

Aalborg Universitet

Visualizing Contour Trees within Histograms

Kraus, Martin

Published in:
Computer Graphics and Imaging

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Kraus, M. (2010). Visualizing Contour Trees within Histograms. In A. D. Sappa (Ed.), Computer Graphics and
Imaging: Proceedings of the 11th IASTED International Conference on ACTA Press.
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=622

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://vbn.aau.dk/en/publications/9f726491-180b-46c2-9631-60defab1784b
http://www.actapress.com/Content_of_Proceeding.aspx?proceedingID=622

VISUALIZING CONTOUR TREES WITHIN HISTOGRAMS
Martin Kraus

CVMT Laboratory
Aalborg University
Niels Jernes Vej 14,

DK-9220 Aalborg East, Denmark
email: martin@imi.aau.dk

ABSTRACT
Many of the topological features of the isosurfaces of a
scalar volume field can be compactly represented by its
contour tree. Unfortunately, the contour trees of most real-
world volume data sets are too complex to be visualized
by dot-and-line diagrams. Therefore, we propose a new vi-
sualization that is suitable for large contour trees and effi-
ciently conveys the topological structure of the most impor-
tant isosurface components. This visualization is integrated
into a histogram of the volume data; thus, it offers strictly
more information than a traditional histogram. We present
algorithms to automatically compute the graph layout and
to calculate appropriate approximations of the contour tree
and the surface area of the relevant isosurface components.
The benefits of this new visualization are demonstrated
with the help of several publicly available volume data sets.

KEY WORDS
Information visualization; graph visualization; volume vi-
sualization; contour tree; topology; histogram

1 Introduction

The visualization of isosurfaces is of particular interest in
scalar volume visualization as it is a well established and
accepted technique in many sciences. However, it is not
possible to visualize many isosurfaces in a single, compre-
hensible image. Fortunately, it is often sufficient to extract
specific information about the structure or particular fea-
tures of the scalar field. Some of the most important topo-
logical features of the set of all possible isosurfaces of a
scalar volume field can be compactly represented by the
contour tree. In fact, the contour tree has been successfully
employed for a variety of tasks in volume visualization as
discussed in Section 2.

Although the contour tree has been proven useful, the
visualization of contour trees of real-world data sets is a
challenging problem. While the contour tree is usually a
compact representation of the scalar field in comparison to
the size of the corresponding volume data set, it is in most
cases still far too large to be visualized by dot-and-line dia-
grams; in particular if the volume data is noisy. Moreover,
even for strongly simplified contour trees, it appears to be

rather difficult for non-experts to match the edges of tradi-
tional graph drawings to connected components of isosur-
faces.

Therefore, we propose a new visualization of the con-
tour tree that resembles common visual abstractions of the
volume data, namely histograms and isosurface statistics
[1, 2]. It is straightforward to generalize traditional his-
tograms of volume data to stacked bar charts representing
the decomposition of isosurfaces into connected compo-
nents. In this work, we are particularly interested in the
continuous limit, in which these stacked bar charts corre-
spond to stacked graphs. Furthermore, we combine this
representation with the basic concepts of Sankey diagrams
and flow maps to represent the edges of the contour tree as
discussed in Section 3.

We also propose an algorithm to compute an appro-
priate approximation of the contour tree and all required
isosurface statistics for a user-specified discretization of the
data range in Section 4. As our visualization of the contour
tree is inspired by a stacked bar chart of the sizes of con-
nected components, we only need to sort these components
appropriately to determine the basic graph layout. This
sorting, however, is crucial to achieve a comprehensible vi-
sualization while preserving the most important topological
structures even without crossing edges. We discuss the al-
gorithm in Section 5 together with further details about the
rendering. Results are summarized in Section 6.

The primary contributions of this work are:

• the design of a visualization of contour trees within
histograms and

• the computation of appropriate graph layouts to pre-
serve the most important edges in visualizations with-
out crossing edges.

These contributions and our conclusions are summarized in
Section 7.

2 Previous and Related Work

The contour tree (or the graph of a contour map) represents
containing relationships between contours of a scalar field
on a simply-connected domain. According to Freeman and
Morse [3], each edge of this tree represents a contour and

lo
ga

rit
hm

ic
hi

st
og

ra
m

data values

(a)

lo
ga

rit
hm

ic
hi

st
og

ra
m

data values

(b)

lo
ga

rit
hm

ic
hi

st
og

ra
m

data values

(c)

Figure 1. Illustration of the relation between (a) a volume data histogram for 50 intervals, (b) the same bars subdivided into
contributions from different connected components of isosurfaces, and (c) our contour tree visualization for these 50 intervals.
The data was obtained by a CT scan of the lower part of a foot; thus, the largest isosurface component corresponds to the whole
foot. For larger isovalues, it splits up into the isosurface components that correspond to bones as illustrated in Figure 2.

10 128 240

lo
ga

rit
hm

ic
hi

st
og

ra
m

data values

(a)

isovalue 10

(b)

isovalue 128

(c)

isovalue 240

(d)

Figure 2. (a) Visualization of the contour tree of the foot data set with 200 intervals and renderings of isosurfaces corresponding
to the isovalues (b) 10, (c) 128, and (d) 240.

each node represents an inter-contour region between two
contours. Note that we will refer to contours as connected
components of isosurfaces in this work.

In volume visualization, the contour tree has been
used to accelerate the extraction of isosurfaces, for example
by van Kreveld et al. [4], to generate transfer functions for
direct volume rendering, for example by Takahashi et al.
[5], and to segment volume data based on connected com-
ponents, for example by Carr et al. [6], Takeshima et al. [7],
and Weber et al. [8].

Contour trees themselves have been visualized auto-
matically with the help of dot-and-line diagrams, for exam-
ple by Bajaj et al. [1], Pascucci et al. [9, 10], and Carr et
al. [6]. Shinagawa et al. [11] employed icons to represent
topological relations in such diagrams. However, contour
trees of real-world volume data sets are too complex for
this kind of visualization; therefore, algorithms for a strong
simplification have been suggested by Carr et al. [6], Taka-
hashi et al. [5, 12], Weber et al. [8] and Pascucci et al. [10].
As it is still difficult to match the resulting graph drawing
to the scalar field, the use of colors has been proposed to
identify connected components [6, 8, 13]. Unfortunately,

this approach is rather limited as humans cannot distinguish
many colors. An alternative are three-dimensional dot-and-
line diagrams [10] and the embedding of critical points and
connecting lines in the three-dimensional space of the data
set [5, 12, 10]. However, this can result in complex images
with occlusions and line crossings, which we want to avoid
in this work.

Klemelä [14] has proposed one- and two-dimensional
representations of “level set trees”, which are however not
identical to contour trees. Nonetheless, it should be possi-
ble to apply our visualization technique to level set trees as
well. Weber et al. [13] proposed “topological landscapes.”
The three-dimensional nature of these visualizations results
in occlusions and difficulties to compare the data value
of critical points, i.e., it is more difficult to compare the
heights of two critical points in Weber et al.’s work than
the x coordinates of two critical points in our visualization.
Furthermore, some topological details are not well repre-
sented in the visualizations presented by Weber et al.; e.g.,
the topological noise in the engine data set (compare Fig-
ure 7(c) with Figure 10 in [13]).

Our visualization is based on histograms of volume

2 18 28 45 84 101 122 137 179 184 228 250
lo

ga
rit

hm
ic

su
rfa

ce
ar

ea

data values

(a)

2 18 28 45 84 101 122 137 179 184 228 250

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(b)

2 18 28 45 84 101 122 137 179 184 228 250

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(c)

Figure 3. (a) Visualization of the contour tree of the fuel data set with markers for the 12 isosurfaces shown in Figure 4 using
200 intervals. (b) Same as (a) but for the first level of the min-max octree. (c) Same as (a) for the second level.

2 18 28 45 84 101 122 137 179 184 228 250

Figure 4. Isosurfaces of the fuel data set for the isovalues indicated in Figure 3.

data and employs the results of Scheidegger et al. [2] about
the relation between histograms and isosurface statistics.
Furthermore, the design of the proposed visualization was
inspired by stacked bar charts and stacked graphs (see the
works by Havre et al. [15] and Byron and Wattenberg [16]
and references therein), Sankey diagrams [17] and flow
maps [18].

One of the new contributions of our work is the com-
bination of stacked graphs and Sankey diagrams. Related
combinations of stacked bar charts and Sankey diagrams
were published by Fry [19, section 4.6] and by Rosvall and
Bergstrom [20]. In contrast to these visualizations, how-
ever, we consider approximations to continuous stacked
graphs and we avoid crossing edges in order to reduce the
visual complexity.

3 Design of the Proposed Visualization

Due to the wide-spread use of histograms of volume data
and their close relation to isosurface statistics [2], our visu-
alization of the contour tree resembles a stacked graph of
connected isosurface components. Figure 1 illustrates the
relation between histograms and the proposed visualization
while the relation to isosurfaces is illustrated in Figure 2.
More examples are depicted in Figures 3, 5, and 7. Figure 4
shows isosurfaces for 12 isovalues, which are indicated by
vertical lines in Figure 3. Note that isosurface components
in Figure 4 split into multiple components when the iso-
value is equal to the data value of a saddle point. This cor-

responds to the start of one (or more) new separating line
in Figure 3a, for example at the isovalue 84. In terms of
the contour tree, this corresponds to a node with multiple
children.

Apart from this basic concept of stacked graphs, there
are two important design decisions. The first one concerns
the displayed size of the connected components. We note
that for isosurface statistics of the area of isosurfaces [1, 2],
the value of each isosurface is equal to the sum of the val-
ues of all its connected components. As demonstrated in
Figure 3 these isosurface statistics can be used for our vi-
sualization, too. Scheidegger et al. [2] have discussed the
mathematical relation between histograms and isosurface
statistics, which allows us to compute histograms from the
isosurface statistics of the isosurface area. In both cases the
total height of the diagram represents a sum over all con-
nected components; thus, it is intuitive to choose the dis-
played size of each connected component as a fraction of
the total height proportionally to the component’s contribu-
tion to this sum. Strictly speaking, this is only true for lin-
ear diagrams. However, linear histograms (and isosurface
statistics) are unsuitable to show all of the topologically in-
teresting structures of the contour tree; thus, a logarithmic
scale is preferable.

Another important design decision concerns crossing
edges. As discussed in Section 5, we try to avoid cross-
ing edges by sorting the connected components appropri-
ately. However, for real-world data sets, it is impossible to
avoid all crossings of straight edges if the isovalue is used
as one of the coordinates of the nodes for the graph layout.

103 160 190

lo
ga

rit
hm

ic
hi

st
og

ra
m

data values

(a)

isovalue 103

(b)

isovalue 160

(c)

isovalue 190

(d)

Figure 5. (a) Visualization of the contour tree of the nucleon data set with 200 intervals and renderings of isosurfaces corre-
sponding to the isovalues (b) 103, (c) 160, and (d) 190.

(See Figure 7 in [10] for an example. Without these restric-
tions, crossing edges could be avoided since the contour
tree is a planar graph.) Crossing edges result in occlusions
and therefore increase the visual complexity of visualiza-
tions significantly. Therefore, Fry [19] and Rosvall et al.
[20] employ gray shades and colors when rendering cross-
ing edges. In the case of our visualization—and in general
for stacked graphs [16]—the problem of crossing edges is
even worse since the crossings might have to be visualized
within a very small horizontal distance—possibly just one
pixel.

On the other hand, we can take advantage of a par-
ticular feature of visualizations of complex contour trees:
we cannot expect to accurately visualize the actual contour
tree. In fact, our choice of the displayed sizes of connected
components already results in a strong simplification since
the representation of many components is too small to be
visually relevant. Obviously it is not necessary to visualize
edges to or from these small components. This motivates
our approach to remove the less important edge of any pair
of crossing edges as explained in detail in Section 5.

Thus, this simplification of the contour tree is based
on the requirements of the chosen visualization instead of
geometric or topological properties of the contour graph,
which have been employed in previous works [6, 5, 12, 8].
We also apply this approach to the computation of approx-
imations of contour trees as discussed next.

4 Computation of Contour Trees

There are several efficient algorithms for the computation
of contour trees and their simplification [6, 9, 10], which
could be employed for our visualization. Alternatively, we
present an algorithm that employs a decomposition of the
data range to avoid the computation of the full contour tree.
This decomposition can be adjusted by the user to trade
computation time for accuracy or to match the decomposi-
tion employed by a histogram.

We consider the definition of contour trees employed

by Freeman and Morse [3], i.e., nodes of the contour
tree represent inter-contour regions and edges represent
the contours separating two inter-contour regions. Thus,
each inter-contour region corresponds to a specific range
of scalar data values [rmin,rmax].

In our algorithm, we decompose the whole data range
into an appropriate number of uniform intervals. These in-
tervals are processed one-by-one in ascending order. For
each interval we compute connected components of inter-
contour regions, which are also known as “interval vol-
umes” or “volume intervals” in volume visualization (see
[21] and references therein). Since an approximation is
sufficient, we only count the intersected cells for each con-
nected component. To this end, we compute the minimum
value vmin and the maximum value vmax of the eight vertices
of each hexagonal cell in structured volume data sets. If the
intervals [rmin,rmax] and [vmin,vmax] have a non-empty in-
tersection, the cell is considered part of the inter-contour re-
gion. Intersected cells that share a face are considered part
of the same connected component if the interval [fmin, fmax]
of data values on the face is also intersected by [rmin,rmax].
To trace connected components in regular grids, we em-
ploy a depth-first search along shared faces of cells. This
approach is conservative in the sense that a component is
never split into multiple components unless it actually con-
sists of multiple, well separated components. An exhaus-
tive depth-first search in a min-max octree is used to find
seed cells for all connected components in the data set.

A cell intersected by the interval [rmin,rmax] is not
necessarily intersected by the isosurfaces for all isovalues
in this interval. Therefore, a weighting factor is necessary
to take the probability into account that a cell with data val-
ues between vmin and vmax is intersected by an isosurface
for a random isovalue between rmin and rmax. Specifically,
we employ this factor:

min(vmax,rmax)−max(vmin,rmin)

rmax − rmin

As proposed by Scheidegger et al. [2, section 5], we esti-
mate the area of an isosurface within a cell by a constant

and approximate the gradient magnitude by the difference
vmax − vmin.

There can be many thousands of connected compo-
nents in noisy data sets for each interval [rmin,rmax]. To re-
duce the memory and time requirements of our implemen-
tation, we keep only the largest components (in our current
implementation the 250 largest) since very small compo-
nents are not relevant for the visualization. Thus, most of
the required memory can be released before the next inter-
val is processed.

Apart from the nodes corresponding to connected
components, we also have to compute edges between these
nodes, i.e., we have to determine which connected compo-
nents are separated by contours. To this end, the overlap of
cells intersected by adjacent intervals is recorded while the
components are traced. More precisely spoken, for each
interval we record the overlap of its components with com-
ponents of the previously computed interval. To simplify
the implementation, for each component we only record
overlaps with the n largest components of the previous in-
terval (in terms of cells), where n is a small number (6 in
our current implementation).

5 Computation of the Graph Layout

5.1 Sorting of Nodes

As discussed in Section 3, crossing edges are not included
in the visualization; therefore, the sorting of components
is particularly important to reduce the number of crossing
edges. On the other hand, it is crucial to include the most
relevant edges. To this end, our algorithm assigns an “im-
portance” to nodes of the contour tree, which is determined
by the size (in cells) of the corresponding component. Fur-
thermore, the “importance” of an edge is determined by the
size of the smaller of the two components that correspond to
the nodes of the edge. This definition of the importance of
edges is plausible if noisy data is considered, which usually
leads to many, very small components. The corresponding
nodes are connected by edges to relevant components of
all sizes, Thus, only the smaller component of each edge
should be considered to determine whether the edge exists
due to noise.

The sorting of the components is performed one-by-
one for all data intervals [rmin,rmax] in ascending order.
Thus, the order of the components for the previous inter-
val is known and fixed while the order of the components
for the next interval is unknown. Therefore, we take only
the edges to nodes of the previous interval into account.
Note that there are no edges between any two nodes of the
same interval.

The initial order of the nodes is determined by a pro-
jection of the centers of mass of the components onto a line.
Our first attempt was to determine this line by an eigenvec-
tor analysis of the covariance matrix of the component’s
centers weighted with their importance. Unfortunately, this
approach is only useful to compute an initial order. For this

initial order, however, any line can be used. In praxis, it is
reasonable to offer a few options to users, e.g., the axes of
the data set.

The sorting is performed similarly to a bubble sort
where pairs of nodes are swapped when their most impor-
tant edges cross each other. The algorithm performs the
following steps:

1. Iterate over all nodes of the current interval in their
current order.

2. For each node search for a crossing edge: For a node
a consider its most important edge to a node, called b,
of the previously processed interval. Search for a node
c of the current interval that currently precedes node
a and that is connected by its most important edge to
a node d of the previous interval that is preceded by
node b.

3. If such a pair of crossing edges is found, swap the
nodes a and c to resolve it. Continue the iteration in
1. at the new position of a. Otherwise continue at the
next position after a or terminate the iteration if the
end of the list has been reached.

Since this algorithm has a quadratic time complexity, it is
important to limit the number of components per interval to
a sufficiently small number. As mentioned in Section 4, our
current implementation considers the 250 largest compo-
nents per interval. It should be noted that it is rather easy to
construct synthetic data sets for which this algorithm does
not produce satisfactory results. However, it worked very
well for all real-world data sets that we tested (see also Fig-
ure 7).

After the sorting of nodes of one interval, their edges
(not only the most important ones) to the nodes of the pre-
vious interval are either accepted or rejected. In a first pass
over all nodes and their edges, we accept all edges that
are not crossed by a more important edge. In this pass
many edges will not be accepted because of more impor-
tant crossing edges. However, some of these more impor-
tant edges will also fail to be accepted because of yet more
important edges crossing them. Therefore, a second pass is
performed over all nodes (in order of descending size of the
corresponding component) and their edges. In this second
pass, all edges are accepted that are not crossed by already
accepted edges. While this procedure guarantees that no
crossing edges are accepted, it also tries to accept as many
edges as possible.

5.2 Rendering of Edges

For the visualization, each interval [rmin,rmax] corresponds
to one x coordinate. To determine the y coordinates of
the separating lines, we first compute the total height of
the graph based on the total size of all components of
the interval. Each node is assigned a certain height de-
termined as a fraction of the total height proportionally to

vertices of
previous
interval

vertices of
current
interval

edges
between
nodes

size of
component

separating
lineclosing

line

opening
line

bottom
line

Figure 6. Illustration of the rendering of separating lines in
the visualization.

the size of the corresponding component. Then, y coordi-
nates for the sorted nodes are computed using partial sums
of these heights. As illustrated in Figure 6, the resulting
two-dimensional grid of vertices is used to construct lines,
which separate nodes that are not connected by accepted
edges.

We generate these lines by a sweep-line algorithm
from smaller to larger x coordinates (i.e., left to right).
Thus, data intervals are processed one-by-one analogously
to the algorithms in Sections 4 and 5.1. Four different kinds
of separating lines are required:

• Nodes of the previously processed interval that have
no edges to the current interval have to be “closed”;
e.g., by a vertical line along the height of the corre-
sponding component.

• Nodes of the currently processed interval that have
no edges to nodes of the previous interval have to be
“opened”; e.g., by a vertical line along the height of
the corresponding component.

• The nodes of the current interval are processed in or-
der of ascending y coordinates. Their edges to nodes
of the previous interval are sorted with respect to the y
coordinates of those nodes. If the first edge of a node
a of the current interval links to a node b that has no
edge to any of the nodes that precede a in the current
interval then a separating line is drawn below the com-
ponents corresponding to a and b.

• Two lines are rendered at the top and the bottom of the
graph.

This basic rendering has been further refined to reduce the
number of vertical lines; however, these improvements be-
come visually less important as the number of intervals is
increased (and their size is decreased).

Table 1. Timings for various data sets [22, 23].

time in seconds

data set size intervals: 50 100 200

nucleon 41×41×41 0.3 0.6 1.0
silicium 98×34×34 1.2 2.1 4.0

fuel 64×64×64 0.6 0.7 1.0
neghip 64×64×64 1.1 1.9 3.3
lobster 301×324×56 17.7 25.6 41.1

MR brain 256×256×109 32.2 53.3 92.7
CT head 256×256×113 32.6 51.8 88.7

engine 256×256×128 34.2 53.4 91.4
leg of statue 341×341×93 27.8 35.2 51.1

teapot 256×256×178 32.9 44.4 66.7
aneurism 256×256×256 40.4 49.4 67.4

bonsai 256×256×256 56.8 82.8 134.8
foot 256×256×256 79.9 127.4 215.1

skull 256×256×256 81.7 129.3 223.3

6 Results

6.1 Performance

Our prototypical implementation employs VTK [24] to
load various publicly available data sets [22, 23] and to
visualize the isosurfaces in Figures 2, 4, and 5. The
C++/OpenGL implementation of the algorithms described
in Sections 4 and 5 was tested on a PC with two 3.6 GHz
Intel Pentium 4 CPUs (only one of them was used for our
program) and 2 GB RAM running Microsoft Windows XP.
Table 1 shows the resulting timings for 50, 100, and 200
data intervals. All visualizations presented in this work em-
ploy 200 data intervals, except for Figure 1, which employs
50 intervals.

Note that the timings in Table 1 include the compu-
tation of the surface area of all isosurface components and
the graph layout. On the other hand, only an approxima-
tion to the actual contour tree is computed. Thus, a com-
parison to previously reported results is difficult. However,
the results show that we can effectively trade accuracy for
performance by reducing the number of data intervals.

6.2 Downsampling

To obtain a fast preview, the data set can be downsampled
before the contour tree is computed. To this end, the min-
max octree can be employed, which is also used to find seed
cells of connected components. Thus, contour trees can be
computed for any level of this min-max octree. Note that
our algorithm requires the min-max intervals of all faces of
each cell. Thus, these intervals have to be computed for the
downsampled cells in addition to the min-max intervals of
the cells themselves. Figures 3b and 3c show the results
for the 1st and 2nd level. While there are strong deviations
from the original computation (compare with Figure 3a),
the most important structures of the contour tree are pre-
served in Figure 3b.

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(a)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(b)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(c)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(d)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(e)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(f)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(g)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(h)

lo
ga

rit
hm

ic
su

rfa
ce

ar
ea

data values

(i)

Figure 7. Visualizations of the contour trees of various well-known data sets, each using 200 data intervals: (a) the neghip data
set, (b) the silicium data set, (c) the engine data set, (d) the teapot data set, (e) the bonsai data set, (f) the skull data set, (g) the
aneurism data set, (h) the leg of statue data set, and (i) the MR brain data set.

7 Conclusion

We have presented a visualization of contour trees, which
is particular well suited to convey the most important—i.e.,
largest—components of isosurfaces even in noisy data sets.
Since this visualization is integrated in a histogram, it is
likely to be more comprehensible to many users than previ-
ously published representations. Moreover, it offers strictly
more information than a histogram; therefore, we assume
that it is at least as useful as a histogram. In fact, we assume
that the visual representation of splitting and joining isosur-
face components is comprehensible even to users who are
not familiar with contour trees. Therefore, we hope that
this representation will also help to popularize the contour
tree and its applications in volume graphics.

Figure 7 suggested that there is a wide range of vi-
sually very different results even for this small set of data

sets. The variety of visual characteristics will hopefully en-
courage more detailed explorations of the contour trees of
specific kinds of data sets.

There are many avenues for future work: isosurface
components could be selected by clicking; rendering and
editing of selected isosurface components could be inte-
grated; zooming, panning, and further filtering options
could be integrated; etc.

8 Acknowledgements

The author would like to thank all reviewers. The vol-
ume data sets appear courtesy of the Stanford Volume Data
Archive [23] and the Volvis Homepage [22]. This work has
been supported by the German Research Council (DFG)
under grant no. KR2948/2-2.

References

[1] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R.
Schikore. The contour spectrum. In Proceedings of
the conference on Visualization ’97, pages 167–ff.,
1997.

[2] C.E. Scheidegger, J.M. Schreiner, B. Duffy, H. Carr,
and C.T. Silva. Revisiting histograms and isosur-
face statistics. Visualization and Computer Graphics,
IEEE Transactions on, 14(6):1659–1666, Nov.-Dec.
2008.

[3] S. Freeman and S. P. Morse. On searching a contour
map for a given terrain elevation profile. Journal of
the Franklin Institute, 284(1):1–25, July 1967.

[4] Marc van Kreveld, René van Oostrum, Chandrajit Ba-
jaj, Valerio Pascucci, and Dan Schikore. Contour
trees and small seed sets for isosurface traversal. In
SCG ’97: Proceedings of the Thirteenth Annual Sym-
posium on Computational Geometry, pages 212–220,
New York, NY, USA, 1997. ACM.

[5] Shigeo Takahashi, Yuriko Takeshima, and Issei Fu-
jishiro. Topological volume skeletonization and its
application to transfer function design. Graph. Mod-
els, 66(1):24–49, 2004.

[6] Hamish Carr, Jack Snoeyink, and Michiel van de
Panne. Simplifying flexible isosurfaces using local
geometric measures. In Proceedings of the confer-
ence on Visualization ’04, pages 497–504, 2004.

[7] Y. Takeshima, S. Takahashi, I. Fujishiro, and G. M.
Nielson. Introducing topological attributes for
objective-based visualization of simulated datasets.
Volume Graphics, 2005. Fourth International Work-
shop on, pages 137–236, June 2005.

[8] Gunther H. Weber, Scott E. Dillard, Hamish Carr,
Valerio Pascucci, and Bernd Hamann. Topology-
controlled volume rendering. Visualization and Com-
puter Graphics, IEEE Transactions on, 13(2):330–
341, 2007.

[9] V. Pascucci and K. Cole-McLaughlin. Efficient com-
putation of the topology of level sets. In Proceedings
of the conference on Visualization ’02, pages 187–
194, 2002.

[10] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli.
Multi-resolution computation and presentation of
contour trees. In Proceedings IASTED Conference
Visualization, Imaging, and Image Processing, pages
452–290, 2004.

[11] Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Sur-
face coding based on morse theory. IEEE Computer
Graphics and Applications, 11(5):66–78, Sep 1991.

[12] S. Takahashi, Y. Takeshima, G. M. Nielson, and
I. Fujishiro. Topological volume skeletonization us-
ing adaptive tetrahedralization. Geometric Modeling
and Processing, 2004. Proceedings, pages 227–236,
2004.

[13] G.H. Weber, P.-T. Bremer, and V. Pascucci. Topologi-
cal landscapes: A terrain metaphor for scientific data.
Visualization and Computer Graphics, IEEE Trans-
actions on, 13(6):1416–1423, Nov.-Dec. 2007.

[14] Jussi Klemelä. Visualization of multivariate density
estimates with level set trees. Journal of Computa-
tional and Graphical Statistics, 13(3):599–620, 2004.

[15] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. The-
meriver: Visualizing thematic changes in large docu-
ment collections. Visualization and Computer Graph-
ics, IEEE Transactions on, 8(1):9–20, Jan/Mar 2002.

[16] Lee Byron and Martin Wattenberg. Stacked graphs —
geometry & aesthetics. Visualization and Computer
Graphics, IEEE Transactions on, 14(6):1245–1252,
2008.

[17] Patrick Riehmann, Manfred Hanfler, and Bernd
Froehlich. Interactive Sankey diagrams. In Proceed-
ings of 2005 IEEE Symposium on Information Visual-
ization, page 31, 2005.

[18] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan,
and Terry Winograd. Flow map layout. In Proceed-
ings of the 2005 IEEE Symposium on Information Vi-
sualization, page 29, 2005.

[19] Benjamin Jotham Fry. Computational Information
Design. PhD thesis, 2004. Supervisor: John Maeda.

[20] M. Rosvall and C. T. Bergstrom. Map-
ping change in large networks, 2008. URL:
http://arxiv.org/abs/0812.1242v1; last accessed
March 12, 2009.

[21] P. Bhaniramka, Caixia Zhang, Daqing Xue, R. Craw-
fis, and R. Wenger. Volume interval segmentation
and rendering. In Volume Visualization and Graphics,
2004 IEEE Symposium on, pages 55–62, Oct. 2004.

[22] D. Bartz. Volren and volvis homepage, 2005. URL:
http://www.volvis.org/; last accessed March 20, 2009.

[23] M. Levoy. The stanford volume data archive, 2001.
URL: http://graphics.stanford.edu/data/voldata/; last
accessed March 20, 2009.

[24] Kitware, Inc. The Visualization Toolkit User’s Guide,
2006.

