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A B S T R A C T

The high penetration of renewable energy into distribution networks poses increasing challenges on voltage
control. To address this issue, this paper presents a double-layer stochastic model predictive control algorithm
to regulate voltage profile in active distribution networks. In the proposed algorithm, voltage regulation
is achieved by coordination of an upper layer controller and a lower layer controller. In the upper layer,
the number of operation of mechanical voltage regulation devices, including transformer with on-load tap
changer and capacitor banks, is minimized in an hourly timescale. In the lower layer, the controller minimizes
the active power curtailments and power losses with a control period of 5 min. The proposed double-
layer stochastic model predictive voltage control utilizes not only the reactive power control, but also the
active power curtailment to regulate bus voltages. In addition, mechanical voltage regulation devices and
distributed generations are controlled in two different timescales. Case studies on a modified IEEE-33 bus
system demonstrate that compared with traditional control and two-stage stochastic voltage control, the
proposed algorithm can achieve an improvement of 8.05% and 7.43%, respectively.
1. Introduction

In recent decades, motivated by environmental protection and
energy-saving policy, the share of renewable energy is growing rapidly
around the world [1]. Especially, an increasing proportion of
renewable-based distributed generations (DGs), such as photovoltaic
panels and wind turbines, has been integrated into distribution
networks (DNs) [2]. Due to its inherent uncertainty and variability,
the increasing penetration of renewable energy poses a variety of
challenges on the secure and reliable operation of DNs, with voltage
control being one of them [3].

The main purpose of voltage/var control (VVC) is to maintain the
voltage profile within an acceptable range. Conventionally, VVC is
achieved by utility-owned mechanical VVC devices, such as transform-
ers with on-load tap changer (OLTC), step voltage regulators (SVRs)
and switchable capacitor banks(CBs), of which the lifespan is related
with the number of their operations. Due to the intermittent and
fluctuating nature, the high penetration of renewable-based DGs often
leads to larger voltage variation or even reversed power flow, making
VVC more complicated than ever before. Limited by slow response
speed, mechanical VVC devices are less effective in regulating volt-
ages in presence of high-penetration of DGs. Furthermore, regulating
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∗ Corresponding author.
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voltages under scenarios with high penetrated renewables requires
more frequent operation of the mechanical devices, which dramatically
reducing their lifetime. Therefore, the power electronics interfaced DGs
with fast and continuous characteristics are encouraged to provide
additional voltage support [4].

The existing works on VVC mainly fall into two groups: rule-based
and optimization-based methods. In rule-based methods, VVC devices
respond to local measurements by pre-defined rules. Among them, the
most commonly adopted one is droop control as advocated by IEEE
1547 Standard [4]. Other approaches include proportional and integral
control [5], or other customized control curves, such as delayed voltage
droop [6], adaptive control [7] and hybrid local control [8]. Although
fast and simple to implement, rule-based methods cannot guarantee
system-wide optimization and overall stability, because of their local
nature. By contrast, optimization-based methods formulate the decision
making process as a non-convex optimal power flow (OPF) problem
by gathering system-wide information such as network parameters,
nodal load and generation. Particle swarm optimization (PSO) [9],
genetic algorithm (GA) [10] and evolutionary algorithm (EA) [11] were
used, respectively, to realize certain objectives such as network losses
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Nomenclature

Abbreviations

APC Active power curtailment
CB Capacitor bank
DG Distributed generation
DL-SMPC Double-layer stochastic model predictive

control
DN Distribution network
EA Evolutionary algorithm
GA Genetic algorithm
LLC Lower layer controller
MPC Model predictive control
OLTC On-load tap changer
OPF Optimal power flow
PCC Point of common coupling
PSO Particle swarm optimization
SDP Semi-definite programming
SMPC Stochastic model predictive control
SOCP Second order cone programming
SVR Step voltage regulator
TS-VVC Two-stage stochastic VVC
ULC Upper layer controller
VVC Voltage/var control

Parameters

𝒂𝑇0 First row of graph incidence matrix
𝑹, 𝑿 DN resistance/reactance diagonal matrix of

set 
𝑐𝑡𝑎𝑝, 𝑐𝑐 , 𝑐𝑝 Cost coefficients of OLTC and CB operation,

active power losses
𝑆𝑔 DG rated capacity
𝛼, 𝛽 Shape parameters of Beta distribution
𝑨̄ Graph incidence matrix of DN topology
𝑨 Submatrix of graph incidence matrix 𝑨̄
𝑪𝑔 , 𝑪𝑐 Mapping matrix between DG/CB incidence

and buses
𝒏𝑚𝑎𝑥𝑐 , 𝒏𝑚𝑖𝑛𝑐 CB maximum/mimimun tap position
𝒏𝑚𝑎𝑥𝑡𝑎𝑝 , 𝒏𝑚𝑖𝑛𝑡𝑎𝑝 OLTC maximum/mimimun tap position
𝛥𝑡𝑎𝑝 OLTC voltage changer per step
𝜔𝑚𝑒𝑐 , 𝜔𝑝 Weighting factors for mechanical VVC

devices operation and active power losses
𝜌𝑠 Probability of scenario 𝑠 ∈ 
𝛥𝒏𝑚𝑎𝑥𝑐 , 𝛥𝒏𝑚𝑖𝑛𝑐 CB maximum/mimimun ramping limit
𝛥𝒏𝑚𝑎𝑥𝑡𝑎𝑝 , 𝛥𝒏𝑚𝑖𝑛𝑡𝑎𝑝 OLTC maximum/mimimun ramping limit
𝛥𝑞𝑐 CB reactive power per step
𝑁𝑝 Prediction step
𝑁𝑘 Number of LSC control steps in 𝑇𝑐
𝑃𝑚𝑎𝑥 DG maximum available active power
𝑟𝑖𝑗 , 𝑥𝑖𝑗 Branch resistance/reactance at branch (𝑖, 𝑗)
𝑇𝑐 , 𝑡𝑐 Control period of upper/lower layer con-

troller
𝑉𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛 Voltage maximum/mimimun limit

minimization, voltage profile improvement, OLTC operation reduction,
etc. However, these heuristic methods suffer from heavy computational
burden, inconsistent solutions and slow convergence. Other methods
2

attempted to transform the non-convex models into convex ones using
Sets

 Set of branches
 Set of buses
𝑐 Set of CBs
𝑔 Set of DGs
 Set of stochastic scenarios

Variables

𝑽 Vector of voltage magnitude of all buses
𝑝𝑔𝑗 , 𝑞𝑔𝑗 Real/reactive power output from DG in-

verters
𝑝𝑙𝑗 , 𝑞

𝑙
𝑗 Load real/reactive power consumption

𝑞𝑐𝑗 Reactive power injection from capacitor
bank

𝒏𝑡𝑎𝑝, 𝒏𝑐 Vector of OLTC/CB tap position
𝒑, 𝒒 Vector of real/reactive power injection of

set 
𝑷 , 𝑸 Vector of real/reactive power of set 
𝒑𝑙, 𝒒𝑙 Vector of real/reactive power consumption

of set 
𝒑𝑔 , 𝒒𝑔 Vector of real/reactive power output of set

𝑔
𝒒𝑐 Vector of reactive power injection of set 𝑐
𝑃𝑖𝑗 ,𝑄𝑖𝑗 Real/reactive power from bus 𝑖 to bus 𝑗
𝑝𝑗 , 𝑞𝑗 Real/reactive power injection at bus 𝑗
𝑃𝑐𝑢𝑟 Active power curtailments of all DGs
𝑃𝑙𝑜𝑠𝑠 Network power losses

linear approximation or convex relaxations such as second-order cone
programming (SOCP) relaxation [12] and semi-definite programming
(SDP) relaxation [13], by which the global optima can be possibly
solved. In [12], power distribution systems were formed as a convex
SOCP model, then the network losses were minimized in a decentral-
ized manner. In [13], the SDP formulation was used to mitigate voltage
problem by collaboration of OLTC and electric vehicles. Furthermore,
some works decomposed the control strategy into multiple timescales,
considering the different characteristics of VVC devices. In [14], OLTC
transformer and CBs were coordinated in two different timescales to
minimize voltage deviation and energy losses. In [15], conservation
voltage reduction is achieved by coordination of slow-dispatch of OLTC
and CBs and fast-dispatch of photovoltaic inverters.

Above works are based on deterministic optimization without con-
sidering some inevitable forecasting errors. Stochastic programming is
a widely accepted method in addressing voltage issue under uncertain-
ties. In [16], stochastic programming was used to handle uncertainties
involving variable load. A scenario-based stochastic model is formu-
lated in [17] to schedule energy storage systems and DGs in order to
minimize operation cost. In [18], a two-stage stochastic framework was
formulated and chance constrained optimization was used to handle
nodal power uncertainties. However, the objective function of the
above listed stochastic methods mainly focused on one specific time
instant rather than the whole control period. Besides, the decisions
are made only relying on the system current status, future control
objectives and information are ignored in these one-step optimization.

Due to its multi-step optimization principle and close-loop nature,
model predictive control (MPC) for VVC has received attention re-
cently. In [19], MPC was used to regulate voltages via coordination of
photovoltaic and energy storage. In [20], the coordination of OLTC,
DG units and energy storage system was achieved in a single stage
MPC. Therefore, considering the advantages of stochastic programming

and MPC, stochastic model predictive control (SMPC) can be a possible
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Fig. 1. Topology of a typical radial DN.

solution for time-series VVC under uncertainty. In [21], the OLTC and
CBs were scheduled with SMPC by taking into account of the wind
and photovoltaic generation prediction error. Ref. [22] proposed a
chance constrained SMPC formulation to achieve trade off between
control cost reduction and voltage regulation. However, voltage control
is performed on one timescale and active power curtailment (APC) is
not considered in these recent SMPC works. In fact, voltage magnitudes
are sensitive to active power in DNs, due to the high 𝑅∕𝑋 ratio. Besides,
DG available reactive power is limited by the instantaneous real power
generation and DG capability. Reactive power control alone may be
insufficient to regulate voltages, especially when DG has high active
power outputs [23].

To fill the research gap of the above works, this paper proposes
a double-layer stochastic model predictive control (DL-SMPC) VVC
scheme to regulate voltage profile in DN with high penetration of DGs.
Compared with the existing works, the main contributions of this paper
are summarized as follows:

• The proposed method follows timescale decomposition concept,
in which OLTC transformer and CBs with slow response speed
are scheduled in the upper layer with a longer control period,
whereas DG real and reactive power outputs are dispatched in
the lower stage in faster control period.

• The excessive use of OLTC transformer and CBs is reduced in
the upper layer to prolong their lifetime, while network power
losses and APC are minimized in the lower layer. The limited
DG reactive power regulating capability is further compensated
by active power control, which is a solution different from most
existing works.

• Compared with current SMPC works, the proposed DL-SMPC
utilizes not only the reactive power control, but also the ac-
tive power curtailment to regulate the bus voltages. In addi-
tion, the mechanical VVC devices and DGs are controlled in two
timescales, considering their different response speed.

The rest of this paper is organized as follows: Section 2 briefly describes
system modelling. Section 3 introduces the formulation of the proposed
algorithm. Simulation results are presented in Section 4 followed by
conclusions.

2. System modelling

2.1. Modelling of DN

A typical radial DN with 𝑁+1 buses is illustrated in Fig. 1. The 𝑁+1
buses are denoted by set  ∪{0},  ∶= {1,… , 𝑁} and bus 0 is assumed
to be the reference bus. For each bus 𝑗 ∈  , 𝑢𝑗 ∶= 𝑉 2

𝑗 represents the
squared voltage magnitude while 𝑝𝑗 and 𝑞𝑗 are the real and reactive
power injection, respectively. The 𝑁 branches are collected into the set
, for each branch (𝑖, 𝑗) ∈ , 𝑟𝑖𝑗 and 𝑥𝑖𝑗 denote the branch resistance
nd reactance while 𝑃𝑖𝑗 and 𝑄𝑖𝑗 are real and reactive power from bus
to bus 𝑗. The power flow for each branch (𝑖, 𝑗) ∈  can be described

by Distflow equations [24]:

𝑃𝑖𝑗 =
∑

𝑃𝑗𝑘 − 𝑝𝑗 + 𝑟𝑖𝑗𝓁𝑖𝑗 (1a)
3

𝑘∈𝑗
Fig. 2. Branch flow model with OLTC.

𝑄𝑖𝑗 =
∑

𝑘∈𝑗

𝑄𝑗𝑘 − 𝑞𝑗 + 𝑥𝑖𝑗𝓁𝑖𝑗 (1b)

𝑖 − 𝑢𝑗 = 2
(

𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗
)

−
(

𝑟2𝑖𝑗 + 𝑥2𝑖𝑗
)

𝓁𝑖𝑗 (1c)

𝑖𝑗 =
𝑃 2
𝑖𝑗 +𝑄2

𝑖𝑗

𝑢𝑖
(1d)

𝑝𝑗 = 𝑝𝑔𝑗 − 𝑝𝑙𝑗 (1e)

𝑞𝑗 = 𝑞𝑔𝑗 + 𝑞𝑐𝑗 − 𝑞𝑙𝑗 (1f)

here 𝑝𝑔𝑗 and 𝑞𝑔𝑗 are real/reactive power from DG inverters, 𝑝𝑙𝑗 and
𝑙
𝑗 are the load real/reactive power consumption, 𝑞𝑐𝑗 is reactive power
njection from CB.

The existence of 𝓁𝑖𝑗 makes above equations nonconvex. Given the
act that 𝓁𝑖𝑗 is negligible compared with the linear terms, and DN
as a relatively flat voltage profile, (1a)–(1c) can be approximated
nto a linear Distflow model, such approximation introduces a small
odelling error at about 0.25%(1%) if there is a 5%(10%) deviation in

oltage magnitude [25]. The linear model can be represented as,

𝑖𝑗 =
∑

𝑘∈𝑗

𝑃𝑗𝑘 − 𝑝𝑗 (2a)

𝑖𝑗 =
∑

𝑘∈𝑗

𝑄𝑗𝑘 − 𝑞𝑗 (2b)

𝑖 − 𝑉𝑗 = 𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗 (2c)

For branch (𝑖, 𝑗) with OLTC transformer, the on-load tap changer is
ssumed to be on the secondary side of the transformer as shown in
ig. 2, so (2c) can be reformed as,

𝑖𝑗𝑉𝑖 − 𝑉𝑗 = 𝑟𝑖𝑗𝑃𝑖𝑗 + 𝑥𝑖𝑗𝑄𝑖𝑗 (2d)

here 𝑡𝑖𝑗 = 1+ 𝑛𝑡𝑎𝑝𝛥𝑡𝑎𝑝, 𝑛𝑡𝑎𝑝,𝑖𝑗 and 𝛥𝑡𝑎𝑝𝑖𝑗 denote OLTC tap position and
oltage change per step, respectively.

.2. Compact form representation of linear Distflow model

In order to implement the numerical algorithms efficiently, the com-
act form of linear Distflow model is introduced in this section. Firstly,
oltage magnitudes in set  , real/reactive power flow in set  are
ollected into column vectors 𝑽 , 𝑷 and 𝑸. The load real and reactive
ower consumption in bus set  are collected as 𝒑𝑙 ∶=

[

𝑝𝑙1,… , 𝑝𝑙𝑁
]⊤,

𝑙 ∶=
[

𝑞𝑙1,… , 𝑞𝑙𝑁
]⊤. Let 𝑔 ∶= {1,… , 𝑛} denote the set of DGs and

efine real/reactive power injection from DGs as 𝒑𝑔 ∶=
[

𝑝𝑔1 ,… , 𝑝𝑔𝑛
]⊤,

𝑔 ∶=
[

𝑞𝑔1 ,… , 𝑞𝑔𝑛
]⊤, respectively. Similarly, let 𝑐 ∶= {1,… , 𝑚} denote

he set of CBs and 𝒒𝑐 ∶=
[

𝑞𝑐1 ,… , 𝑞𝑐𝑚
]⊤ denote the reactive power

njection from CBs. Let 𝑪𝑔 ∈ R𝑁×𝑛 denote the mapping matrix between
G incidence and the buses, which is defined as: the element at the

th row, 𝑗th column of 𝑪𝑔 is 1 if DG 𝑗 ∈ 𝑔 is located at bus 𝑖. The
apping matrix between CB incidence and the buses 𝑪𝑐 ∈ R𝑁×𝑚 is

lso defined in the same way. Then the vector of real/reactive power
njection of set  can be denoted as 𝒑 ∶=

[

𝑝1,… , 𝑝𝑁
]⊤ = 𝑪𝑔𝒑𝑔 −𝒑𝑙 and

∶=
[

𝑞1,… , 𝑞𝑁
]⊤ = 𝑪𝑔𝒒𝑔 + 𝑪𝑐𝒒𝑐 − 𝒒𝑙, respectively.

Let 𝑨̄ ∶=
[

𝒂0 𝑨⊤]⊤ ∈ {0,±1}(𝑁+1)×𝑁 denotes the incidence matrix of
N topology graph [26], 𝒂⊤0 is the first row of 𝑨̄ and 𝑨 is the remaining

ubmatrix. Define diagonal matrices 𝑹 ∶= diag
({

𝑅𝑙
})

∈ R𝑁×𝑁 with
_th diagonal element equals to 𝑟 of 𝓁_th branch ∈ , the same is
𝑖𝑗
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with 𝑿 ∶= diag
({

𝑋𝑙
})

∈ R𝑁×𝑁 . Then the compact form of (2a)–(2c)
an be represented as,

−𝑨𝑷 = 𝒑 (3a)

−𝑨𝑸 = 𝒒 (3b)
[

𝒂0 𝑨⊤]
[

𝑽 0
𝑽

]

= 𝑹𝑷 +𝑿𝑸 (3c)

y substituting (3a), (3b) and (2d) into (3c), we have,

= 𝑫𝑟𝒑 +𝑫𝑥𝒒 −𝑨−⊤𝒂0
(

1 + 𝒏𝑡𝑎𝑝𝛥𝒕𝒂𝒑
)

(4)

here 𝑫𝑟 ∶= 𝑨−⊤𝑹𝑨−1 and 𝑫𝑥 ∶= 𝑨−⊤𝑿𝑨−1. (4) can be equivalently
iven as,

𝑽 =𝑫𝑟
(

𝑪𝑔𝒑𝑔 − 𝒑𝑙
)

+𝑫𝑥
(

𝑪𝑔𝒒𝑔 + 𝑪𝑐𝒒𝑐 − 𝒒𝑙
)

− 𝑨−⊤𝒂0
(

1 + 𝒏𝑡𝑎𝑝𝛥𝒕𝒂𝒑
)

=𝑫𝑟𝑪𝑔𝒑𝑔 +𝑫𝑥
(

𝑪𝑔𝒒𝑔 + 𝑪𝑐𝒒𝑐
)

− 𝑨−⊤𝒂0𝒏𝑡𝑎𝑝𝛥𝒕𝒂𝒑 + 𝑽

(5)

where 𝑽 = −𝑫𝑟𝒑𝑙 − 𝑫𝑥𝒒𝑙 − 𝑨−⊤𝒂0 denotes voltage profile under no
ontrol action.

. Two-stage stochastic MPC algorithm

The algorithm of two-stage SMPC is introduced in this section,
ncluding the modelling of uncertainty from the generation and load,
he idea of two-stage SMPC and how to reformulate the problem into
ts deterministic equivalent.

.1. Scenario generation

The uncertainty associated with the generation and load is indicated
y forecasting errors from their predictive values. Beta distribution [27]
nd normal distribution [21] are widely accepted probability distribu-
ion functions to represent the predictive errors of generation and load,
espectively, and are therefore used in this paper.

Beta distribution is located on the interval [0,1] and its probability
ensity function is defined by two shape parameters 𝛼 and 𝛽. For
given predicted power 𝑃 , the occurrence of real value 𝑥 can be

represented by,

𝑓𝑃 (𝑥) = 𝑥𝛼−1 ⋅ (1 − 𝑥)𝛽−1 ⋅ 𝐵 (𝛼, 𝛽) (6)

here 𝐵 (𝛼, 𝛽) is normalized factor to make (6) integrate to 1. The
elationship of 𝛼 and 𝛽 with the mean value 𝑃 and variance values 𝜎2

re as follows,

̄ = 𝑃
𝑆𝑔

= 𝛼
𝛼 + 𝛽

(7a)

2 =
𝛼 ⋅ 𝛽

(𝛼 + 𝛽)2 ⋅ (𝛼 + 𝛽 + 1)
(7b)

here 𝑆𝑔 is the DG rated capacity, 𝑃 is the predicted DG power
output and 𝑃 denotes the normalized DG power output. For a given
predicted generation, shape parameters can be calculated using (7).
For the load, the mean value of normal distribution is the predicted
load consumption. After the parameters of beta distribution and normal
distribution are determined, Monte-Carlo simulation is employed to
generate large number of scenarios to represent the stochastic feather
of generation and load.

3.2. Scenario reduction

In scenario-based optimization, the computational burden grows
with increasing number of scenarios. Hence, the backward reduction
method is used to reduce the scenario number while maintaining a good
approximation of the original scenario set.
4

Suppose a stochastic set  contains 𝐾 different scenarios, each with
robability 𝜌𝑠. The distance between two scenario pair

(

𝑠, 𝑠′
)

is defined
y

𝑠,𝑠′ = max
{

1, ‖𝑠 − 𝑠̄‖, ‖𝑠′ − 𝑠̄‖
}

‖

‖

𝑠 − 𝑠′‖
‖

(8)

where 𝑠̄ is the average value of scenarios and ‖⋅‖ denotes the Euclidean
distance.

The basic idea of backward reduction is to select the scenario with
minimal probability and distance to other scenarios in the scenario set.
Then the selected scenario will be eliminated and represented by the
scenario closest to it. The process repeats until the required number to
be deleted is met [28,29]. The backward reduction method consists of
the following steps,

Step 1: Compute the distances of all scenarios pairs 𝑑𝑠,𝑠′ , 𝑠, 𝑠′ ∈ .
Step 2: For each scenario 𝑘, 𝑑𝑘 (𝑟) = min 𝑑𝑘,𝑠′ , 𝑘, 𝑠′ ∈  and 𝑠′ ≠ 𝑘, 𝑟

is the scenario index that has the minimum distance with scenario 𝑘.
Step 3: Calculate 𝜌𝑑𝑘 (𝑟) = 𝜌𝑘 × 𝑑𝑘 (𝑟), 𝑘 ∈ . Choose 𝑑 so that

𝜌𝑑𝑑 = min 𝜌𝑑𝑘, 𝑑 is the scenario index.
Step 4:  =  − {𝑑}; 𝜌𝑟 = 𝜌𝑟 + 𝜌𝑑 .
Step 5: Repeat step 2 to step 4 until the number of scenarios to be

reduced is met.

3.3. Two-stage stochastic MPC

The key idea behind SMPC is to compute an optimal control input
while respecting various constraints for all the trajectories determined
by the scenario set. In SMPC, the first stage decision variables are
determined before the realization of uncertain data, the second stage
decision variables are made after knowing the actual realization of each
scenario. The general form of two-stage SMPC at each time instant 𝑘 is
as follows,

𝑚𝑖𝑛
𝑘+𝑁𝑝−1
∑

𝑡=𝑘
(𝑓 (𝑥 (𝑡)) + 𝐸 [𝑄 (𝑥 (𝑡) , 𝜔)]) (9)

where 𝑁𝑝 is the prediction step, 𝑥 is the first stage decision variables, 𝜔
indicates uncertainty variables with a known probability distribution,
𝑄(𝑥, 𝜔) is the optimal value of the second stage problem, 𝐸[𝑄(𝑥, 𝜔)] is
he expected value in the second stage.

Scenario-based approach is commonly used to reformulate stochas-
ic programming problem into its deterministic equivalent, in which
he continuous random variables are represented by a finite set of
cenarios. Thus, (9) can be reformulated as its deterministic counterpart
n which each scenario shares the common first stage variables. The
eformulated deterministic equivalent problem is given by

𝑖𝑛
⎡

⎢

⎢

⎣

𝑘+𝑁𝑝−1
∑

𝑡=𝑘

(

𝑓 (𝑥 (𝑡)) + 𝜌𝑠 ⋅
∑

𝑠∈
𝑦𝑠 (𝑥 (𝑡) , 𝜔)

)

⎤

⎥

⎥

⎦

(10)

here  denotes a finite number scenario set with each scenario has
he probability of 𝜌𝑠, 𝑦𝑠 denotes the value of second stage problem in
ach scenario.

. Formulation of the DL-SMPC

The algorithm of proposed DL-SMPC is illustrated in Fig. 3. In DL-
MPC, there is an upper layer controller(ULC) operated with a slow
ime period 𝑇𝑐 of 1 h and a lower layer controller(LLC) operated at

fast timescale 𝑡𝑐 of 5 min. The ULC corresponds to the first stage
ariables in SMPC while the LLC corresponds to the second stage vari-
bles. The ULC is triggered at the beginning of an hour, the expected
utcome is the OLTC and CB tap position, as well as the real/reactive
G outputs for the first 5 min. Once the OLTC and CB tap position
re obtained, they will keep fix for the whole hour and send to the
ower layer controller(LLC). Then LLC decides DG real/reactive power
utputs based on the results received from ULC in a shorter time period
f 5 min.
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.1. Upper layer controller

The main objective of the ULC is to reduce the number of OLTC
nd CB operation to prolong their lifetime, as well as to minimize
he network power losses and active power curtailments. The power
osses and active power curtailments are both active power cost from
he perspective of distribution system operator, so the sum of the both
re termed as active power losses in this paper. The mathematical
ormulation of ULC at time instant 𝑘 is expressed as,

𝑖𝑛
𝑘+𝑁𝑝−1
∑

𝑡=𝑘

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜔𝑚𝑒𝑐 ⋅

(

𝑐𝑡𝑎𝑝
|

|

|

𝒏𝑡𝑎𝑝 (𝑡) − 𝒏𝑡𝑎𝑝 (𝑡 − 1)||
|

+𝑐𝑐 ||𝒏𝑐 (𝑡) − 𝒏𝑐 (𝑡 − 1)|
|

)

+

𝜔𝑝 ⋅ 𝜌𝑠
∑

𝑠∈

𝑘+𝑁𝑘−1
∑

𝑖=𝑘
𝑐𝑝

(

𝑃𝑐𝑢𝑟,𝑠 (𝑖) + 𝑃𝑙𝑜𝑠𝑠,𝑠 (𝑖)
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(11)

over ∀ (𝑖, 𝑗) ∈ ,∀𝑖, 𝑗 ∈  ,∀𝑘 ∈
{

1, 2⋯𝑁𝑝
}

subject to,

𝑃𝑖𝑗 (𝑘) −
∑

𝑘∈𝑗

𝑃𝑗𝑘 (𝑘) = −𝑝𝑗 (𝑘) (12)

𝑄𝑖𝑗 (𝑘) −
∑

𝑘∈𝑗

𝑄𝑗𝑘 (𝑘) = −𝑞𝑗 (𝑘) (13)

𝑉𝑖 (𝑘) − 𝑉𝑗 (𝑘) = 𝑟𝑖𝑗𝑃𝑖𝑗 (𝑘) + 𝑥𝑖𝑗𝑄𝑖𝑗 (𝑘) (14)

𝑉1 = 𝑉0
(

1 + 𝑛𝑡𝑎𝑝 (𝑘)𝛥𝑡𝑎𝑝
)

(15)

𝑉𝑚𝑖𝑛 ⩽ 𝑉𝑖 (𝑘) ⩽ 𝑉𝑚𝑎𝑥 (16)

𝑃𝑙𝑜𝑠𝑠 (𝑘) =
∑

(𝑖,𝑗)∈
𝑟𝑖𝑗

𝑃 2
𝑖𝑗 (𝑘) +𝑄2

𝑖𝑗 (𝑘)

𝑉 2
0

(17)

𝒏𝑚𝑖𝑛𝑡𝑎𝑝 ⩽ 𝒏𝑡𝑎𝑝 (𝑘) ⩽ 𝒏𝑚𝑎𝑥𝑡𝑎𝑝 (18)

𝛥𝒏𝑚𝑖𝑛𝑡𝑎𝑝 ⩽ |

|

|

𝒏𝑡𝑎𝑝 (𝑘) − 𝒏𝑡𝑎𝑝 (𝑘 − 1)||
|

⩽ 𝛥𝒏𝑚𝑎𝑥𝑡𝑎𝑝 (19)

𝒒𝑐 (𝑘) = 𝒏c (𝑘) ⋅ 𝛥𝑞𝑐 (20)

𝒏𝑚𝑖𝑛𝑐 ⩽ 𝒏𝑐 (𝑘) ⩽ 𝒏𝑚𝑎𝑥𝑐 (21)

𝛥𝒏𝑚𝑖𝑛𝑐 ⩽ |

|

𝒏𝑐 (𝑘) − 𝒏𝑐 (𝑘 − 1)|
|

⩽ 𝛥𝒏𝑚𝑎𝑥𝑐 (22)

0 ⩽ 𝒑𝑔 (𝑘) ⩽ 𝑷 𝑚𝑎𝑥 (𝑘) (23)

𝑷 𝑐𝑢𝑟 (𝑘) = 𝑷 𝑚𝑎𝑥 (𝑘) − 𝒑𝑔 (𝑘) (24)
|

|

|

𝒒𝑔 (𝑘)
|

|

|

⩽
√

𝑺2
𝑔 − 𝒑2𝑔 (𝑘) (25)

𝑁𝑘 = 𝑇𝑐∕𝑡𝑐 (26)

where 𝒏𝑡𝑎𝑝 and 𝒏𝑐 are vectors of the OLTC and CB position, respec-
tively. 𝑃𝑙𝑜𝑠𝑠 and 𝑃𝑐𝑢𝑟 are network power losses and total active power
curtailments of all DGs, respectively. 𝑁𝑘 is the number of LLC con-
trol steps within an ULC control interval. (12)–(17) represent power
flow constraints, where 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the voltage limits. (18)–
(19) denote operation constraints of OLTC transformer. In (20), the
5

CBs are modelled as reactive power sources with integer number to
indicate their discrete characteristics, (21)–(22) represent CB opera-
tion constraints. (23)–(25) represent the constraints for DG inverter
operation, in which 𝒑𝑔 and 𝒒𝑔 denotes the vectors of DG real/reactive
ower output, 𝑺𝑔 denotes DG rated capability and 𝑷 𝑚𝑎𝑥 denotes its

maximum available active power. 𝜔𝑚𝑒𝑐 , 𝜔𝑝 are weighting factors for
operation of mechanical devices and active power losses, respectively.
The algorithm will have better performance in number of OLTC and CB
operation reduction with higher 𝜔𝑚𝑒𝑐 , whereas have better performance
in active power losses reduction with larger 𝜔𝑝. The weighting factors
can be determined by using the analytical hierarchy process(AHP)
method [30]. It depends on the need of decision maker and it can
vary from network to network in real practice. 𝑐𝑡𝑎𝑝, 𝑐𝑐 and 𝑐𝑝 are cost
coefficients for operation of OLTC and CB as well as active power losses.

(12)–(17) are not in the form of compact representation. To imple-
ment the proposed DL-SMPC efficiently, (12)–(17) can be reformulated
into compact form according to the description in 2.2,

𝒑 (𝑘) = 𝑪𝑔𝒑𝑔 (𝑘) − 𝒑𝑙 (𝑘) (27)

𝒒 (𝑘) = 𝑪𝑔𝒒𝑔 (𝑘) + 𝑪𝑐𝒏𝑐 (𝑘)𝛥𝒒𝑐 − 𝒒𝑙 (𝑘) (28)

−𝑨𝑷 (𝑘) = 𝒑 (𝑘) (29)

−𝑨𝑸 (𝑘) = 𝒒 (𝑘) (30)
𝑽 (𝑘) = 𝑫𝑟𝑪𝑔𝒑𝑔 (𝑘) +𝑫𝑥

(

𝑪𝑔𝒒𝑔 (𝑘) + 𝑪𝑐𝒏𝑐 (𝑘)𝛥𝒒𝑐
)

−𝑨−⊤𝒂0𝒏𝑡𝑎𝑝 (𝑘)𝛥𝒕𝒂𝒑 + 𝑽̄ (31)

𝑽 𝑚𝑖𝑛 ⩽ 𝑽 (𝑘) ⩽ 𝑽 𝑚𝑎𝑥 (32)

where 𝒑𝑔 (𝑘), 𝒒𝑔 (𝑘), 𝒏𝑐 (𝑘) and 𝒏𝑡𝑎𝑝 (𝑘) are vectors of DG real/reactive
ower output, CB and OLTC tap positions that to be determined.

.2. Lower layer controller

The LLC receives OLTC and CB position from ULC, so only DG
eal/reactive power dispatch is calculated in this step. The response
ime for a typical power electronics inverter is measured in millisec-
nds, which is much smaller than control period of LLC(5-min in this
tudy), so the ramping limit for DG real/reactive power output can
e ignored, and LLC control actions between two time instants are
ndependent with each other. In the lower layer control at time instant
, 𝒏𝑡𝑎𝑝 (𝑘) = 𝒏𝑡𝑎𝑝

(

𝑇𝑐
)

, 𝒏𝑐 (𝑘) = 𝒏𝑐
(

𝑇𝑐
)

, where 𝒏𝑡𝑎𝑝
(

𝑇𝑐
)

and 𝒏𝑐
(

𝑇𝑐
)

are
LTC tap position and CB position received from ULC. So the OLTC

ransformer and CB operation constraints (18)–(19), (20)–(22) in ULC
re omitted here. Thus, the mathematical formulation of LLC for time
nstant 𝑘 is expressed as follows,

𝑖𝑛

[

𝜌𝑠
∑

𝑠∈𝑆

(

𝑃𝑐𝑢𝑟,𝑠 (𝑘) + 𝑃𝑙𝑜𝑠𝑠,𝑠 (𝑘)
)

]

(33)

ver ∀ (𝑖, 𝑗) ∈ ,∀𝑖, 𝑗 ∈  ,∀𝑘,
ubject to power flow constraints (12)–(17) and DG inverter operation
onstraints (23)–(25).
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Fig. 4. Topology of modified IEEE-33 bus system.

Fig. 5. Predicted PV generation.

Fig. 6. Load profile.

.3. Implementing of the proposed DL-SMPC

To better illustrate the proposed methods, the implementing of
L-SMPC is summarized as following,

1. Loading data file containing distribution system information,
loading forecasted generation and load data.

2. According to the forecasted value 𝑃 and defined value 𝜎2, cal-
culate 𝛼 and 𝛽 by solving (7). Run Monte Carlo simulation and
generate an initial set of scenarios for generation and load using
beta distribution and normal distribution. After that, reduce the
initial scenario set into a smaller one by backward reduction
method.

3. At the beginning of an hour, solve (11) to get the control
sequence of OLTC and CB position for the future 𝑁𝑝 steps, apply
the first in the control sequence while discard the rest, get DG
real and reactive power dispatch for the first 𝑡𝑐 in an hour.

4. For the rest time of an hour, compute (33) to get the DG real and
reactive power outputs according to the OLTC and CB position
in step 3.

5. Repeat step 3 and step 4 until the end of the simulation.

. Case study

.1. Data and parameters

In this section, the proposed DL-SMPC algorithm is verified on a
odified IEEE-33 bus distribution system. The topology of the modified
6

IEEE-33 bus system is shown in Fig. 4 and network parameters can
be found in [31]. Case studies are performed in Matlab r2020a with
YALMIP Toolbox [32] on an ordinary PC running Win10 with 3.9 Ghz
CPU and 16G RAM and the DL-SMPC problem is solved by Gurobi
solver [33].

In the studied system, the slack bus voltage is set as 1.02 pu and
the maximum/minimum voltage limit are set as 1.05 pu and 0.95 pu,
respectively. The OLTC transformer has a ±5% tap range with 20 tap
positions, so 𝛥𝑡𝑎𝑝 = 0.005, 𝑛𝑚𝑎𝑥𝑡𝑎𝑝 = 10 and 𝑛𝑚𝑖𝑛𝑡𝑎𝑝 = −10. The CBs are
nstalled in bus 9, 12, 24, 33, each with capacity of 300 kVar and 10
ap positions. The ramping limits for OLTC transformer and CBs are
ssumed to be 1 and 2, respectively. The DGs are located at bus 4,
3, 16, 17, 21, 31, each with capacity of 1.1 MVA. The normalized
ime-series predicted generation and load profile are obtained from the
ational Renewable Energy Laboratory (NREL) Renewable Resource
ata Center [34], as shown in Figs. 5 and 6, respectively. The prediction
orizon is assumed to be 4 h. The mean value for beta distribution
nd normal distribution is the predicted generation and load while
he standard deviation of both probability distribution is assumed to
e 5%. The cost coefficient of active power losses is the electricity
rize and is set as 0.08 $/kWh, the cost coefficients with the tap
hange of OLTC and CB are assumed to be 1.40 $ and 0.24 $ per
tep [35]. Note that above parameters can be adjusted according to
eal practice. The maximum solution time for ULC problem is 475.14
and the LLC problem can be solved within 0.66 s. Considering that

he time requirements for ULC and LLC are much shorter than the
ontrol timescales(1 h for ULC and 5-min for LLC), the implementing
f proposed DL-SMPC in real practice can be guaranteed.

.2. Deterministic VVC

In deterministic VVC, VVC without and with APC is conducted and
he necessity of APC is verified. In VVC without APC, DGs always
perate at maximum power point tracking(MPPT) mode, and voltages
re regulated relying on mechanical VVC devices and DG reactive
ower adjustments. In contrast, DG real and reactive power are joint
ispatched in VVC with APC. The voltage profiles under two simulation
re shown in Fig. 7, and DG outputs are shown in Figs. 8 and 9
espectively. For VVC without APC, over-voltage problem occurs at
pproximately 10:30–14:00, with maximum value reaches 1.09 pu.
his is because DG only have limited reactive power capability due to
igh real power output. Thus, bus voltages cannot be regulated into
llowed range even though all DGs absorb reactive power. In contrast,
vervoltage issue is properly addressed by joint coordination of real
nd reactive power control in VVC with APC. During noon time, active
ower of DGs at bus 13, 16, 17 is curtailed to prevent overvoltage. In
ddition, due to the APC, DGs at these buses can absorb more reactive
ower than that in VVC without APC. Therefore, for DN with high
enetration of DG, it is not reasonable to keep all DGs operates at
PPT, APC is a necessary for VVC.

.3. Stochastic VVC

In deterministic VVC, the generation and load are assumed to
ollow exactly their predicted value. However, in reality, the real value
f generation and load could deviate from predicted value due to
tochastic weather conditions and consumers behaviour, which highly
ffect the performance of deterministic VVC. To examine the result
f deterministic VVC against uncertainties, 20 random scenarios are
enerated by Monte Carlo sampling to observe the voltage profiles of
ll the buses. The voltage profiles for all scenarios at 11:00 are shown
n Fig. 10. As can be seen from Fig. 10, overvoltage problem occurs at
us 16, 17 and 18 under approximately 60% scenarios. Then stochastic
VC is performed and the obtained result is verified on the same time

nstant, as shown in Fig. 11. From Fig. 11 we see that bus voltages are
egulated into allowed range under all the test scenarios. Thus, the load
nd generation stochastic variation need to be taken into consideration
n VVC decision making process, in order to guarantee voltage security.
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Fig. 7. Voltage profile without (a) and with APC (b).
Fig. 8. DG output without APC.
Fig. 9. DG output with APC.
Fig. 10. Performance of deterministic VVC under stochastic scenarios.

5.4. Performance comparison of TS-VVC and DL-SMPC

In this section, a 24-h time-series simulation is conducted and the
proposed DL-SMPC is compared with two-stage stochastic VVC(TS-
VVC) in which the system future status is not considered. Firstly, 300
random scenarios are generated by Monte Carlo method to represent
the stochastic characteristics of generation and load, then the original
300 scenarios are reduced to 30 representative scenarios by backward
reduction method. The weighting factors 𝜔𝑝 and 𝜔𝑚𝑒𝑐 are determined
as 0.864 and 0.136 in both methods. The voltage profile, OLTC tap
7

Fig. 11. Performance of stochastic VVC under stochastic scenarios.

position, CB position and DG real/reactive power output under two
simulation are shown in Figs. 12 and 13, respectively. As can be seen
from Figs. 12 and 13, both methods are effective in maintaining voltage
profiles within allowed range during 24 h. The actions of OLTC and CB
position show different patterns in two simulation. The reason for these
difference is that the schedule of mechanical devices in TS-VVC only
considers control objectives and information at the time instant of the
beginning of an hour whereas the DL-SMPC considers control objectives
and system status at both the current time instant and the future time
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Fig. 12. Time series simulation of TS-VVC.

nterval. During 24 h, DGs located at bus 4, 31 keep operating at MPPT
ode, a negligible amount of active power is curtailed for DG located at

us 13 in both simulation. For DGs located at bus 16, 17, the maximum
urtailed active power for DGs reaches 0.19 MW in TS-VVC, about
7.3% of DG capability, while that figure is reduced to 0.15 MW in
he proposed DL-SMPC simulation. For DG reactive power output, the
atterns of two simulation are quite similar with slight difference.

To further demonstrate the effectiveness of the proposed DL-SMPC,
he active power losses and the electrical power losses in the whole
4 h are shown in Figs. 14 and 15 respectively. To better illustrate
8

Fig. 13. Time series simulation of DL-SMPC.

the performance of both methods, traditional OLTC and CB tap control
strategy in [36,37] is performed as reference. As shown in Fig. 14,
active power losses in DL-SMPC are smaller than in TS-VVC, except
some time instants. This is because the DL-SMPC focused more on
control objective across the whole period rather than one specific time
instant. In Fig. 15, the two curves are quite similar in the first 8 h and
begin to deviate after 9:00. The result of comparison is summarized in
Table 1. The numbers of OLTC and CB operation in traditional control
are 13 and 70, respectively. These numbers are reduced by a lot in
both TS-VVC and DL-SMPC. The numbers of OLTC and CB operation

in DL-SMPC are slightly higher than that in TS-VVC but almost stay at
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Fig. 14. Active power losses.

Fig. 15. Energy losses during 24 h.

Table 1
Performance of TS-VVC and DL-SMPC.

TS-VVC DL-SMPC Traditional control

OLTC operation (number of times) 6 8 13
CB operation (number of times) 32 34 70
Energy losses (kWh) 4892.9 4473.5 4697.1

Total cost ($) 408 377.68 410.76

the same level. More importantly, compared with other two methods,
the proposed DL-SMPC can achieve fairly improvements in both energy
losses(4.76% improvement with traditional control and 8.57% with TS-
VVC) and total cost(8.05% with traditional control and 7.43% with
TS-VVC). For distribution system operation, rather than one specific
time instant, the control objectives would focus more on the whole
control period. Thus, the proposed DL-SMPC are more suitable for real
distribution system operation.

6. Conclusion

This paper presents a double-layer stochastic model predictive volt-
age control method to regulate bus voltages in distribution networks
with high penetration of renewable based distributed generations. In
the proposed method, transformer with on-load tap changer and capac-
itor banks are scheduled in the upper layer on hourly basis while real
and reactive power outputs of distributed generations are dispatched
in the lower layer every 5 min. The method aims to reduce the number
of operations from mechanical voltage control devices to prolong their
lifetime and minimize the active power losses of distributed networks.
The proposed double-layer stochastic model predictive voltage control
follows time-scale decomposition technology, also the reactive power
and active power are comprehensively used to regulate voltage profiles.
Compared with stochastic method without considering system future
information, there is an improvement of 7.43% in the proposed method.
Case studies on a modified IEEE 33 bus system demonstrate the ef-
fectiveness of the proposed method. In the future work, the proposed
method will be validated on unbalanced distribution networks and
9

using distributed methods.
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