantage of this topology compared to the conventional
three-phase one is its higher reliability with intrinsic
fault-tolerance capability [2]. The proposal of new control
techniques is still an interesting research topic in the
multiphase field. Therefore, a huge number of control
strategies have been proposed for multiphase machines, from
linear to non-linear techniques [3]. Finite-set model predictive
control (FS-MPC) is a non-linear control technique that
does not need linearizations or mean values. It works with
instantaneous values, which is a simplification. FS-MPC
as predictive current control (PCC) has been one of the
most popular choices in the last decade for regulating the
stator currents of multiphase machines [4], [5]. However, for
multiphase machines, it is necessary to control not only the
α−β stator currents (related to the torque production) but also
those in the secondary x−y subspace, which are related to the
multiphase machine losses [6]. Consequently, the extension of
classical PCC of the three-phase to the multiphase case is not
straightforward.

PCC of multiphase machines has been proposed for
the first time in [7]. Since then, many improvements
for the PCC methods have been proposed for the same
system, mostly to solve some issues related to FS-MPC
such as high computational burden [8], mathematical
model improvement [9], fixed-switching frequency [10],
among others. Other contributions more related to
multiphase machines were performed for x− y current
reduction [11], [12], predictive torque control [13] and
post-fault operation [14]. In all the before-mentioned FS-MPC
approaches, the cost function (CF) is used to determine the
desired behaviour of the systems. In multi-objective FS-MPC,
the CF includes the weighting factor (WF), the value of which
has been usually determined by trial and error procedure for
multiphase machine systems providing a trade-off among the
variables of interest [15].

The proper tuning of WFs is of paramount importance to
obtain an optimal control performance. For that reason, it
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is still an open problem, and several approaches have been
proposed to tackle this issue. In [16] some guidelines are
summarized for CFs without WF, with CFs with secondary
terms, and with CFs with equally essential terms. This
guideline is based on the heuristic strategy, and it is an
extension of [17]. Although the proposed guideline can
help us reduce the number of tuning trials, it still depends
on the empirical procedures. Recently, an artificial neural
network (ANN) approach is employed to select the WFs
automatically [18]. Nonetheless, numerous simulations or
experiments are still inevitable to extract the sample data.
In [19] a summary of the latest WF tuning techniques for
the most used power electronic converters and electric motor
drives are presented. However, according to the best of the
authors’ knowledge, a proper tuning procedure for the PCC of
multiphase machines is still missing. In [20] a WF guideline
for a five-phase induction machine (IM) has been proposed.
However, the proposal is still a heuristic strategy, and the
obtained WF values are not the same for all multiphase
IMs [15].

In this paper, an optimal tuning procedure is proposed based
on multi-objective particle swarm optimization (MOPSO)
algorithm for a six-phase IM for the first time. A remarkable
contribution of this work is that the algorithm can find
optimal WF values, achieving an optimal trade-off among the
user-defined figure of merits such as root-mean-squared (RMS)
tracking error of α − β and x − y stator currents. Moreover,
the concept of Pareto optimality is also combined in this paper
with the MOPSO algorithm to find sets of optimal calibrations
of the WFs parameters quickly. The users can choose the
trade-off according to their needs. For general applications,
the combination of MOPSO with Pareto optimality gives the
following advantages compared to heuristic methods: simple
implementation, direct control over the size of the search
space and convergence, low time and space complexity in
comparison to evolutionary algorithms commonly used in
multi-objective optimization.

The rest of the paper is organized as follows. The
mathematical model of the two 2-level voltage source inverter
(2L-VSI) and electric drive systems are explained in Section II.
PCC technique is also introduced in the same section. In
Section III the proposed MOPSO algorithm is described.
An analysis based on simulation and experimental results is
presented in Section IV. Finally, conclusions and future trends
are summarised in Section V.

II. PRELIMINARIES

A. Six-phase IM and 2L-VSI model

The analyzing system consists of an asymmetrical six-phase
IM with two isolated neutral points, fed by 2L-VSI, shown
in Fig. 1. After using the vector space decomposition (VSD)
approach [21], the decoupling transformation T gives
α − β subspace, which is related to flux/torque producing
components and loss-producing x − y subspace and a

zero-sequence subspace. Then, by using an amplitude invariant
criterion, T is defined as follows:

T =
1

3



1
√
3
2 − 1

2 −
√
3
2 − 1

2 0

0 1
2

√
3
2

1
2 −

√
3
2 −1

1 −
√
3
2 − 1

2

√
3
2 − 1

2 0

0 1
2 −

√
3
2

1
2

√
3
2 −1

1 0 1 0 1 0
0 1 0 1 0 1


. (1)

Usually, the discrete model of the system in state-space
representation is represented as follows:

xk+1 = A xk + B uk + nk (2)
yk = C xk + mk (3)

where stator and rotor current are included in the state vector
xk

xk =
[
isα(k), isβ(k), isx(k), isy(k), irα(k), irβ(k)

]T
(4)

while the stator voltages represent the input vector:

uk =
[
usα(k), usβ(k), usx(k), usy(k)

]T
(5)

and the stator currents are included the output vector:

yk =
[
isα(k), isβ(k), isx(k), isy(k)

]T
(6)

and nk is the process noise and mk the measurement noise.
The stator voltages, represented by (2), have a discrete nature
(Fig. 2) due to the 2L-VSI model, these vectors are obtained by
applying the transformation T to the phase voltages for each
possible state of the converter, with a total number of 26 = 64
switching possible states defined by the six-legs. Among the
64 possibilities, only 49 different vectors (48 vectors + 1 null
vector) are considered in the α− β and x− y subspaces, due
to the redundancy.

uk = Vdc TM (7)

where the gating signals are S = [Sa, Sb, Sc, Sd, Se, Sf ],
being Si ∈ {0, 1}, Vdc is the dc-bus voltage and the 2L-VSI
model is:

M =
1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

ST . (8)

The matrices A, B are defined as follows:

A =


a11 a12 0 0 a15 a16
a21 a22 0 0 a25 a26
0 0 a33 0 0 0
0 0 0 a44 0 0
a51 a52 0 0 a55 a56
a61 a62 0 0 a65 a66

 (9)
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Fig. 1. Schematic diagram of the 2L-VSI.
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Fig. 2. Projections of the voltage vectors in the α−β (left) and x−y (right)
subspaces for a six-phase IM obtained using VSD approach [21]. The number
that defines each voltage is identified by two octal numbers corresponding to
the binary numbers [Sa Sb Sc] and [Sd Se Sf ].

B =


b1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 b2
b3 0 0 0
0 b3 0 0

 (10)

where:

a11 = a22 = 1− Ts c2 Rs a55 = a66 = 1− Ts c5 Rr
a15 = a26 = Ts c4 Rr a33 = a44 = 1− Ts c3 Rs
a16 = −a25 = Ts c4Lr ωr(k) a51 = a62 = −Ts c4 Rs
a52 = −a61 = −Ts c5 Lm ωr(k) b1 = Ts c2
a56 = −a65 = −c5 ωr(k) Ts Lr b2 = Ts c3
a12 = −a21 = Ts c4Lm ωr(k) b3 = −Ts c4
Ts is the sampling time and c1 − c5 are defined as: c1 =
LsLr − L2

m, c2 = Lr

c1
, c3 = 1

Lls
c4 = Lm

c1
c5 = Ls

c1
. The

electrical parameters of the system are Rs, Rr, Lr = Llr+Lm,
Ls = Lls + Lm, Lr and Lm. The rotor electrical speed (ωr)
has a relationship with load torque (Tl) and generated torque
(Te) as follows:

Jm ω̇r +Bm ωr = P (Te − Tl) (11)

where Bm and Jm are the friction and the inertia coefficient,
respectively, P is the number of pole pairs and Te is:

Te = 3 P M (irβ isα − irα isβ) (12)

where M is the magnetizing inductance.

B. PCC of a Six-Phase IM

FS-MPC uses the model of the system to analyze its future
behaviour. In this case, the PCC uses the discrete model of the
system (2) to predict (at time k) the k+1 six-phase IM’s stator
currents. To consider the delay compensation, x̂k+2 is obtained
iteratively using the predictive model. The unmeasured rotor
currents are estimated by using the Kalman filter [9], [22]. For
each possible state of the VSI, a cost function J is calculated.
This cost function is defined by:

J = |eαβ |2 + λxy |exy|2 (13)

where:
eαβ = i∗sαβ[k+1] − isαβ[k+1]

exy = i∗sxy[k+1] − isxy[k+1].

The control objective is to select the VSI state that
minimizes J . In the particular cost function chosen, the WF
parameter λxy needs to be tuned. Note that it is not strictly
necessary to normalize the cost function due to the two terms
being of the same nature. Normalization makes sense when
the CF deals with different variables (e.g. torque and flux)
that also have very different numerical values [16].

III. PROPOSED WF DESIGN

To find the best values for the WF parameter λxy , the RMS
tracking error of the α − β and x − y stator currents are
evaluated and used as performance indicators or objectives,
making this multiple objective optimization problems. ANN
has been used along with the weighted sum of goals as an
approach to obtain the WF parameters by [18]. However, the
control designer still has limited control over the trade-off
among the objectives. Moreover, this control is also not
intuitive. The ANN method consists of obtaining the different
responses of the system for a range of WF values and
then obtaining the minimum with another method, i.e., the
Matlab min function. The location of the minimum value
depends on the relationship between the objective weights,
which the user defines manually. Alternatively, by using the
Pareto optimally concept, the control designer can choose
the best set of λxy with knowledge of the behaviour of this
trade-off. Among the various multi-objective algorithms that
use the Pareto optimality concept, two algorithms widely used
in different applications are multi-objective particle swarm
optimization (MOPSO) and non-dominated sorting genetic
algorithm (NSGA-II). These algorithms have proved to be
similar in terms of performance. In [23], both algorithms’
effectiveness was demonstrated with various standard test
problems, concluding that the NSGA-II is more accurate while
the MOPSO is faster. In [24], again, both algorithms are used
to optimize the sizing of hybrid energy storage systems, with
the same conclusion of the previously cited work. Furthermore,
in [25] both algorithms are compared in a water pump system
design, obtaining better results in terms of efficiency of the
pump with the MOPSO algorithm. In this work, the use
MOPSO algorithm for two reasons. First, due to its simplicity.
Second, because it offers an easy way to control the trade-off
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between speed of convergence and depth of exploration, as
presented in [26].

A. Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm is a stochastic population-based
algorithm first proposed in [27], offering a way of trading
off the speed of convergence and the time needed for the
exploration. In the PSO algorithm, all of the particles in the
swarm move in a search space defined by the independent
variables of the problem. The latter corresponds to the WF
λxy . When a particle moves, the algorithm evaluates the
parameters taken by the corresponding particle according to
a Fitness function f(pn). Usually, the objective of the PSO
algorithm is to minimize f(pn). Each particle pn in the swarm
of N particles has a velocity of vn, which determines its
location in the search space for the next iteration j + 1 [26]:

pn[j+1] = pn[j] + χ vn[j] + ε[j] (14)

where χ ∈ [0, 1] is a constraint value used to limit the velocity
of each particle and ε is a vector with random uniformly
distributed components in the range [−1, 1]. The latter allows
the algorithm to increase the range of exploration of the swarm
to avoid local minima, by deviating the particle from the path
defined by vn. The velocity vn of the particles is modified
in each iteration so that these move towards the best position
found by the particle. The Personal guide Pbn (or Personal
best), and the Global guide Gb (Global best, i.e., the best
position found by the whole swarm) achieve an exchange of
information among the particles. All of this is accomplished by
updating the velocity vector by using the following equation:

vn[j+1] = ŵvn[j]+r1 ĉ1 (Pn−pn[j])+r2 ĉ2 (Gb−pn[j]) (15)

where r1 and r2 are random evenly distributed numbers in
the range of [0,1], ĉ1 and ĉ2 are control factors that establish
the influence of global and personal knowledge. Finally, ŵ
is a factor of inertia, which controls the trade-off between
convergence and explorability of the search space. These
parameters are selected by trial and error procedure, using
the trade-off between convergence and explorability as the
criterion, and follow a set of simple rules:
• To increase convergence, ĉ1 < ĉ2, ŵ → 0, χ→ 1.
• To increase explorability, ĉ1 > ĉ2, ŵ → 1, χ→ 0.
Note that these parameters belong to the PSO algorithm

and are directly tied to the time and space complexity of the
algorithm and the number of points of the search space to be
analyzed. Thus, they are defined by time constraints and the
desired explorability of the search space.

B. Pareto Optimal Principle

Since the PSO is based on a simple concept and is both
fast and computationally inexpensive, it has been extended
to handle multi-objective optimisation problems. The majority
of MOPSO algorithms share the same basic approach—a
swarm of a certain number of agents is initialised randomly.
That number will remain constant until the end of the run.

In optimisation problems with multiple objectives, a set of
D objectives have to be optimised. These D objectives (oi)
depend on a vector p of K decision variables:

oi = f(p) ∀i = 1, 2, 3, · · · , D. (16)

The main issue with multi-objective optimization problems
is that there is not an unique solution, rather than a set
of solutions when all the objective variables are taken into
account. One approach that can be used is to make a
single fitness function equal to a weighted sum of the
objectives [28]. In this case, it is difficult to control the
trade-off relationship between the different objectives and
there is a high probability of falling into local minima, making
it difficult to obtain optimal values. However, this set of
solutions can be determined using the Pareto optimal principle.
According to the Pareto optimal principle [29], a vector p1
strictly dominates another one p2 (denoted p1 ≺ p2) if:

fi(p1) < fi(p2) ∀i = 1, 2, 3, · · · , D, (17)

and p1 weakly dominates p2 (denoted p1 � p2) if:

fi(p1) ≤ fi(p2) ∀i = 1, 2, 3, · · · , D. (18)

The Pareto front is the set of all non-dominated solutions,
while the Pareto optimal is a set of vectors that correspond
to the Pareto front. In a multi-objective optimisation problem,
the target is usually to find a well-distributed Pareto front.
In Fig. 3 a two-dimensional Pareto front is observed in the
performance space of the particles p. The performance space is
such that each axis corresponds to an objective variable fi(p)
(for this case i = 1, 2). The green points correspond to the
non-dominated particles of an optimisation problem, while the
blue points are dominated particles. Note that the p particles
are of K dimensions. The dominance of one particle over
another means that a dominant particle has all its components
in the performance space (that is, its objective variables)
with less or equal value than the respective components of
another particle in the same space. These conditions make
up the Pareto Optimal Principle. Therefore, a Pareto front
in the performance space corresponds to particles in said
space that present the best performances. This principle is
key to effective multi-objective optimisation. Consequently, we
can obtain a set of values that minimises objective variables.
We can pick a final solution from this set through design
criteria, such as prioritising one objective variable and setting
a performance metric, among other possibilities. In this paper,
the RMS tracking errors of the α−β and x−y stator currents
are considered as objective variables and λxy is the decision
variable, as stated in (19).

f(p) = o =

[
RMSEαβ
RMSExy

]
=

[
f1(λxy)
f2(λxy)

]
(19)

RMSE is defined as:

RMSEαβ =
√

RMSE2
α + RMSE2

β (20)

RMSExy =
√

RMSE2
x + RMSE2

y (21)
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Fig. 3. Example of a Pareto front. The green curve corresponds to the Pareto
front. Green circles are non-dominated particles, these lie on the Pareto front.
Blue circles are dominated particles.

RMSEj =

√√√√ 1

N

N∑
k=1

||isj∗(k)− isj(k)||2 (22)

where {j = α, β, x, y} and N represents the total number
of analyzed samples. All values are obtained using the
mathematical model of the electric motor and current
controller described in the previous sections. The main
difficulty of using the PSO for multiple objective problems is
how to choose the best guides. As with other multiple objective
algorithms, the concept of Pareto optimal is used so that the
controller designer can choose a convenient solution from the
Pareto front. This approach has shown good results in previous
works in [29] and [30]. As a consequence, this method has
been chosen for this paper due to its simplicity.

During the implementation of the MOPSO, a repository
Rp is used to store all of the non-dominated particles up to
the current iteration. This repository is updated with every
iteration, tending to become the Pareto front of the problem.
The updating method is executing as follows. First, when
a particle finds a new non-dominated position, the MOPSO
algorithm checks if the particle dominates its previous personal
guide or any element from Rp. Then, the MOPSO removes
them if that is the case, adding the new particle to Rp. If
the previous personal best is also non dominated, the unique
personal best is chosen randomly between the previous one
and the new particle. The selection of the global guide for each
particle Rp is based on “PROB” method described in [29] for
selecting the best global guides.

By using the Pareto Front approach, a set of possible
solutions to the optimisation problem is obtained, which allows
to observe the variation of the current tracking performance
in both α − β and x − y spaces caused by the variation
of λxy . The controller’s designer can then pick a value of
λxy based on design criteria, such as limiting the RMSE
in both spaces to certain values, minimizing a mathematical

Six-phase IM

2L-VSI

Observer
User-defined

performance indicators

Fig. 4. PCC structure including the proposed WF computation based on
MOPSO algorithm.

relationship between the RMSE in both spaces, among others.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To validate the proposed WF tune procedure, the MOPSO
is first simulated by using a custom-designed Matlab/Simulink
file and the following parameters of a real six-phase IM:
Rs = 6.7 Ω, Rr = 7 Ω, Lls = 5.85 mH, Llr = 55.7 mH,
Lm = 708.5 mH and Jm = 0.07 Kg·m2/s2. PCC structure
and the experimental setup is shown in Fig. 4 and Fig. 5,
respectively. The MOPSO parameters are ĉ1 = 1, ĉ2 = 0.9,
χ = 1 and ŵ = 0.6; and are kept constant for every test
condition, as they are related to the search space and not the
machine’s operating conditions. Three rotor speed references
(ω∗r ) 500 1/min, 1000 1/min and 1500 1/min were considered,
while the d − q stator current references are i∗d = 1 A
and i∗q = 1 A. Three sampling frequencies (fs) 8 kHz,
10 kHz, and 16 kHz were also considered. For each ω∗r and
fs, four calibrations were made, with N = 10 particles and
25 generations. However, for the 1500 1/min case, an extra
pair of the calibration was made, with 50 generations each,
to verify if a higher number of generations can give better
results. The obtained Pareto fronts for fs = 10 kHz and their
respective optimal values can be seen in Fig. 6. Note that the
vertical axis scale is different (zoomed) from the scale of the
horizontal axis. A total of four Pareto fronts are presented in
each figure, one for each calibration, distinguished by colors.
The circles correspond to points of the Pareto fronts. Any of
these points are optimal values that can be selected according
to the designer’s criteria. For this paper, the selected points
are chosen by minimizing the following expression:

η =
√

RMSE2
αβ + RMSE2

xy. (23)

Points that meet this criterion for each calibration are
shown in the figures, with their corresponding values of λxy .
The similar point’s location for each calibration offers the
repetitiveness of the proposed method.

Then, experimental validation was made with a Vdc =
400 V. For each ω∗r and fs, an optimal λxy provided by the
MOPSO algorithm (shaded rows in all tables) is chosen and
compared with another λxy randomly chosen.

Table I reports the experimental results for fs = 16 kHz,
and the mentioned three speeds. It shows that when the
maximum priority is put on α − β subspace by using
λxy = 0, the minimum RMSE is obtained for that
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Fig. 5. Block diagram of the test bench including the six-phase IM, the
dSPACE platform, the eddy current brake and the six-phase VSI.

TABLE I
STEADY STATE TEST OF STATOR CURRENTS α− β , x− y, RMSE (A)

WITH fs = 16 KHZ AND DIFFERENT ω∗
r .

ω∗
r = 500 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.0685 0.0659 3.6544 3.6467

0.0120 0.0752 0.0740 0.4471 0.4411
0.0190 0.0850 0.0840 0.3713 0.3683

0.1 0.1100 0.1074 0.2647 0.2658
1 0.2220 0.2207 0.1293 0.1302

ω∗
r = 1000 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.0739 0.077091 3.5964 3.5721

0.0179 0.0961 0.0944 0.4111 0.4108
0.0196 0.0961 0.0949 0.4025 0.3996

0.1 0.1306 0.1272 0.2898 0.2880
1 0.2648 0.2561 0.1463 0.1474

ω∗
r = 1500 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.0812 0.0804 3.4826 3.5658

0.0161 0.0725 0.0731 0.4253 0.4249
0.0196 0.0773 0.0764 0.4086 0.4113

0.1 0.1291 0.1261 0.3162 0.3154
1 0.3013 0.2952 0.1559 0.1562

subspace, and the maximum is obtained for x − y for all
rotor speeds. If the WF increases, the RMSEαβ increases
while the RMSExy improves. The obtained WF for the
MOPSO algorithm shows that with a small value of λxy ,
the RMSExy improves significantly while RMSEαβ hardly
increases. Further increasing the value of the WF improves
the RMSExy with diminishing returns, at the cost of a notable
increase of the RMSEαβ . The same conclusions can be done
for Table II and Table III, which report the experimental
results for fs = 10 kHz and fs = 8 kHz, respectively. Note
that the idea behind testing at different values of ω∗r and
the sampling frequency is to test the proposed WF design
method under different conditions. This is done because the
final application of the machine defines ω∗r , and the sampling
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Fig. 6. Pareto fronts obtained with fs = 10 kHz for (a) ω∗
r = 500 1/min,

(b) ω∗
r = 1000 1/min, and (c) ω∗

r = 1500 1/min.
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TABLE II
STEADY STATE TEST OF STATOR CURRENTS α− β , x− y, RMSE (A)

WITH fs = 10 KHZ AND DIFFERENT ω∗
r .

ω∗
r = 500 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.1049 0.0936 3.9747 3.9391

0.0131 0.1135 0.1126 0.6171 0.6138
0.0180 0.1230 0.1218 0.5294 0.5305

0.1 0.1594 0.1587 0.3826 0.3759
1 0.3114 0.3068 0.1882 0.1884

ω∗
r = 1000 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.1056 0.1088 4.0768 4.0130

0.0150 0.1215 0.1208 0.6409 0.6432
0.0177 0.1265 0.1260 0.6000 0.6002

0.1 0.1929 0.1919 0.4199 0.4187
1 0.3678 0.3698 0.2017 0.2005

ω∗
r = 1500 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.1462 0.1519 4.0806 4.0239

0.0186 0.1110 0.1125 0.6344 0.6366
0.0245 0.1173 0.1178 0.6019 0.6067

0.1 0.1980 0.1976 0.4792 0.4777
1 0.4484 0.4540 0.2187 0.2170

frequency is ultimately defined by the available hardware, the
control scheme and its implementation.

According also to Table I, the best performance is obtained
for ω∗r = 500 1/min. This result is also consistent since the
relationship between fs = 16 kHz and the frequency of the
fundamental component is higher than in the other cases, so
the PCC is more efficient. The same analysis can be done if the
results of Tables I, II, and III are compared at the same speed.
As expected, for a given speed, the results of Table III are
worse than those of Table II, and these are worse than those of
Table I. The latter is because, at higher sampling frequencies,
higher switching frequencies are achievable, which ultimately
reduces the current tracking error. For higher WF tested and
the highest rotor speed, at 10 kHz, PCC becomes unstable.
For 8 kHz, the PCC does not work for any WF λxy values at
1500 1/min.

The reference and measured currents for ω∗r = 1000 1/min
and fs = 10 kHz, with a value obtained by the MOPSO
algorithm are plotted in Fig. 7 (b), which shows the best
compromise between α− β current ripple and x− y currents
compared to the extreme cases when x− y current is ignored
in the CF, thus λxy = 0, and when both errors have the
same weight, thus λxy = 1. We can state the latter from
Table II, where λxy = 0.0177 gives the best performance
for ω∗r = 1000 1/min. Fig. 8 shows the waveforms for this
λxy . Table IV contains the THD for the different values of
λxy that were tested. Similar figures were obtained for other
sampling frequencies, and they were not included for the sake
of conciseness.

As the WF λxy increases, the control effort on the x − y
subspace variables increases while the control effort on the
α− β subspace variables decreases. As shown in Tables I, II,
and III, the latter entails that the RMSE decreases for variables

TABLE III
STEADY STATE TEST OF STATOR CURRENTS α− β , x− y, RMSE (A)

WITH fs = 8 KHZ AND DIFFERENT ω∗
r .

ω∗
r = 500 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.1275 0.1236 4.2003 4.154

0.0172 0.1512 0.1505 0.6212 0.6231
0.0231 0.1576 0.1569 0.5881 0.5877

0.1 0.1936 0.1938 0.4507 0.4512
1 0.3703 0.3741 0.2357 0.2340

ω∗
r = 1000 1/min

λxy RMSEα RMSEβ RMSEx RMSEy
0 0.1458 0.1498 4.4836 4.4340

0.0186 0.1608 0.1609 0.7230 0.7299
0.0241 0.1701 0.1680 0.6773 0.6721

0.1 0.2282 0.2286 0.4921 0.4879
1 0.4330 0.4392 0.2514 0.2474

in the x − y subspace while it increases for variables related
to the α− β subspace. This more significant control effort in
the x− y subspace also affects the reference tracking error. In
this sense, if the tracking error of the variables in the α − β
subspace, variables related to torque and flux, worsens, the
six-phase IM torque will be affected. Suppose the current
component associated with torque, namely iq , cannot reach
the setpoint. In that case, the six-phase IM’s ability to reach
the torque value set by the reference will be reduced. On the
other hand, if the current component related to the flux, namely
id, cannot reach the setpoint, the field will be weakened and,
therefore, the six-phase IM’s torque.

To demonstrate this behaviour, the six-phase IM was tested
in constant torque control mode under the same three ω∗r
500 1/min, 1000 1/min and 1500 1/min with different WFs
λxy . All tests were carried out under conditions of constant
reference torque equal to the nominal torque, i.e. the current
references in d − q axes were set to their nominal values.
The results are presented in Table V (for fs = 16 kHz) and
Table VI (for fs = 10 kHz).

By analyzing Table V, it can be concluded what follows:

1) As the WF λxy increases, for a ω∗r , the tracking errors
of i∗d and i∗q are larger. The id(actual)/i∗d and iq(actual)/i∗q
ratios are reduced, and therefore the achievable torque
is smaller (smaller TL/TL(rated) ratio).

2) On the other hand, if the WF λxy is kept constant
as the ω∗r is increased, the achievable torque is lower
(lower TL/TL(rated) ratio). This issue was already

TABLE IV
THD OF STATOR CURRENTS α− β WITH fs = 10 KHZ, ω∗

r = 1000 1/MIN.

λxy THDα(%) THDβ (%)

0 3.08 3.37
0.0150 3.85 4.02
0.0177 3.81 3.91

0.1 5.45 5.58
1 12.74 13.15
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Fig. 7. Stator currents obtained with fs = 10 kHz, ω∗
r = 1500 1/min, for

(a) λxy = 0, (b) λxy = 0.0177, and (c) λxy = 1.

explained previously and it is related to the fact that by
increasing the ω∗r the relationship between the fs and
the fundamental frequency is reduced and therefore the
performance of the current control is reduced.

3) The average switching frequency fsw(avg) has a
dependence inversely proportional to the modulation
index (ac/dc voltage ratio). As the ω∗r increases, the
ac voltage increases and, consequently, the switching
frequency fsw decreases.

4) The fsw increases with increasing the WF λxy . The latter
helps to reduce the current ripple in both subspaces.

Table VI shows the torque characteristics analysis for
fs = 10 kHz. The same conclusions indicated above can be
drawn from the analysis of the results included in Table V. On

(a) (b)

(c) (d)

Fig. 8. Waveforms with fs = 10 kHz, ω∗
r = 1000 1/min and λxy = 0.0177.

TABLE V
INFLUENCE OF THE WF λxy ON THE TORQUE CHARACTERISTICS OF THE
SIX-PHASE IM UNDER fs = 16 KHZ, i∗q = iq(rated) , AND i∗d = id(rated) .

ω∗
r = 500 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0196 0.97 1 98.33% 5.30
0.1 0.93 0.98 96.88% 5.30
1 0.86 0.96 83.1% 6.20

ω∗
r = 1000 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0196 0.96 0.99 95.42% 4.70
0.1 0.89 0.98 91.04% 4.70
1 0.81 0.94 80.83% 5.20

ω∗
r = 1500 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0190 0.96 0.99 94.17% 4.3
0.1 0.92 0.98 91.04% 4.30
1 0.78 0.93 75.00% 4.30

the other hand, if the results of Table IV and those of Table V
are compared, it can be seen that the reference tracking is
worse for lower values of fs and consequently, the achievable
torque for the same reference is lower.
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TABLE VI
INFLUENCE OF THE WF λxy ON THE TORQUE CHARACTERISTICS OF THE
SIX-PHASE IM UNDER fs = 10 KHZ, i∗q = iq(rated) , AND i∗d = id(rated) .

ω∗
r = 500 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0186 0.96 0.99 95.42% 3.50
0.1 0.89 0.98 90.83% 3.50
1 0.72 0.96 78.33% 4.10

ω∗
r = 1000 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0177 0.95 0.99 94.17% 3.10
0.1 0.86 0.98 85.21% 3.10
1 0.70 0.94 73.33% 3.50

ω∗
r = 1500 1/min

λxy iq(actual)/i
∗
q id(actual)/i

∗
d TL/TL(rated) fsw(avg)

(pu) (pu) (%) (kHz)

0.0180 0.95 0.99 93.13% 2.80
0.1 0.84 0.98 83.33% 2.80
1 0.65 0.91 63.96% 3.00

A. Transient response

Because the design is based on the steady-state performance
of the system, the obtained values of λxy do not guarantee
optimal performance during transient conditions. However, by
introducing steps into w∗r , simulations showed no significant
changes in the system’s transient behaviour. To experimentally
test the controllers response under transient conditions, a step
from 1500 1/min to 500 1/min was introduced (see Fig. 9),
with fs = 10 kHz and two different values for λxy , one
obtained with the MOPSO (λxy = 0.018) and another one
picked randomly (λxy = 0.5). Then, iq is measured to observe
the controller performance under the transient condition. We
can see in Fig. 9 that the main difference in this test lies in
the steady-state behaviour, with essentially the same response
in the transient. Certainly, this fact does not permit to affirm
that the transient operation works optimally. Fig. 10 only
shows that despite the WF has been calculated in steady-state,
the transient performance does not show any perturbation or
strange behaviour. Consequently, we can state that transient
conditions are not critical for the design of the WF for the
cost function of the PCC for this application.

B. Parameters mismatch

Because the PCC scheme is a model-based control, and
given that the tuning method proposed is based on simulations
of the analyzed system, parameter mismatch is an issue that
must be taken into consideration. We performed a simulation
study to test the proposed MOPSO method against sensitivity
to parameter mismatch. We changed Lm in the model used
for the WF tuning to be 25% higher than the nominal value
since Lm is the most sensitive parameter in IMs [31]. We set
fs = 10 kHz and ω∗r = 1000 1/min. With these parameters,
the Pareto Fronts shown in Fig. 11 were obtained, which differ
from the ones obtained in Fig. 6. We performed steady-state
and transient experiments using λxy = 0.0168 and using

(a) (b)

Fig. 9. xperimental measured of the rotor speed with fs = 10 kHz for a step
from 1500 1/min to 500 1/min. (a) λxy = 0.018 (b) λxy = 0.5.

(a) (b)

Fig. 10. Experimental transient response with fs = 10 kHz for a step from
1500 1/min to 500 1/min. (a) λxy = 0.018 (b) λxy = 0.5.

the same value of Lm that was used for the tuning in the
control scheme, and we obtained the results shown in Fig. 12.
Though the WFs are in the same range of values as the ones
obtained with the actual value of Lm, the tracking performance
is affected by the control scheme’s parameters mismatch, as
expected. The errors, in terms of the RMSE are as follows:
RMSEα = 0.1289, RMSEβ = 0.1293, RMSEx = 0.6198,
RMSEy = 0.6222.

C. Inclusion of more terms in the CF

To prove that the proposed method could be extended to
cases with more comprehensive cost functions, a term to limit
the average switching frequency of the converters was added
to the cost function, as follows:

J1 = |eαβ |2 + λxy |exy|2 + λsw Sw (24)

where
Sw =

∑
|Sζ(k)− Sζ(k + 1)| (25)

for ζ = {a, b, c, d, e, f}. This new term allows minimizing the
number of switchings in each time sample, which ultimately
limits the average switching frequency of the 2L-VSI. The
objective variables are:

f(p) = o =

 RMSEαβ
RMSExy
Sw

 =

 f1(λxy, λsw)
f2(λxy, λsw)
f3(λxy, λsw)

 (26)
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Fig. 11. Pareto front obtained with fs = 10 kHz and ω∗
r = 1000 1/min

under parameter mismatch (25% variation of Lm).

(a) (b)

Fig. 12. Experimental results for a mismatch of 25% for Lm, obtained at
fs = 10 kHz and w∗

r = 1000 1/min, for λxy = 0.0168. (a) Steady-state
response (b) Transient response.

The chosen MOPSO parameters were the same as for the
first case. However, the number of particles N = 20, and the
number of generations is 40. Considering that the obtained
Pareto fronts are now a plot in a three-dimensional space,
and the addition of points allows for better legibility and
a higher number of possible pairs of WF to pick. Fig. 13
shows the obtained Pareto fronts for four different calibrations,
with fs = 10 kHz, ω∗r = 1000 1/min. As can be seen, all
four calibrations generate similar Pareto fronts, meaning the

0
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1
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1

0 0

Calib. 1
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Calib. 3

Calib. 4

Fig. 13. Pareto fronts obtained with fs = 10 kHz for ω∗
r = 1000 1/min

using a cost function that limits the switching frequency.

algorithm converges with the chosen parameters and guarantee
the repeatability of the algorithm.

In order to select a pair λxy, λsw a design criteria must be
defined. For this case, the used criteria was to select a pair
that gives:

RMSEαβ < 0.5
RMSExy < 1
fsw(avg) < 2 kHz

(27)

A pair from the Pareto front obtained in Calib. 4 that meets
this criteria is λxy = 0.0481, λsw = 0.2020.

D. Comparison between MOPSO and ANN tuning methods

To apply the WF design approach using the ANN based
method proposed in [18], several simulations runs needs
to be performed to obtain the data required for the ANN
training. For all possible combinations in the defined WF
intervals: λxy = [0 : 0.05 : 0.25] and λsw = [0 :
0.05 : 0.25] simulations were performed, in total 2601 (512)
simulations. The task was distributed among the 10 processor
cores and completed in 1.2 hours. For each WF combination
performance metrics RMSEα,RMSEβ ,RMSEx,RMSEy and
fsw(avg) were stored. In the next step, these values, together
with the corresponding WFs, were passed to the ANN. A
shallow feedforward ANN with 10 neurons in the hidden
layer, 2 neurons in the input layer, and 5 neurons in the
output layer was defined and trained in MATLAB using the
Neural Networks toolbox. The training was completed in 1 s
with the regression value of 0.988. Using the trained network,
it is now possible to obtain the performance metrics for an
even larger number of WFs. In the final step, fitness functions
(optimisation criteria) was defined:

fANN = RMSE2
αβ + RMSE2

xy (28)

The fitness function plot and the obtained optimum WF
combination can be observed in Fig. 14. These were obtained
for sampling frequency of 10 kHz and reference speed of
1000 1/min.

Table VII exposes the comparative performance metrics
obtained for the PCC with the WFs with the performance
metrics of PCC with WF selected by the ANN method and WF
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Fig. 14. Fitness function plot and the selected optimum WFs λxy = 0.017
and λsw = 0.04.

TABLE VII
SIMULATION AND EXPERIMENTAL PERFORMANCE METRICS COMPARISON

FOR THE TWO DIFFERENT TUNING METHODS (fs = 10 KHZ,
ω∗
r = 1000 1/MIN).

MOPSO ANN
Perf. Metrics Sim Exp Sim Exp

RMSEα 0.2611 0.2757 0.1219 0.1212
RMSEβ 0.2534 0.2733 0.1198 0.1214
RMSEx 0.5603 0.6736 0.6856 0.6913
RMSEy 0.5547 0.6673 0.7030 0.6874

selected by the MOPSO algorithm. Note that the performance
metrics for the WFs selected by the ANN method also fulfil
the optimisation criteria set by the MOPSO algorithm in the
previous section, except for the switching frequency, which
was of fsw(Avg) = 2.2 kHz for the ANN and fsw(Avg) =
1.5 kHz for the MOPSO. The variation of the performance
metrics is in the expected range [32].

Fig. 15 displays the waveforms obtained with each
optimisation method. While the ANN method selected the
WF, which produced a lower RMSE in α − β components,
the MOPSO WF combination made a lower RMSE in x − y
components. Overall, the MOPSO WFs provided a better set
of performance metrics. It’s possible to pick another pair of
WF from the Pareto Fronts that meet the criteria in (27)
or even relaxing the switching frequency criterion to match
the frequency of the ANN to get a better tracking in the
α−β plane. Interestingly, when the ANN tuning method was
performed for a single WF in the cost function (λxy), the same
optimum WF value was obtained as for the MOPSO method.
It needs to be mentioned that during the ANN training with
the dataset obtained for the cost function with two WFs, some
data did not fit the regression curve in the regression plot.
Thus with additional data processing, where those ambiguous
datasets are removed from the training, the performance of the
ANN method can be improved.

V. CONCLUSION

An offline optimization method for tuning the WF of a
classic PCC for a six-phase IM application is presented in
this paper. In this application, λxy , which is related to x− y
IM currents, is typically the only WF that requires tuning.
The proposed is based on the MOPSO algorithm and uses

(a) (b)

Fig. 15. Stator currents in α−β (top) and x−y (bottom) planes at 1000 1/min
for: (a) MOPSO (b) ANN.

Pareto optimally for its fitness function so that the user can
choose a desirable solution from the Pareto front, thereby
ensuring that the solutions are aligned with the purposes of the
user. It has been shown that following the heuristic method,
several steps are needed to narrow the selection, and even
then, the whole state space is not explored. Consequently, the
control designer can not be sure if some local minimum has
been chosen. The obtained gain values have been analyzed
experimentally in the PCC structure commonly used as
an alternative to proportional-integral current control in the
field-oriented-control approach. The results obtained by using
the values provided by the MOPSO algorithm show better
optimization of the RMS of α − β and x − y IM’s stator
currents, compared to the results obtained by the trial and
error method. Moreover, through a proper tuning of the WF,
the user can maximize the achievable torque and, at the same
time, minimize the reference tracking and the RMSE.

We demonstrated that with slight modifications, the MOPSO
algorithm could include more terms in the cost function. A
brief comparison with an ANN method has been discussed,
showing similar results. The latter gave us the motivation to
address an exhaustive comparison of the proposed MOPSO
method against other Pareto-based technique (e.g. [33]) and
the ANN method and/or NSGA-II as a near-future research
topic.
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