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Abstract—This paper presents a novel Bayesian Synthetic
Likelihood (BSL) method for calibration of stochastic radio
channels without multipath parameter estimation. To calibrate a
stochastic channel model, we apply a Markov Chain Monte Carlo
(MCMC) algorithm with a Metropolis accept/reject criterion
and synthetic likelihood obtained from data generated using the
model. The proposed method is applied to calibrate the Turin
model and the polarized propagation graph model. Simulation
examples show that the BSL method yield similar calibration
accuracy to the state-of-the-art method based on Approximate
Bayesian Computation (ABC).

Index Terms—Radio propagation, model calibration, Bayesian
Synthetic Likelihood, Machine Learning

I. INTRODUCTION

Stochastic radio channel models are useful for the design

and analysis of wireless communication systems. This has

led to the development of several stochastic models such as

Turin [1], Saleh-Valenzuela [2], Extended Saleh-Valenzuela

[3], Spencer [4], Propagation Graph (PG) [5], WINNER, and

COST. These models require calibration (i.e, estimation of

underlying parameters) in order to be useful. Traditionally,

the calibration problem is solved using multipath extraction

followed by estimation of the model parameters. However, the

multipath extraction stage utilizes complex algorithms (such

as SAGE [6] and MUSIC [7]), which are prone to errors and

difficult to use [8].

Recently, a new paradigm for radio channel model cali-

bration without the complex multipath estimation has been

proposed [8], [9]. The existing works are either based on

a likelihood-free inference method - Approximate Bayesian

Computation (ABC) or function approximation using a Deep

Neural Network (DNN) [10]. In [8], a Population Monte

Carlo ABC (PMC-ABC) with regression adjustment was used

to calibrate the Saleh-Valenzuela (SV) model. On the other

hand, a DNN based method was applied to calibrate the

SV and propagation graph models in [10]. Both works show

reasonable calibration accuracy.

Motivated by the results of recent studies on model param-

eter estimation using BSL [11], we present the first study on

radio channel model calibration via synthetic likelihood (SL)

in this paper. SL is a popular method in fields such as eco-

nomics and biology for performing likelihood-free inference

on models with intractable likelihood [12]. We remark here

that the SL requires that we are able to simulate from the

model to be calibrated for any arbitrary parameter value(s) .

Similar to ABC, SL based methods utilize summary statistics

from both measured and synthetic data. The synthetic data

is generated by sampling the model using some prior on the

parameters. In ABC, accept-reject decisions are made based on

a distance metric (e.g., Euclidean distance) computed using the

measured and simulated statistics. The BSL instead assumes

a normal distribution of the summary statistics to compute an

auxiliary likelihood of the proposed parameters. Estimates of

the model parameters are then obtained by applying standard

likelihood based methods on the auxiliary likelihood.

While BSL has been applied successfully for model cali-

bration in other fields, e.g., economics and biology [11], there

exist no studies in the open literature on its suitability for

calibration of stochastic radio channel models. In this paper,

we present the first investigation on application of BSL for

estimating the underlying parameters of radio channel models.

The main contributions of this work include:

• We propose a method for calibration of radio chan-

nel models without multipath extraction based on BSL,

Markov Chain Monte Carlo (MCMC) and Metropolis-

Hastings criterion. The logarithm of the mean and co-

variance of the first three temporal moments are used

as inputs to the estimator. The proposed method uses

the assumption that the summary statistics are normally

distributed to obtain an approximation of the likelihood.

• We apply the proposed method to calibrate the Turin

model and the propagation graph (PG) model.

• We perform simulations to evaluate performance of the

BSL based approach and compare to existing approaches

based on PMC - ABC.

II. BSL FOR CALIBRATION

Given a stochastic radio channel model, M(θ), the goal

of calibration is to fit the model to a set of measured data,

y ∈ R
n. This corresponds to estimating a p−dimensional

parameter vector, θ from the measurement data. Similar to

the ABC method in [8], the BSL relies on summarizing y
into a low-dimensional vector of summaries, sy : Rn → R

d,

which are informative about θ. In BSL, the goal is to use the

summary statistic, sy for simulating the posterior distribution

given as

p(θ|sy) ∝ p(sy|θ)p(θ) (1)

where p(θ) is the prior distribution. Since most radio channels

are typically complex, the likelihood may easily become

analytically intractable. We instead use synthetic likelihood



(SL) [12] to approximate (1). As in [11], the SL involves

approximating p(sy|θ) as a multivariate normal distribution,

i.e.,

p(sy|θ) ≈ N (μθ,Σθ), (2)

where μθ and Σθ denote the mean vector and covariance

matrix, respectively. Using the probability distribution function

of a multivariate normal distribution, the log-likelihood can be

expressed as

ln (p(sy|θ)) = −1

2
(sy−μθ)

TΣ−1
θ (sy−μθ)−

1

2
ln |Σθ|, (3)

where |A| denotes the determinant of A. To estimate the

mean and covariance, multiple independent realisations are

drawn from the model at θ. The resulting realisations are then

reduced to summary statistics. The simulated summaries are

used to compute unbiased estimates of μ and Σ as

μ̂θ =
1

L

L∑
�=1

s�

Σ̂θ =
1

L− 1

L∑
�=1

(s� − μθ)(s� − μθ)
T (4)

where s� is the �th simulated summary statistic vector, and L
is the total number of simulated summary statistic vectors.

Using the SL obtained by substituting the estimates in

(4) into (3), it is now possible to use likelihood-based in-

ference methods to estimate the posterior distribution. This

can be done using the Markov Chain Monte Carlo (MCMC)

method [13] to sample the posterior distribution. We chose

the Metropolis algorithm [13] in this work. Thus, a proposed

parameter vector, θ∗ at sampling instant, i is accepted with

probability exp(p(sy|θ∗)− p(sy|θi−1)).
This combination of the well-known Metropolis algorithm

and the synthetic likelihood method is referred to as MCMC

- BSL. An algorithmic description of the MCMC - BSL

method for calibration is shown in 1. Since the Metropolis

algorithm requires a symmetric proposal distribution, q(θ), we

use a multivariate normal distribution centered around the last

accepted step.

III. APPLICATION TO STOCHASTIC CHANNEL MODELS

We apply the proposed calibration method to calibrate two

stochastic channel models viz: the stochastic polarized propa-

gation graph model (SPPGM) [14] and the Turin Model (TM)

[1]. The measurement model, choice of summary statistics and

the channel models are described in this section.

A. Measurement Model

We consider a linear, time-invariant single input single

output (SISO) radio channel and measurement data collected

using a vector network analyzer (VNA) with bandwidth B.

The measured signal at each frequency point can be expressed

as
Y [k] = H[k] +N [k], k = 0, 1, · · · ,K − 1, (5)

where H[k] denotes the transfer function measured at

K equidistant frequency points with a separation of

Algorithm 1: MCMC BSL for Calibration of Stochas-

tic Channel Models.

Input: Prior distribution p(θ), observed summary

statistics sy, number of model realisations for

summary statistic computation, Nr, number of

summary statistics vectors used per likelihood,

L, number of MCMC steps, K
Output: Approximate posterior distribution of θ
Draw θ0 from the prior distribution;

for j = 1 to L do
Draw Nr model realisations using θ0;

Calculate a summary statistics vector s∗j ;

end
Calculate log-likelihood, p(sy|θ0) using (3);

for i = 1 to K − 1 do
Draw θ∗ from proposal distribution N (θi−1,Σθ);
for j = 1 to L do

Draw Nr model realisations using θ∗;

Calculate a summary statistics vector s∗j ;

end
Calculate log-likelihood, p(sy|θ∗) using (3);

Compute r = exp
(
p(sy|θ∗)− p(sy|θi−1)

)
;

if U(0, 1) < r then
θi = θ∗;

else
θi = θi−1;

end
end

Δf = B/(K − 1). N [k] is the measurement noise assumed

for each k to be independent and identically distributed (iid)

circular complex Gaussian with variance σ2. By taking the

discrete-frequency, continuous-time inverse Fourier transform

of (5), we obtain the measured signal in time-domain

y(t) =
1

K

K−1∑
k=0

Y [k] exp(j2πkΔft), (6)

which is periodic with period tmax = 1/Δf . Since the number

of measurement points is typically large (i.e., in the order of

hundreds or thousands), we summarize the measured data into

its first V temporal moments, defined as

mv =

∫ tmax

0

tv|y(t)|2dt, v = 0, 1, 2, . . . , (V − 1). (7)

With (7), the measured data is compressed into a K × V
matrix of temporal moments. Depending on the bandwidth and

sampling rate, the number of delay points K and hence the

matrix of temporal moments may also be large. We therefore

resort to the mean and covariance of the temporal moments

as summary statistics for calibrating the model. To satisfy

the BSL’s normal distribution assumption, we further compute

the natural logarithm of the summary statistics. Note that the

temporal moments have been shown in [15] to be lognormal

distributed.



B. Turin Model

Consider the multipath propagation model defined as

H[k] =
∞∑
l=0

αl · exp(−j2πkτlΔf) (8)

where l is the multipath component number, αl is the complex

gain, τl is the time delay of the l’th multipath component and

Δf is the frequency separation. In the Turin model [1], α and

τ form a marked Poisson point process with points τ , marks

α and intensity λ. The complex gain α can be modelled as a

zero mean complex Gaussian with variance σ2
α(t). The time

delays τ are modelled as a homogeneous Poisson point process

with arrival rate λ. This process has the power delay profile

Ph(t) = λ · σ2
α(t).

In general the in-room power delay profile is a decaying

function of time and can be approximated by the reverberation

model [16]

Ph(t) =

{
G0 · exp(−t

T ) t ≥ t0

0 otherwise
(9)

where G0 is the gain at zero delay, T is reverberation time, t
is the time in seconds and t0 is the delay of the first multipath

component. Calibration of the Turin model therefore requires

estimating the parameter vector, θ = [G0, T, λ, σ
2].

C. Polarized Propagation Graph Model

In the stochastic polarized propagation graph model

(SPPGM) [14], [17], [18], the channel is represented as a

propagation graph [5] with the transmitters, the receivers, and

the scatterers as vertices. Consider a wireless system with

Nr receivers, and Nt transmitters in an environment with Ns

scatterers. The transfer function matrix at a frequency point,

k, H[k] from the PG model, is defined as

H[k] = D[k] +R[k][I−B[k]]−1T[k], (10)

where D[k] ∈ C
Nr×Nt , T[k] ∈ C

2Ns×Nt , R[k] ∈ C
Nr×2Ns

and B[k] ∈ C
2Ns×2Ns denote the direct transmitter to receiver,

transmitter to scatterer, scatterer to receiver, and scatterer to

scatterer edge transfer function sub-matrices, respectively. The

transfer function sub-matrices are given as

D[k] = X T
t (Ωe)Xr(Ωe)Ge[k], e ∈ Ed

T[k] = X T
t (Ωe)MΓ(Ωe)Ge[k], e ∈ Et

B[k] = MΓ(Ωe)Ge[k], e ∈ Es
R[k] = Xr(Ωe)Ge[k], e ∈ Er, (11)

where Ωe denotes the direction of propagation, Xt(Ωe) and

Xr(Ωe) are the 2 × 1 transmit and receive polarimetric an-

tenna array response vectors, respectively, and Γ(Ωe) is the

2 × 2 rotation matrix. The 2 × 2 coupling between the two

polarization states, M is defined as [14]

M =
1

1 + γ

[
1 γ
γ 1

]
, (12)
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Fig. 1. Comparison of summary statistics versus varying parameter values.

where γ ∈ (0, 1) is the polarisation power coupling ratio. In

(11), Ge[k] accounts for the polarisation-independent propa-

gation characteristics, and is expressed as

Ge[k] = ge[k] exp[j(ψe − 2πkτeΔf)], (13)

where ψe is the phase assumed to be uniformly distributed

between 0 and 2π. The edge gain, ge[k] is defined as

ge[k] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
(4πkΔfτe)

; e ∈ Ed
1√

4πτ2
e kΔfμ(Et)S(Et)

; e ∈ Et
g

odi(e) ; e ∈ Es
1√

4πτ2
e kΔfμ(Er)S(Er)

; e ∈ Er

(14)

where g ∈ (0, 1) denote the reflection gain, odi(e) denotes the

number of outgoing edges from the nth scatterer, and

μ(Ea) = 1

|Ea|
∑
e⊂Ea

τe, S(Ea) =
∑
e⊂Ea

τ−2
e , Ea ⊂ E ,

with | · | denoting cardinality of the associated set.

To draw a random graph and simulate the transfer function

from the model, we need to specify values of g, Ns and

γ as well as the transceiver positions. Scatterers are placed

across the floor of the room with uniform distribution. Edges

in the graph are then drawn randomly depending on Pvis. The

edge weights and sub-matrices are calculated using (11) – (14)

and the transfer matrices using (10). The implementation used

in this paper assumes omnidirectional antennas at both the

transmitter and receiver. To calibrate the PPGM, we estimate

the 5-dimensional parameter vector θ = [g,Ns, Pvis, γ, σ
2]

from data.

IV. NUMERICAL SIMULATIONS AND RESULTS

We apply the BSL method to calibrate the models described

in Section III using the summary statistics presented in this

same section. The algorithm is compared with the PMC-ABC

method in [9]. The two methods are evaluated via simulations.

For the SPPGM, we compare with the performance results of

the PMC-ABC calibration method presented in [9].



TABLE I
SUMMARY OF PRIOR RANGES AND PARAMETER ESTIMATES

Estimate (standard deviation)
Model Parameter Prior range Simulated data

θ True value BSL ABC

Turin

Reverberation time, T [s]
[
10−9, 15 · 10−9

]
7.8 · 10−9 7.96 · 10−9 (2.19 · 10−10) 7.56 · 10−9 (1.44 · 10−9)

Initial gain, G0 [−94 dB, −74 dB] −83,9 dB −83,94 dB (0,27 dB) −82,99 dB (1,9 dB)
Ray arrival rate, λ [Hz]

[
5 · 106, 4 · 109] 1 · 109 1.023 · 109 (9.50 · 107) 1.98 · 109 (1.06 · 109)

Noise variance, σ2
N

[
2.8 · 10−11, 2.8 · 10−9

]
0.28 · 10−9 0.287 · 10−9 (5.55 · 10−7) 0.25 · 10−9 (6.64 · 10−6)

SPPGM

Reflection gain, g [0, 1] 0.65 0.66 (0.025) 0.64 (0.110)
Number of scatterer, N [5, 50] 15 15 (1.586) 15 (3.01)
Prob. of visibility, Pvis [0, 1] 0.9 0.90 (0.029) 0.910 (0.025)
Polarization ratio, γ [0, 1] 0.1 0.107 (0.011) 0.096 (0.063)
Noise variance, σ2 [2 · 10−10, 2 · 10−9] 10−9 1.01 · 10−9(3.824 · 10−13) 1.13 · 10−9(7 · 10−12)

Fig. 2. Gaussian fit to summary statistics computed using the Turin model.
Similar results were obtained for the PG model.

Fig. 3. Kernel density estimate of the posterior distribution of the Turin model
parameters obtained from BSL.

In the simulations, we set some true values, θtrue for the

parameters of the models. The observed data is then generated

by sampling from the models at θtrue. The true parameters

for the SPPGM and Turin model are set based on those in [9]

and [19], respectively. The parameters are shown in Table I.

We consider an in-room environment with dimension 4 m ×
4 m× 3 m for the SPPGM.

For each model, we draw 300 realisations of the channel

Fig. 4. Kernel density estimate of the posterior distribution of propagation
graph model parameters obtained from BSL.

with the specified true parameters. The generated channel

responses were then converted into summary statistics fol-

lowing the procedure described in Section III. We denote the

summary statistics corresponding to θtrue as sobs. Based on

the observations in previous studies [8]–[10], we additionally

use the cross-polarization ratio (XPR), defined as the ratio of

the averaged power of the co-polarized to the cross-polarized

channel as a summary statistic. Thus, sobs has dimensions 9×1
and 10× 1 for the Turin and SPPGM, respectively.

A. Properties of summary statistics

We attempt to answer two questions viz: Are the selected
summary statistics informative about the model parameters?
and Are the summary statistics marginally and jointly Gaus-
sian?. While the former determines how well the model pa-

rameters can be estimated, the latter is a necessary requirement

for the application of BSL.

In Fig. 1, we show the variation of the first four summary

statistics with changes in each parameter of the Turin model.

The figures show that the summary statistics are quite infor-

mative about individual parameters. The other five summary

statistics showed similar trend but are not shown in due to

space constraint. Based on the trends in this figure and obser-

vations in existing works applying ABC, we conclude that the



BSL should be able to accurately estimate the parameters of

the model using the selected statistics. We remark here that

similar analysis have been presented in [9] for the SPPGM.

To answer the second question, we show the kernel density

estimates of the marginal probability distributions and Gaus-

sian fits to the summary statistics obtained from the Turin

model, in Fig. 2. We observe that the density estimates and

corresponding Gaussian fits are very similar indicating that the

statistics are marginally Gaussian. Based on this observation

and the results in [15], we conclude that the chosen summary

statistics are jointly normal and hence, the BSL algorithm can

be applied to calibrate the Turin model. Similar results were

obtained for the SPPGM. These are not shown here due to

space constraints and the high similarity between the figures.

B. Results

We evaluate the proposed MCMC BSL by applying it to

calibrate the Turin model and the SPPGM using synthetic data.

The goal is to obtain the approximate posterior distributions

of the parameters as well as point estimates of the true

parameters. Similar to [9], a uniform prior over the ranges

specified in Table I is used for all model parameters. During

the simulations, we compute the summary statistics using 300

model realization. The likelihood is then estimated using 50

summary statistics vectors. A total of 2000 MCMC steps were

performed out of which the last 200 is used as the accepted

samples.

In Fig. 3 and Fig. 4, we show the kernel density esti-

mates of the accepted BSL samples as approximations of

the posterior distribution of the parameters of Turing model

and the SPPGM, respectively. The MMSE estimates and the

corresponding true values are also shown in the figures. The

figures show that the estimated parameters for both models are

very accurate with insignificant deviation from the true values.

The figures also show very narrow posterior density estimates

for all parameters translating to small standard deviations as

shown in Table. I. The approximate posteriors in Fig. 3 and

Fig. 4 compare reasonably well with those obtained from the

application of ABC in [19] and [9], respectively. As shown in

Table I, the MCMC-BSL calibration method appear to yield

slightly better MMSE estimates and lower standard deviations

than the ABC1 for some of the parameters. As indicated

in [12], the gain from using BSL over ABC may become

pronounced for complex models requiring high dimensional

summary statistics.

V. CONCLUSION

In this paper a BSL method for calibration of stochastic

radio channel models is proposed, and has been used to suc-

cessfully calibrate the Turin model and the stochastic polarized

propagation graph model (SPPGM) using the MCMC algo-

rithm with Metropolis accept-reject criterion. It is observed

that the selected summary statistics are normally distributed

1The reported estimates and standard deviations are based on application of
PMC-ABC [9] to the Turin. For the SPPGM, the estimates are those reported
in [9].

with adequate information about parameters of the models.

For both models, the BSL shows comparable performance with

existing methods based on PMC-ABC.
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