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Abstract—Nonlinear dynamical systems such as weakly
coupled oscillators are an interesting approach to be
adopted for the regulation of power inverters inside mi-
crogrids. Aiming at the synchronization and load sharing
in islanded mirogrid, this paper is inspired by oscilla-
tor synchronization property to propose a Hopf oscillator
controller for the single-phase inverters. The Hopf oscil-
lator dynamic equations are used for providing the in-
verter’s frequency and amplitude voltage references which
lead to a robust nonlinear droop behavior for driving the
system without using communications. The Hopf oscilla-
tor provides better sharing of the load between invert-
ers with higher robustness, less harmonic distortion, and
faster time response of the associated limit cycle than the
achieved by the other approach made with a Van der Pol
oscillator. In addition, global asymptotic synchronization of
system is proven by Lyapunov approach. Simulation results
of a system composed by paralleled inverters are provided
and compared with a Van der Pol oscillator approach re-
ported in literature. Experimental results are also provided
to prove the Hopf oscillator based controller under different
circumstances.

Index Terms—Paralleled single-phase inverters, Micro-
grid, Hopf oscillator control, synchronization, current shar-
ing.

I. INTRODUCTION

M ICROGRID, has acted an effective and critical role
in highly distributed power systems, which generally

include islanding and grid-connecting operation modes. In
AC microgrids, as the interface from distributed sources to
electric network, the inverter can be designed and controlled
to satisfy different requirements such as power sharing, grid
synchronization, and power quality improvement, etc. For is-
landing situation, the decentralized control are principally pre-
ferred due to its operation flexibility and non-communication
requirments. Therefore, the conventional droop control was
widely used in the last decade, which aims to share power for
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emulating the synchronous generator though building a linear
relationship between active and reactive powers with respect to
the inverter’s frequency and voltage [1], [2]. Although there
are many modified methods to improve, the drawbacks are
still obvious such as: slow dynamic response, active and re-
active powers coupling, impressionable performance with line
impedance and nonlinear loads etc [3]. In [4], a synchronous-
reference frame virtual impedance loop-based controller was
proposed to conquer above mentioned, but the applied Phase-
locked-loop (PLL) will limit the control bandwidth and the
virtual impedance is complex to design.

Theoretically, nonlinear oscillators have a very interesting
property, namely the synchronization due to their weak inter-
action which means the coupling relationship can only have
slight effects on oscillator dynamics over a period. These
interaction could lead to phase locking and frequency syn-
chronization in the network [5]. For last 30 years, oscillators
have been investigated to use in biological modeling such as
neuronal signaling models and beat perception; to engineering
modelling such as robot control and image processing [6]–[8].
A series of studies which apply the oscillator synchronization
characteristic to parallel inverters control have been carried
out recently in [9]–[14], the non-communication method is
known as virtual oscillator control (VOC). The motivation of
VOC is inspired by the coupling dynamics of weakly nonlinear
oscillators based on the Liénard’s Theorem, and the strategy
as a time-domain controller can be designed as a inner loop
which distinguishes with the phasor domain of droop control.
In contrast with droop control, VOC exhibits some advantages:
faster transient response, independency to loads and without
hierarchical control. In [9], [10], [12], the dead-zone oscillators
were employed in VOC, which decomposes the virtual current
source into a dead-zone. In order to improve the dynamics and
simplify the piecewise function, the Van der Pol oscillator
was introduced into the micro-controller in [11], [13], [14].
These works demonstrated the nonlinear droop relationship
between active power and terminal voltage, and reactive power
and frequency. In addition, the small-signal stability of VOC-
controlled inverters was analyzed in [15]. Nevertheless, the
salient drawbacks of dead zone and Van der Pol oscillator
controller can be summarized as follows:

1) A strict sufficient condition for synchronization should be
guaranteed, which means it permits phase-locking depending
on the stronger coupling strength [16];
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2) An extra limit cycles constraint is necessary to design
according to Liénard’s Theorem. Dead zone and Van der Pol
oscillator are typical harmonics oscillators [17], and parame-
ters should meet a certain condition if the ideal sinusoidal is to
be obtained. Generally, an approximate limit circle in phase is
selected as the references, which certainly affect the reference
precision. Hence, the additional harmonics are generated in
the controller;

3) The initial states affect the stability of system and the
evolution speed from the initial state to the steady state [18].

However, some nonlinear oscillators such as Poincaré-
Bendixson (PB) and Hopf oscillator can produce ideal limit
cycle which can not be easily affected by initial states and
can recover from external perturbation in a short time [19].
In [20], an adaptive frequency synchronization method based
on the PB oscillator is proposed for converters, which offers
high robustness against grid faults. Recently, a dispatchable
virtual oscillator control (dVOC) is proposed in [21]–[23]
to mimic coupled Hopf oscillators system, and the method
makes power set-points dispatch to realize grid-connected
mode application. However, these works primarily focus on the
power dispatchability, and there is little effort on the internal
synchronization investigation for islanded mode particularly
the application in single-phase systems. In addition, it lacks
of the oscillator performance analysis compared with the
oscillators proposed before.

To cope with the issues of the previous controllers that are
highlighted above, a reliable and simple controller is proposed
to mimic the coupled Andronov-Hopf oscillators systems,
which only consists of a voltage loop. We apply the Hopf
oscillator dynamics to parallel single-phase inverters system
with the output current feedback. In contrast with the droop
controller, there are no active and reactive power calculation,
low pass filter, and PLL in the proposed controller. To compare
with VOC, the proposed controller doesn’t need to consider
limit cycle constraint and the strict sufficient synchronization
condition, and presents the better power quality and the
simpler parameters designing. In brief, the main contributions
of this paper are listed below:

1) provides a theoretical comparison with Van der Pol os-
cillator regarding the harmonics analysis, robust performance,
and synchronization dynamics;

2) presents a modified Hopf oscillator controller for par-
allel single phase inverters, and derives averaged model to
contribute the droop characteristic analysis;

3) proves the global asymptotic synchronization without the
tight sufficient condition;

4) validates the effectiveness of proposed controller both in
simulation and experiments.

The organization of this paper is presented as follows. In
section II, the dynamics of the Hopf oscillator are described by
the following second-order differential equations and we draw
a the property comparison between the Hopf and Van der Pol
oscillators in terms of the harmonics, the robustness and the
synchronization performance under the same situations. Sec-
tion III presents the Hopf oscillator controller implementation
details and its averaged model is derived, also the parameters
selection is discussed according to designing requirement. The
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Fig. 1. (a) Vector field of the Hopf oscillator in phase plane; (b)3-D
dynamics of Hopf oscillator with r changing

global asymptotic synchronization of coupled Hopf oscillators
is proved in Section IV. Section V and VI show the simulation
and experimental results that validates the effectiveness of the
proposed controller. Finally, the conclusion and future works
are outlined in Section VII.

II. DYNAMICS OF HOPF OSCILLATOR

A. Hopf Oscillator Introduction

The ordinary dynamics of the Hopf oscillator can be de-
scribed by the following second-order differential equations:{

ẋ = µ(r2 − x2 − y2)x+ ωy
ẏ = µ(r2 − x2 − y2)y − ωx. (1)

Where x and y are the orthogonal states, µ is is the model
coefficient that affects the time transient response speed of the
oscillator, r refers to the output amplitude in steady-state, and
ω is the oscillation frequency. The stable periodic solutions of
Hopf oscillator are:

x = rsin(ωt+ θ0), y = rcos(ωt+ θ0). (2)

Where θ0 is determined by the initial state. Fig. 1(a) represents
the the vector field and series of trajectories in the phase
plane from initial condition (0, 0), which helps to visualize
the direction and intensity of the flow. In the steady state, a
close orbit circle is generated where the solutions of system are
orthogonal signals. Fig. 1(b) shows the 3-D dynamics diagram
when the parameter r is changed from 1 to a non-null value
[24]. It indicates that the behavior of Hopf oscillator is char-
acterized by an damping oscillation with continues amplitude
variation, and the stable limit cycles maintain oscillations if
r > 0.

B. Comparison of Van der Pol Oscillator and Hopf Oscil-
lator

The Van der Pol oscillator is a classical relaxation oscillator
that is employed in VOC [11]- [14]. In order to compare
with Hopf oscillator, the property two types of oscillators are
discussed in this part. The Van der Pol oscillator dynamics
can be written in a 2-dimensional form:{

ẋ = y
ẏ = ρ(1− x2)y − ω2x.

(3)
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Where ρ is the model coefficient which determines the degree
of relaxation part of the system; ω influences the frequency of
the oscillations, and ρ also influences the frequency.

1) Harmonics Analysis: First, the limit cycle comparison
of two type oscillators is introduced with the both coefficients
step changing. As shown in Fig. 2(a), the limit cycle evolution
of Van der Pol oscillator becomes increasingly sharp with
increasing ρ. Note that the limit cycles evolve to cycles for
ρ < 0.1 with fix amplitude equal to 2 and ω = 100π, which
means the states output are periodic sinusoidal form. Thus, the
Van der Pol oscillator became a simple harmonic oscillator.
By contrast, in Fig. 2(b), the limit cycles evolve to the same
circle with different µ when oscillaton frequency is 100π, and
µ only affects the damping speed [25]. Therefore, there is a
strict parameter constraint on the Van der Pol oscillator to be
an ideal circular, but the damping coefficient is free for Hopf
oscillator.

For deriving the harmonic solutions for Hopf oscillator, the
Poincaré-Lindstedt method [26], [27] is employed to approxi-
mate the limit cycle. The simplified second order equation of
the Hopf oscillator with a new time variable τ = ωt can be
given by:

ω2x
′′

+ x = εµω(r2 − x2 − x
′2)x′ = εf(x) (4)

where ε formally stands for a small parameter. The natural
time scale of the oscillations can be expended as:

xε(τ) = x0(τ) + εx1(τ) + . . .
ωε = ω0 + εω1 + . . .
f(x, ε) = f1(x) + εf2(x) + . . .

(5)

Substituting (5) to (4), the equations up to second order in
terms of ε can be obtained:

x′′0 + x0 = 0
x′′1 + x1 = f1(x0)− 2ω1x

′′
0

x′′2 + x2 = f2(x0) + ∂f1(x0)
∂x0

x1 − 2ω1x
′′
1 − (ω2

1 + 2ω2)x′′0
(6)

Suppose the initial sate x0(0) = a, and it is clear that the
zero order is a simple oscillation with the solution x0(τ) =
acosτ . Substituting the zero order solution to the first order
and second order equations, the first order equation is given
by:

x′′1 + x1 = aµ(a2 − r2)sinτ + 2ω1acosτ (7)

In order to avoid the secular terms, select a = r, ω1 =
0. Thus, solution of first order equation is x1(τ) = acosτ .
Similarly, the second order equation is given by:

x′′2 + x2 = aεµ(a2 − r2)sinτ + aµ(a2 − r2)cosτ
+2ω1cosτ + (ω2

1 + 2ω2)cosτ
(8)

For eliminating the resonant forces of equation right side,
select a = r, ω1 = 0, ω2 = 0. The solution of second order
equation is also x2(τ) = acosτ . Thus, the approximation solu-
tion of Hopf oscillator oscillate in the fundamental frequency
ω0.
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Fig. 2. The limit cycles evolution when parameter varies in the phase
plane: (a)Van der Pol oscillator. (b) Hopf oscillator with ω = 100π.

In the same way, the first order expansion for Van der Pol
oscillator can be given by [28]:

x′′1 + x1 = 2aω1cosτ + a(0.25a2 − 1)sinτ + 0.25a3sin3τ
(9)

For eliminating the resonant forces, select ω1 = 0, a = 2,
the solution of first order is x1(τ) = sin3τ . Note that if a is
small enough, the right side is approximately zero, in which
the solution of oscillator is x1(τ) ≈ acosτ . Considering the
second order, there is [28]:

x′′2 + x2 = (4ω2 + 11)cosτ − 31cos3τ + 20cos5τ (10)

The approximate solution is x2(τ) = 2cosτ +ρsin3τ + . . .
with ω = 1− 0.0625ρ2 + . . . . Therefore, the solution of Van
der Pol oscillator contains harmonics whose amplitudes are
directly proportional to ρ.

In summary, the Van der Pol oscillator is a harmonic oscil-
lator, and its approximate solution expansion mainly includes
three-order harmonics. By contrast, the hopf oscillator has an
orbitally exponentially stable solution with the fundamental
frequency.

2) Robust Performance: Next, we focus on the robust
performance of two oscillators in steady sate. The Van der
Pol and Hopf oscillators oscillate in sinusoidal with the same
frequency, amplitude and initial state (0.1, 0). The reference
error responses under unit impulse and 0.1p.u. step are shown
in Fig. 3. As shown in Fig. 3 (a), the Hopf oscillator represents
a faster recovery, but the Van der Pol oscillator eliminates error
slowly under the unit impulse of amplitude. Similarly, the step
response of Hopf is faster than Van der Pol as shown in Fig. 3
(b).

3) Synchronization Performance: At last, the coupling syn-
chronization performance comparison of two types oscillator
are discussed. The synchronization occurs due to the mutual
interaction in coupling oscillators system, which is usually
described using the Kuramoto model. For a fair comparison,
the two oscillators oscillate at the same limit cycle with
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r = 1 and ω = 100π, and definition of the coupling strength
is γ = 0.25. Accordingly, the coupling error equations of
amplitude and phase in steady state are defined as:

|∆x| = γ(|x1| − |x2|)
∆η = γ(η1 − η2).

(11)

Where |x1|, |x2|, η1 and η2 are the amplitude and phase of
two coupling oscillators in steady state, respectively.

The synchronization trends of the amplitude and phase
difference for Van der Pol and Hopf oscillators are shown
in Fig. 4 (a) and (b). For their both, the systems start from
different initial conditions and arrive to full synchronization
at the end. By contrast, it is clear that hopf oscillator provides
faster amplitude and phase transient responses and smaller
amplitude overshoot.

As a conclusion, the limit cycles of Hopf oscillator are an
ideal circular for r > 0 while the Van der Pol oscillator has
the strict parameters constraint to be an ideal circular. The
dynamic responses under disturbance and the synchronization
speed of Hopf are faster than Van der Pol’s under the same
operating situation.

III. CONTROLLER IMPLEMENTATION AND PARAMETER
DESIGN

In this section, the proposed Hopf-oscillator controller for
paralleled single-phase inverters is introduced, and the con-
troller parameters are designed. In addition, the averaged
model is derived to observe the relationship between active
and reactive power outputs and the inverter output voltage
dynamics.

A. Controller Implementation

The Hopf oscillator controller implementation for parallel
single-phase inverters is depicted in Fig. 5. The physical
system includes a DC source, a full-bridge inverter, and an
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Fig. 5. Control structure the proposed method.

Fig. 6. The limit cycle evolution comparison of Hopf oscillators with r =
10, ω = 100π.

LCL filter consisting of inverter-side inductor Lf1 and resistor
Rf1, and output inductor Lf2 and resistor Rf2. Furthermore,
the time-domain controller only contains a voltage inner loop
with the scaled feedback current, which is measured from
inverter output side. According to the amplitude reference V ∗

and resonant frequency ω∗, the orthogonal state signals Vα
and Vβ in the α− βframe are generated by Hopf oscillator,
and the state Vα is selected as the voltage reference for single-
phase application. In order to decouple the dc-link dynamics,
the pulse width modulation (PWM) of the voltage reference
is divided by the dc-link voltage.

The simplified dynamics of Hopf oscillator controller in
continuous time-domain based on (4) are described by the
following differential equations:{

V̇α = µ(V ∗2 − V 2
α − V 2

β )Vα − ωVβ − ki
V̇β = ωVα.

(12)

Where Vα,Vβ are the states of the oscillator, i indicates
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the output current as external periodic perturbation, k is
the feedback gain and V ∗ determines steady state amplitude
voltage (V 2

α∞ + V 2
β∞ = V ∗2).

Note that µ(r2 − x2 − y2) of (1) is oscillation magnitude
correction part which converges to zero in the phase plane.
From the limit cycle evolution viewpoint, the simplified oscil-
lator (12) and ordinary Hopf oscillator (1) with same initial
condition (0,0) are compared in Fig. 6. It can be seen that
they can reach the same steady state despite the mismatch of
the limit cycle evolution. Consider the one state is used as
voltage reference modulation in single-phase inverter system,
so the other magnitude part µ(r2 − x2 − y2)x can be ignored
from ordinary equations.

In order to apply the controller to a practical situation, (12)
is discretized by employing the trapezoidal rule for computing
integrals, and the discretization of Hopf controller can be
presented as follow:{

Vα(z) = Vα(z)z−1 + 0.5TsM(z)(1 + z−1))
Vβ(z) = Vβ(z)z−1 + 0.5Tsω(Vα(z) + Vα(z)z−1)

(13)

Where Ts donates the sampling time, and M(z) = µ(V (z)∗2−
Vα(z)2 − Vβ(z)2)Vα(z)− ωVβ(z)− ki(z).

Therefore, the discrete equations are able to be implemented
into a digital controller.

B. Averaged Model of Hopf Oscillator Controller

Since the performance of the nonlinear differential equation
in time scale is difficult to be observed, the averaged model
is employed to obtain the approximated periodic solutions for
the voltage amplitude and phase through replacing a vector
field by its average.

As we are interested in the phase dynamics, the system is
written in polar coordinated. By differentiating Vα = V sin(θ),
Vβ = V cos(θ) with respect to time, the phase dynamics of
Hopf oscillator based on (12) are obtained as follows: V̇ = µ(V ∗2V − V 3)cos2(θ)− kicos(θ)

θ̇ = ω − µ(V ∗2 − V 2)sin(θ)cos(θ) +
ki

V
sin(θ).

(14)

Where θ is the instantaneous phase angle of the inverter output.
Subsequently, the average value of a periodic signal V (t) in
the period T is presented by:

V̄ =
1

T

∫ T

0

V (t)dt (15)

In order to simplify the averaged model [11], the dynamics
of the inverter terminal voltage is defined as:

dθ

dt
= ω +

dϕ

dt
= ω∗ +

dϕ∗

dt
(16)

Where ω and ω∗ are the nominal frequency of the inverter
outputs and the steady state frequency of inverter output,
respectively. The angles ϕ and ϕ∗ indicate the phase offset
with respect to ω and ω∗, respectively. Therefore, in the
averaged model, the single Hopf oscillator dynamical system

under 2π-periodic function in time domain are presented as
follows:

˙̄V = ω∗

2π

∫ 2π
ω∗

0
µ(V ∗2V − V 3)cos(ω∗t+ ϕ∗)2dt

−ω
∗k

2π

∫ 2π
ω∗

0
icos(ω∗t+ ϕ∗)dt

˙̄ϕ∗ = −ω
∗

2π

∫ 2π
ω∗

0
µ(V ∗2 − V 2)sin(ω∗t+ ϕ∗)

cos(ω∗t+ ϕ∗)dt+ ω∗k
2πV̄

∫ 2π
ω∗

0
isin(ω∗t+ ϕ∗)dt.

(17)

Based on (17), the averaged dynamics of the amplitude and
phase of one oscillator are expressed as:

˙̄V =
V ∗2µ

2
V̄ − µ

2
V̄ 3 − k

V̄
P̄

˙̄θ = ω∗ − ω +
k

V̄ 2
Q̄.

(18)

C. Parameter Selection

Given the dynamics of the Hopf oscillator controller in (12),
parameters µ and k show the significant impact on the system
performance. According to the oscillator dynamics principle,
µ has impact on the damping performance regarding the relax-
ation speed, and k is a coupling coefficient that is considered
as a feedback gain. In addition, the initial conditions of the
oscillator also determine the transient response as mentioned
before, so define the two initial conditions for integral as Vα0

and Vβ0. Therefore, how to design these parameters in parallel
inverters is discussed.

1) Damping Coefficient µ: Define the evolution time of os-
cillator as trise that determines the unloaded inverter achieves
its reference voltage from initial conditions. Assume the
controller operates in open-circuit when P̄ = 0, and the
voltage rises from 0.1V̄ and 0.9V̄ . We define W = V̄ 2

and Wref = V ∗2. Based on (18), the evolution time can be
expressed as:

trise =
1

µ

∫ 0.81Wref

0.01Wref

1

WWref −W 2
dW =

6.045

µV ∗2
(19)

Notice that the evolution time is inversely proportional to
the voltage amplitude references and µ. Therefore, the designer
can obtain the desired transient time by performing a proper
selection of V ∗ and µ.

2) Initial States of the Oscillator: In theoretical perspective,
the coupled Hopf oscillators always converge to a limit cycle
wherever the initial states locate [5]. Fig. 7 (a) illustrates the
trajectories of two coupled Hopf oscillator with different initial
states, and it can be seen that their orbits towards asymptoti-
cally limit cycle with fixed amplitude voltage and frequency.
However, considering the converging speed of system and safe
startup in practice, it is preferred to select the initial state as
(0.5Vrate, 0) where Vrate is the rated voltage of inverter.

3) Current Coefficient k: First, we need to analyze the bi-
furcation diagram to detect the critical conditions that happen
when k are varied from zero to 7000. It means for (12),
whether changing k will cause a damping of the oscillation
amplitude. Fig. 7 (b) shows the 3-D diagram with k varying for
an oscillator with fixed frequency 50Hz and amplitude 185V. It
can be seen that the limit cycle of Hopf oscillator presents the
persistent closed orbit under the large margin of k changing.
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Fig. 7. The impacts of current gain and initial states on system
dynamics: (a)3-D diagram of feedback oscillator with k varying; (b)The
trajectories for two Hopf oscillators converging to the same limit cycle
with different initial states (0,0) and (3,0)

(a) (b)

Fig. 8. (a) The relationship between k and the equilibrium voltage
amplitude and active power. (b) The relationship between k and the
equilibrium frequency and reactive power

Therefore, one oscillator is able to keep stable with maintained
oscillations considering the varying feedback parameters.

To investigate the voltage equilibrium point of the system
(18), the following equation needs to be considered:

V ∗2µV̄ 2
e − µV̄ 4

e − 2kP̄e = 0. (20)

Where V̄e and P̄e refers to the equilibrium voltage amplitude
and average active power in steady state respectively. In this
paper, the positive roots of (20) can be expressed as:

V̄e =

√
0.5V ∗2 ± 0.5

√
V ∗4 − 8

µ
kP e. (21)

The two real roots can be obtained if the k satisfies:

0 < k ≤ kc =
µV ∗4

8P̄e
. (22)

From (22), the critical value kc is proportional to V ∗4

and inversely proportional to the equilibrium averaged active
power. Fig. 8 illustrate the nonlinear droop law of V −P, ω−Q.
For the voltage regulation as shown in Fig. 8 (a), parameter
k is insensitive to regulate output voltage. Meanwhile, the
frequency value is proportional to the reactive power in Fig. 8
(b), and the maximum frequency offset should regulate the
frequency variation.

To facilitate the parameters design, define the rated power
of inverter Prated as the equilibrium active power, so kc is
given by:

kc =
µV ∗4

8Prated
. (23)

Moreover, given ith and jth inverters with terminal voltages
vi and vj , and active powers Pi and Pj , respectively, synchro-
nized ith and jth inverters can be expressed as vi = vj in
steady state. According to (18), the amplitude’s integration of
two oscillators can be equal at steady state, and the relationship
between power rating and k is presented as follow:

Pi
Pj

=
kj
ki
. (24)

In this case, assume that the filter impedance of each inverter
are identical. However, in real cases, the design of the filter
not only affects the power quality of the system but also has
impact on the power rating.

IV. GLOBAL ASYMPTOTIC SYNCHRONIZATION
OF COUPLED OSCILLATORS

It is essential to derive the sufficient conditions on coupled
Hopf oscillators dynamical systems that realize synchroniza-
tion. In this section, the exact conditions for linearly coupled
Hopf oscillators are derived by using Lyapunov approach [29]
[30].

Using the state coordinates definition initialed for the Hopf
oscillator in the section, the differential equations for N
linearly coupled Hopf oscillators can be given as: ẋi = µ(ri

2 − x2
i − y2

i )xi − ωyi −
k

ZL

N∑
p=1

(xp − xi)

ẏi = ωxi ∀i = 1, ...N.
(25)

Where ZL is the common load for the system. The definition
of synchronization for the oscillators can be expressed as:

lim
t→∞

(xj − xi) = 0, lim
t→∞

(yj − yi) = 0, ∀j, i = 1, ...N.

(26)

Therefore, according to (25) and (26), the derivative of
synchronization is given by:

ẋj − ẋi = µ(rj
2 − x2

j − y2
j )xj − µ(ri

2 − x2
i − y2

i )xi

−ω(yj − yi)−
kN

ZL
(xj − xi)

ẏj − ẏi = ω(xj − xi).
(27)

As mentioned in Section II, the Hopf oscillator has strong
robustness performance and closed orbit is stable. Assume in
steady state x2

i∞ + y2
i∞ = r2 under feedback perturbation ki

and each oscillator has same frequency. In order to obtain the
sufficient synchronization of coupling gain k, Theorem 1 is
proposed to establish synchronization.

Theorem 1: Consider coupled oscillators system dynamics
(25), for variables xi, xj , yi, yj ∈ R,∀j, i = 1, ...N., as t →
∞, the coupled Hopf oscillators synchronize asymptotically,
if the parameters k > 0.
Proof : Define the Lyapunov function Sij function as:

Sij =
1

2
(xj − xi)2 +

1

2
(yj − yi)2. (28)
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TABLE I
SYSTEM PARAMETERS USED IN SIMULATION AND EXPERIMENT

Parameter Value Unit
DC voltage 450 V

Rated Power 2.2 kW
Filter inductance 1.8 mH
Filter capacitance 25 µF

Resistive load 180 Ω
Step-up load 180 Ω

Oscillator initial state 155,0 V,V
Startup k 600 A/A

Damping Coefficient µ 5 V −2s−1

Voltage reference 311 V
Frequency reference 50 Hz

By differentiating (28), the Lyapunov function can be ex-
pressed as:

Ṡij =− kN

ZL
(xj − xi)2 + µxj(xj − xi)(rj2 − x2

j − y2
j )

− µxi(xj − xi)(ri2 − x2
i − y2

i )xi

− ω(xj − xi)(yj − yi) + ω(xj − xi)(yj − yi).
(29)

As x2
i∞+y2

i∞ = ri
2, x2

j∞+y2
j∞ = rj

2 is mentioned before,
(29) is simplified as follows:

Ṡij = −kN
ZL

(xj − xi)2. (30)

Based on (30) , it is can be concluded that Ṡij will be
negative if k > 0. Set X as the largest invariant aggregate for
Ṡij = 0 where there exists xj(t)− xi(t) = 0,yj(t)− yi(t) =
0,ẋj(t) − ẋi(t) = 0 and ẏj(t) − ẏi(t) = 0 of each oscillator.
According to Lasalle’s invariance principle, all trajectories
ẋj(t) − ẋi(t) and ẏj(t) − ẏi(t) are able to converge to X
when t → ∞. Therefore, the coupled oscillators synchronize
asymptotically.

V. SIMULATION RESULTS
In order to validate the performances of the proposed Hopf-

oscillator controller, the Virtual Van der Pol oscillator has
been chosen to compare. The two parallel inverters based
on two types of oscillators have been simulated with MAT-
LAB/SIMULINK. The control algorithm of Hopf oscillator
is based on (12) with discrete integrators, and the control
theme and parameters of VOC are used from [11]. The
proposed controller parameters are chosen by Table. I. Var-
ious simulation tests have been carried out, such as: startup,
connection, current ratio changes, THD of unload voltage and
large variation of load power.

A. Startup and Connection
Fig. 9. shows the transient response of output current and

active power with the scenario of VSI #1 startup and VSI #2
connection in the presence of a resistive load. As seen in Fig. 9
(a)(b), the Van der Pol oscillator controller has approximately
0.8s starting time, and the settling time is 0.1s when VSI
#2 connects. Note that the initial conditions of Van der Pol
oscillators were selected to be 3V considering emulating
errors. In comparison, the starting time of the Hopf oscillator
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Fig. 9. Comparison simulation results of inverter output current and
active power with startup and connection.
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Fig. 10. Comparison simulation results of inverter output current and
active power when current ratio changes.

L
o

ad
 v

o
lt

ag
e 

R
M

S
 (

V
)

A
ct

iv
e 

p
o

w
e
r(

W
)

(a)

(b)

Frequency(Hz)

Hopf oscillator 

Time (s)

Van der Pol oscillator 

Hopf oscillator THD=0.76%

Van der Pol oscillatorTHD=1.33%

A
m

p
li

tu
d

e

Van der Pol oscillator 

Hopf oscillator 

Fig. 11. Comparison simulation results of (a) Voltage THD of unloaded
inverter and (a) the large variation of load power.
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controller is approximately 0.02s with 3V initial conditions.
The obvious difference is because the evolution time (19) is
smaller then the evolution time of Van der Pol(trise =

6

ω∗εσ
)

[11]. The proposed controller is able to realize power sharing
and the settling time of connection is approximately 0.06s. It
is clear to observe that the Hopf oscillator reaches steady state
faster than the Van der Pol in case of startup and connection.

B. Ratio Changes

The transient response for sudden direct currents ratio
changes of parallel VSIs with two control strategies are illus-
trated in Fig. 10 (a)(b). The current ratio has been suddenly
changed from 1:1 to 1:2. It can be observed that the current
outputs of two control methods is nearly instantaneous from
1:1 to 1:2. Note that the transient response of Hopf oscillator
controller lasts 0.045s compared with 0.04s of the Van der
Pol.

C. Unload Voltage THD and Large Load Power Variation

At first, the voltage harmonic content of unload inverter is
shown in Fig. 11 (a). The total harmonic distortion (THD)
of Hopf and Van der Pol controller is 0.76% and 1.33%,
respectively. The few third-order harmonics are included in
the terminal voltage from Van der Pol controller which agrees
the harmonics analysis in Section.II. Considering the large
load power variation case, the a oscillator-controlled inverter
supplies the resistive load with power P1 = 280W in steady
state at the beginning, then a large load power P2 = 5P1 =
1.4kW is switched to system at 1.2s. The transient responses
comparison of load voltage RMS and active power are shown
in Fig. 11 (b). Notice that the load voltage of the proposed
method has a smaller decrease with 9% of rated voltage while
Van der Pol controlled inverter has 32% voltage drops. Thus,
the proposed controller achieves better performance under the
large load power variation.

VI. EXPERIMENTAL RESULTS

The performance of the Hopf-oscillator control is also val-
idated by three parallel single phase inverters in experimental
platform where the setup and its configuration are shown in
Fig. 12. The prototype consists of the DC voltage supply
source, the three Danfoss inverters with LCL filters, and the
resistive load and nonlinear load. The inverters’ voltage and
current are measured by the DS2004 A/D board and also
captured by oscilloscope. Each inverter operates at 10kHz
switching frequency, and the control algorithm is implemented
in the dSPACE DS1006 real-time system where the differential
equations (13) were implemented by 0.1ms sampling step. The
setup and controller parameters are listed in Table. I.

A. Inverters Connection

At first, we consider the inverters connection case when
each inverter connects one by one to supply a common
resistive load. For observing the connecting performance with
different initial state, we set oscillator initial state of inverter

ControlDesk

Controller

A\D Board
PWM

Loads

Breakers
Inverters

LCL filter

DC Source

Oscilloscope

Measurement

(a)

(b)

Fig. 12. (a)Experimental setup in the laboratory.(b)Configuration of
experiment.
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Fig. 13. Transient response of three inverters connection one by
one.(a)Instantaneous active and reactive power.(b)Output current of
inverter #1,#2 and #3. (c) Load voltage.
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#2 is same as inverter #1 with (0.5Vrated, 0), and the oscillator
initial state of inverter #3 is (0.9Vrated, 0). Fig. 13(a)(b)
illustrate active, reactive power and output current transient
response, respectively. As it can be observed, the first and
second connection settling time are approximately 0.6s and
0.65s respectively. Note that a small overshoot occur in the
second connection due to the inverter #3 has different initial
state, so it is better to select the same initial states of inverters
to eliminate extra overshoot in controller design processing.
Moreover, the current transient also presents the rise-reduce
dynamics with different initial states to affect the connection
speed in Fig. 13 (c).

B. Ratio Changes
Next, we test the case for sudden current sharing ratio

changes from 1:1:1 to 1:1:2 as shown in Fig. 14(a)-(c).
Fig. 14(a) depicts the active and reactive power transient
dynamics under ratio changes. Notice that the active power of
inverter #3 and inverters #1 and #2 separate at sudden changes.
Reactive power present small transient then returning to 0, and
transient response only last 0.18s. Fig. 14(b) illustrates the
output current of inverter #3 increases immediately according
to the sharing ratio k changes. Meanwhile, the load voltage
keeps stable when the ratio changes in Fig. 14(c).

C. Nonlinear Load
Here, we focus on the case of supplying a nonlinear load and

removal one inverter from parallel system. Fig. 15(a) shows
the power dynamics when inverter #2 is removed from the
system while supplying rectifier loads. Notice that there is a
undershoot of reactive power under the removal due to the
sudden decrease of the reactive current. Fig. 15(b) illustrates
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18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6

100

120

140

160

-15

5

-5

A
ct

iv
e

 P
o

w
e

r(
W

)
R

e
a

ct
iv

e
 P

o
w

e
r(

V
a

r)
O

u
tp

u
t 

C
u

rr
e

n
t(

A
)

Time(s)

(a)

(b) (c)

F
re

q
u

e
n

cy
(H

z)

-10

0

10

20.8

18 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8

180

19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21

49.5

50.5

50

51

49
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that inverter #2 current suddenly decreases while the inverter
#1 and #3 current increase to supply the load persistently. The
waveforms of load voltage keeps stable with slightly distortion
as shown in Fig. 15(c).
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D. Step Change

Fig. 16(a)-(c) show the transient response during the load
step changing when three parallelled inverters supply the
common loads. We set the three inverters operate with the
same current ratio, and then an extra 180Ω resistive load
is parallel connected into the common bus. It is obvious to
see that all three currents increase immediately to supply
the common loads and the transient is minimal as shown
in Fig. 16(b). The frequency response to loads step changes
is presented in Fig. 16(c), which demonstrates the frequency
deviation is small and keeps in the acceptable range, e.g. ±0.5
Hz.

Consequently, the experimental validation results reveal
the proposed Hopf-oscillator controller is able to realize the
synchronization in parallel inverters system operation. The
proposed strategy works well by fast response speed not only
on the inverter connection and removal but also the sharing
ratio changes case with resistive load or nonlinear load. Thus,
the results also indicate that the proposed Hopf-oscillator
controller performs as desired with load step.

VII. CONCLUSIONS

This paper presented a simple and fast synchronization
method based on coupled Hopf-oscillators for parallel single-
phase inverters without communication in islanding microgrid.
To compare with the Van der pol oscillator, the Hopf oscillator
demonstrates the better robustness, the faster response, and the
firm limit cycle in physical features. Therefore, the parallel
inverters that are able to controlled as coupled Hopf oscil-
lators to realize the synchronization. The steady-state model
analyses clarify the relationship between the parameters and
system performance. The global asymptotic synchronization
proof indicates the sufficient condition for coupled oscillators
system. A series of simulations and experiments were carried
out to validate the proposed strategy. The obtained results do
not require the power calculation and PLL, and present fast
and precise synchronization and current sharing performance.
As the part of future work, the oscillator controller for three-
phase inverter application is needed to realize in static three-
phase coordinates. Thus, the control strategy will be extended
to gird-connected mode to complete the microgrid application.
Therefore, the future effort can be focused on the analysis of
robustness margins and power reference entry.
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