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Abstract

Shape optimization based on isogeometric analysis (IGA) has gained popularity in recent years. Performing shape
optimization directly over parameters defining the computer-aided design (CAD) geometry, such as the control points of a
spline parametrization, opens up the prospect of seamless integration of a shape optimization step into the CAD workflow.
One of the challenges when using IGA for shape optimization is that of maintaining a valid geometry parametrization of
the interior of the domain during an optimization process, as the shape of the boundary is altered by an optimization
algorithm. Existing methods impose constraints on the Jacobian of the parametrization, to guarantee that the
parametrization remains valid. The number of such validity constraints quickly becomes intractably large, especially when
3D shape optimization problems are considered. An alternative, and arguably simpler, approach is to formulate the
isogeometric shape optimization problem in terms of both the boundary and the interior control points. To ensure a
geometric parametrization of sufficient quality, a regularization term, such as the Winslow functional, is added to the
objective function of the shape optimization problem. We illustrate the performance of these methods on the optimal
design problem of electromagnetic reflectors and compare their performance. Both methods are implemented for
multipatch geometries, using the IGA library G+Smo and the optimization library Ipopt. We find that the second approach
performs comparably to a state-of-the-art method with respect to both the quality of the found solutions and
computational time, while its performance in our experience is more robust for coarse discretizations.

Keywords: isogeometric analysis; shape optimization; parametrizations

1 Introduction defining the CAD geometry, e.g. the control points of a spline
parametrization, and it opens up the prospect of seamless inte-
gration of a shape optimization step into the CAD workflow.
One of the key challenges when using IGA in general is
that one needs a parametrization of the interior of the phys-
ical domain, on which the PDE is posed (Martin, Cohen, &
Kirby, 2008; Gravesen, Evgrafov, Nguyen, & Ngrtoft, 2012; Hinz,
Moller, & Vuik, 2018; Shamanskiy, Gfrerer, Hinz, & Simeon,
2020). This parametrization is used to pull back the weak form
of the PDE to the parameter domain where the basis splines

Isogeometric analysis (IGA) introduced in Hughes, Cottrell, and
Bazilevs (2005) is a Galerkin method that uses splines to ap-
proximate both the geometric domain and the solutions to par-
tial differential equations (PDEs). Splines are commonly used in
computer-aided design (CAD) and IGA is an attempt to bridge
the gap between simulation and design (Cottrell, Hughes, &
Bazilevs, 2009). This makes it beneficial for shape optimization
as the optimization can be performed directly over parameters
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(B-splines) are defined. The choice of parametrization can affect
the accuracy of the resulting IGA discretization (Xu, Mourrain,
Duvigneau, & Galligo, 2010; Gravesen et al., 2012) and, at the very
least, the parametrization should be valid (a bijective map), i.e.,
its Jacobian determinant should be nonzero. One approach to
constructing a valid parametrization in 2D is to search for the
one which has a harmonic inverse. In Hinz, Mdller, and Vuik
(2018), this property is reformulated as a nonlinear PDE and the
parametrization is found by solving this PDE. In Hinz, Jaeschke,
Moller, and Vuik (2020), this PDE-based parametrization tech-
nique is used for a gradient-based shape optimization algo-
rithm with IGA. In Gravesen et al. (2012), Nguyen, Evgrafov, and
Gravesen (2012), and Speleers and Manni (2015), the same prop-
erty is attained by minimizing the Winslow functional (Winslow,
1966). The method can be made more flexible by the use of adap-
tive splines (Falini, épeh, & Jiittler, 2015), which allow to enrich
the feasible region near to complex boundaries. In the recent
works (Sajavicius, Jiittler, & épeh, 2019; Shamanskiy et al., 2020),
the approach of parametrizing a complex domain by deforming
a given template is explored. In Pan and Chen (2019), the focus
is on producing parametrizations with low rank with respect to
the coefficient tensor.

When using IGA for shape optimization, the challenge of
finding a valid parametrization is even more important, since
the shape of the physical domain changes during an optimiza-
tion process. This means that a valid parametrization needs to
be maintained during this process.

To guarantee that the parametrization remains valid dur-
ing the optimization process, shape optimizations methods
based on IGA often rely on constraints on the Jacobian of the
parametrization (Nguyen, Evgrafov, & Gravesen, 2012; Gangl,
Langer, Mantzaflaris, & Schneckenleitner, 2020). These can be
enforced either by using injectivity cones or by using the spline
coefficients of the Jacobian determinant (Xu, Mourrain, Duvi-
gneau, & Galligo, 2011). However, the number of constraints
needed quickly becomes very large, especially in 3D. Further-
more, when using the coefficients of the Jacobian determinant
for the constraints, as we will do in this work, it may be neces-
sary to expand the Jacobian determinant on a finer spline space,
which increases the number of constraints even further.

In this work, we will compare an existing approach to IGA
shape optimization, relying upon reparametrizing the domain,
with a simple approach to maintaining a valid parametriza-
tion without the use of explicit validity constraints. Namely,
one lets the positions of all the control points that define the
parametrization and the shape of the domain enter the formu-
lation as independent optimization variables and adds a regu-
larization term to drive the optimization toward a design with a
valid parametrization. Such an approach has been considered in
the context of shape optimization in mechanics in Scherer, Den-
zer, and Steinmann (2010), and has, to the best of our knowledge,
only been considered very briefly in the context of shape opti-
mization with IGA in Friederich, Scherer, and Steinmann (2011).
It remains a question whether this approach performs compa-
rably to state-of-the-art methods, and the aim of the work is to
investigate exactly this question.

Different frameworks for shape optimization with IGA exist
in the literature. For example, in Lopez, Anitescu, and Rabczuk
(2020) a tetrahedral mesh is used to represent the interior of the
computational domain, while still representing the boundary
using splines. The authors rely on external mesh generator soft-
ware, while we in this work aim to avoid mesh generation by in-
stead maintaining a parametrization of the interior. In Ghasemi,
Park, and Rabczuk (2017), the shape is represented implicitly as

the level set of a function. The PDE is then posed on a design
domain, which remains constant during the optimization, and
the level set function enters the formulation by the ersatz mate-
rial approach. This framework has the advantage that it allows
for changes in the topology of the shape; however, at the same
time the final shape is represented as a level set and therefore
postprocessing is required to represent this shape using splines,
which is necessary for importing the shape into CAD software.
In our work, the optimization is performed directly on the spline
representation and thus the result can be readily imported into
CAD software after the optimization. Another possible approach
is to use the isogeometric representation of geometry combined
with the boundary element method (IGABEM,; Liu, Chen, Zhao, &
Chen, 2017; Chenetal., 2019). In IGABEM, the PDE is reduced to an
integral formulation on the boundary of the domain, and there-
fore maintaining a parametrization of the interior of the domain
is avoided altogether. However, in this case, one has to deal with
the standard complications of BEM, in particular the fact that the
system matrices are dense, nonsymmetric, and costly to com-
pute. Additionally, the Greens function for the considered PDE
has to be known, which is not always the case.

In this work, we illustrate that the simple regularization-
based approach is able to handle complicated geometries, by
comparing its performance to a shape optimization approach
based on using a linearization of the Winslow minimization
problem as a parametrization strategy, and employing locally re-
fined splines to represent the Jacobian determinant. The method
closely resembles the one in Nguyen, Evgrafov, and Gravesen
(2012). The main difference is that we use truncated hierarchical
basis splines (THB-splines; Giannelli, Jittler, & Speleers, 2012),
which possess the partition of unity property, to refine the spline
space in which the determinant is expanded locally. This re-
duces the number of constraints needed as compared with ten-
sor product global refinement.

We will apply the two methods and compare their perfor-
mance on the shape optimization problem of designing elec-
tromagnetic reflectors. In this problem, we have two metal-
lic reflectors in a dielectric medium and search for a shape
that maximizes the electrical energy close to a chosen point.
The same problem has been studied with topology optimiza-
tion in Aage, Mortensen, and Sigmund (2010), Wadbro and En-
gstrom (2015), and Christiansen, Vester-Petersen, Madsen, and
Sigmund (2019), and with IGA in Nguyen, Evgrafov, and Gravesen
(2012).

The methods are implemented for multipatch geometries,
using the IGA library G+Smo (https://github.com/gismo) and
the optimization library Ipopt (https://github.com/coin-or/Ipo
pt). A benchmark study on the performance of different op-
timization algorithms in the context of structural optimiza-
tion can be found in Rojas-Labanda and Stolpe (2015). For a
review of implementation aspects of IGA in general, we refer
the reader to Nguyen, Anitescu, Bordas, and Rabczuk (2015)
and for details of the G+Smo library we refer the reader to
Jittler, Langer, Mantzaflaris, Moore, and Zulehner (2014) and
Mantzaflaris (2020). The code used for this work can be found
at https://github.com/gismo/shapeopt.

The paper is organized as follows: In Section 2, we outline
the relevant notation, and in Sections 3 and 4, we describe the
two methods we are going to compare. In Section 5, we apply
these methods to the aforementioned shape optimization prob-
lem, and discuss and compare the performance of the two ap-
proaches. We end the paper with some discussion and conclu-
sions. Some of the more technical details are presented in the
appendices.
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Let us consider the following PDE-constrained shape optimiza-
tion problem:

g;%ffE (Q,u), (1a)

s.t.ag(u, v) = €o(v)  forallveV, (1b)

where 044 is a set of admissible shapes, E is the objective, and
(1b) is the governing PDE in the weak form.

Within the IGA framework, both © and u will be approxi-
mated numerically using splines. Namely, we have Q = G(]0, 1[%),
with the parametrization

N9
G() = _Z G RY(8), @)

where ¢ € R? are the control points, N? is the number of con-
trol points, and R? are the basis (B) splines. In this work, un-
less specifically stated otherwise, we will use tensor product B-
splines. The superscript g indicates that the B-splines R? (i.e.,
their degrees and knotvectors) are specific to the geometry rep-
resentation. Within the shape optimization framework, it will
sometimes be necessary to distinguish between boundary and
inner control points. We will therefore introduce the notation

Cﬁ
o H ®

where ¢’ are the boundary control points and ¢’ are the inner
control points. The Jacobian J = 2 will also play an important
role in the forthcoming development.

Similarly to (2), we approximate the state of our system as a

pulled back spline

N
MhzzuiRionl, 4)
i=1
where R?,i=1, ..., N are B-splines. The expansion coefficients
uj,i=1,...,Nwill be found by solving a system of linear algebraic
equations

Kcu= fe.

As standard in the Galerkin approach, the elements of the stiff-
ness matrix K. and the load vector f. are computed as K;j =
ag (o, (Rj o G L RioG™?Y) and fi= Lo o) (Ri © G~1). Note that
the dependence of K. and f. on the control points is encapsu-
lated in (2) and (4).

Already at this point, the importance of the geometry
parametrization should be apparent. Indeed, at the very least
it should be an invertible map, which is used to pull back the
weak form of the PDE defined on the physical domain Q into
the parameter domain ]0, 1[%. In particular, for all £ €]0, 1[¢ it
is necessary that det(J (§)) > O (It is equivalent to require that
det(J (§)) < 0; however, in this work we will use the constraint
det(J (¢)) > 0.). A sufficient condition, which guarantees the va-
lidity of the parametrization, is discussed in Appendix A.

In this section, we will consider one possible approach to
IGA shape optimization, which follows the ideas developed
in Gravesen et al. (2012) and Nguyen, Evgrafov, and Gravesen
(2012). Within this framework, we formulate the optimization
problem in terms of boundary control points c¢. The collection

of interior control points ¢’ for the geometry parametrization is
treated as an implicit function of ¢/; see Appendix B. Addition-
ally, the parametrization validity constraints det(J ) > 0, or a suf-
ficient condition for these (cf. Appendix A), have to be explicitly
included into the problem formulation.

To compute domain parametrizations of high quality, we rely
upon minimizing the Winslow functional (Section B.2). However,
to avoid solving a nonlinear optimization problem at each shape
optimization iteration, we construct a quadratic approximation
to the Winslow functional around a reference parametrization,
and update the reference parametrization when it becomes nec-
essary to do so. Specifically, given a reference parametrization Go
defined by the control points ¢, to find a new parametrization,
we consider the quadratic programming problem

.1
min 5AcT H(co)Ac + VW(co)T Ac+ W(co), (5)
p

where W is the Winslow functional and H is its Hessian. The
minimizer of this problem can be found by solving a linear sys-
tem

H(co)Ac = —VW(co).
Using (3), this can be restated as
Heo oo A€ = —VWee — Her oo ACY, (6)

where [He o ij = 82W/dc’iac’j, [He oo]ij = 02W/dc’iac?j, and
[VW i = 9W/ac’;. The new parametrization is then defined by
the control points given by ¢ = ¢o + Ac.

With this in mind, to approximate (1) numerically, we solve
a sequence of subproblems

max E(c, u), (7a)
Ac?

s.t. Kcu= f, (7b)
Hei oo A€ = —VWer — Hee s ACP, (7¢)
c=co+ Ac, (7d)
d>e, (7e)
L <cf <y, (79)

where ¢ is the reference parametrization, Ac = (Ac”, Ac?), and
(7e) is the sufficient condition for the validity of the parametriza-
tion discussed in Appendix A. Each time we solve the subprob-
lem (7), we update the reference parametrization. In the model
problem considered in this work, we saw no further progress af-
ter 5-10 reparametrizations.

Reference parametrizations can be computed as follows. We
minimize the Winslow functional as described in Appendix B,
and check if the sufficient condition d > 0 is violated. If it is,
then this condition is too strict and should be relaxed. To fa-
cilitate this, we refine the spline space §4t Where we compute
expansion coefficients d of det] . To reduce the number of con-
straints resulting from such refinement steps, we utilize local
refinement. Specifically, we use truncated hierarchical B-splines
(THB-splines) as basis functions. Note that it is important to use
the truncated version of hierarchical splines, since the partition
of unity property (cf. Giannelli, Jiittler, & Speleers, 2012) implies
that the spline control polygon converges locally to function val-
ues. Note that other locally refinable splines with this property
are available, e.g. polynomial splines over hierarchical T-meshes
(Deng et al., 2008) or locally refinable (Johannessen, Kvamsdal, &
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Solve (14) to find refer- }4

ence parametrization cy

]

[ Compute d ]

!

While 3i d; < 0 refine support
of Rt/ and recompute d

J7 No

{ Solve the shape optimization

subproblem (7) at ¢y with
e = pmind; for p € (0,1]

]

[ Did we converge?

[ Stop J

Figure 1: Flowchart of the optimization algorithm.

Reflector (Gold)

I 2

|

Electromagnetic wave

Point with maximum field \
Truncated Domain

Figure 2: Sketch of the shape optimization problem. The goal is to find a shape
of the reflector that maximizes the field close to a point.

Dokken, 2014). For a comparison of these methodologies, we re-
fer the reader to Li, Chen, Kang, and Deng (2016).

The refinement strategy we employ is as follows. For all in-
dices i that have negative spline expansion coefficient d; < 0 of
detJ , we refine the support of the associated basis function R%t.
This is repeated until d; > O foralli =1, ..., Nget (In practice, we
terminate this procedure either if d > 0 or when a maximum
level of refinement (7 in our numerical experiments) is attained.
The latter termination criterion has not been observed in our
experiments.). In the subproblem (7), we then put e =p - miin d;
with p = 0.25; see (A.1).

The full optimization loop is illustrated in Fig. 1. Note that we
have chosen to carry out the spline space refinement described
above only when the reference parametrization, and therefore
also the subproblem (7), is updated. This allows us to keep the
number of constraints constant when solving (7) numerically
and therefore employ off-the-shelf optimization software. The

initial guess for the nonlinear Winslow optimization problem is
generated using Coons’ patches; see Appendix B.

In this section, we discuss an alternative approach to shape op-
timization using IGA, which does not involve explicit constraints
on det] . The positions of the inner control points ¢’ enter this
formulation as independent optimization variables, in the same
way as ¢’. Consequently, we do not need to explicitly compute a
domain parametrization, as this will be part of the outcome of
the optimization process.

To this end, we add the Winslow functional W as a regulariza-
tion term to the objective function. Its role is to penalize config-
urations of control points that result in poor parametrizations.
This idea has been used previously in the context of shape op-
timization in mechanics (Scherer, Denzer, & Steinmann, 2010;
Friederich, Scherer, & Steinmann, 2011). Thus, for a regulariza-
tion parameter r > 0, we consider the optimization problem

mcin tW(c) — E(c, u), (8a)
s.t. Kcu= fe, (8b)
a<csa. (8c)

We put W(c) = coif det] < 0 atone of the quadrature points used
for the integration when calculating W(c). In this way, when the
optimization algorithm enforces, e.g. the standard sufficient de-
crease condition, such a choice ensures that the chosen step
will always have positive determinant at the quadrature points.
This does not guarantee that it is positive everywhere, but it
means that the numerics will not collapse due to a division
by zero.

The regularization parameter r needs to be tuned for the spe-
cific problem at hand. If it is too large, the minimization will find
a design with a small value of the Winslow functional but dis-
regarding the objective E (c, u). If it is too small, the optimization
will find positions of the control points that have a low objec-
tive E(c, u), but with a poor parametrization, which might give a
large discretization error of the discretized PDE. The appropriate
values of r would lead to a compromise between these two ex-
treme situations. One simple strategy for choosing such a value
is to solve a sequence of problems (8) for decreasing values of t
(We should note that the literature on regularization is quite ex-
tensive; see e.g. Hansen (1994) and references therein, and this
topic is somewhat beyond the scope of this work.).

The two points above constitute the main drawback of this
method. Namely that, in contrast to a constraint-based method,
we cannot guarantee that the parametrization is valid in be-
tween the quadrature points. Additionally, one has to find a suit-
able value of the regularization parameter r, which is problem
dependent.

In this section, we will consider a 2D shape optimization prob-
lem originating from the field of electromagnetism. Our goal is
to design a reflector that concentrates electrical energy in a de-
sired area. This problem will serve as a model problem for com-
paring the two optimization approaches outlined in Sections 3
and 4.
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Table 1: Physical parameters.
f My Ky

4 .10 [Hz] 1.0 1.0 106
[S/m]

Py ‘ Py

P,

Figure 3: Patch layout.

We consider a 2D scattering problem where a plane wave with
frequency f travels in a dielectric (air) and is scattered by two
symmetric metallic (gold) reflectors, as depicted in Fig. 2. Let
e and pr denote the complex permittivity and permeability of
the medium. Using the first-order absorbing boundary condi-
tion (Jin, 1993) at the boundary I'; of the truncated domain, the
electromagnetic field @l should satisfy the following PDE:

1_. ~ .
V~(—Vu)+k§uru=0 inQ, (9a)

€cr

At — ul . 1\ ,.

%+<}k0+2—rt>(u—ul):0 on T (9b)
In the equations above, ky = 27, /eoio is the wave number and ¢
and po refer to the permittivity and permeability, respectively,
of free space. The imaginary unit is denoted by j, the radius of
the truncated domain is given by r, and u' is the incident plane
wave, given by

ul(x, y) = e Tovamx,

The objective function of the shape optimization will be given
by

E(c,u) = / Ss|0?dx,
Q
where § is a Gaussian bell function
8(x, y) = e ®HY)/e?)

with & = 0.1. Thus, we aim to focus the incoming energy in the
vicinity of the origin (0, 0). The physical parameters that we use
are given in Table 1. The complex permittivity of the reflector is
calculated as €}, = ¢ go1d — j(0/weo).

The weak statement of the PDE (9) is to find i € H}() such
that for all test functions v € H() the following equality holds:

/ Loa %adx+k§f prfibdx + (jko + i) / 2L a5ds
Q Q 2r I

€cr t « €cr
1 oul . 1\ ).
=— — — ds. 10
- rt(an+()ko+2n)u>vs (10)
Due to the symmetry, we only consider the upper half of the
geometry shown in Fig. 2. To accommodate the change of mate-

€0 Mo €r, gold

(toc?)~? 471077 —20.199 + j1.381

rial parameters between the metallic reflector and the surround-
ing dielectric medium, we will split the domain into five patches,
one for the reflector and the other four for the surrounding air.
The layout is shown in Fig. 3 (For automatic generation of patch
layouts, the interested reader is referred to Zheng, Pan, and Chen
(2019).). Each patch is parametrized using splines of degree p =
2 as described in Section 2. We will use strong patch coupling
to enforce C° continuity at the patch interfaces, while noting
that other alternatives exist, e.g. weak coupling (Hu, Chouly, Hu,
Cheng, & Bordas, 2018) and strong C* coupling (Chan, Anitescu,
& Rabczuk, 2019).

The shape of the reflector is represented via the patch inter-
faces, which consist of four spline curves with C° continuity at
the four corners. Such a description, for example, allows shapes
that are only piecewise smooth such as the classical bowtie an-
tenna (Compton et al., 1987).

Using the parametrizations, we can pull back the equa-
tion (10) to the parameter domain and apply the Galerkin
method to it, which ultimately results in a system of linear alge-
braic equations; see Appendix C for details. To evaluate the in-
tegrals involved, we use element-wise Gauss-Legendre quadra-
ture, owing to their immediate availability in the G+Smo li-
brary, while noting that more efficient alternatives exist (Barton
& Calo, 2017; Calabro, Sangalli, & Tani, 2017).

In this section, we apply the method described in Section 3 to our
model problem. We start with an initial design where the reflec-
tor has the shape of a circle. We consider two different spline
spaces in which to approximate the PDE (9), namely where the
knotvectors used for representing the geometry are refined uni-
formly either 3 or 4 times (Note that while we here use tensor
product spline spaces for the approximation of the solution to
the PDE, adaptivemethods that use local refinement exist; see
e.g. Giannelli, Jiittler, and Speleers (2012).). Both spline spaces
have degree p = 2, and the numbers of degrees of freedoms are
Neoarse = 2548 and Ngpe = 9300, respectively. We will refer to these
as the coarse and fine meshes.

We will use a tolerance tol = 1073 when solving the subprob-
lems (7) and a fixed number of reparametrizations, namely 10
when using the coarse mesh and 5 when using the fine mesh. We
observed that using more reparametrizations did not lead to sig-
nificant improvements in the design. In our experiments, the re-
sults with this method are sensitive to the number of quadrature
points used when calculating the Winslow functional. To pro-
duce the results presented here, we use 12 quadrature points per
knot interval, to avoid underintegration (In the IGA formulation
(C3), we also integrate nonpolynomials. We use three quadra-
ture points for the mass matrix M and seven quadrature points
for the stiffness matrix K.).

In our implementation, we use the interior point solver
Ipopt to solve the subproblems (7). As we solve a sequence of
subproblems, a warm start is available, namely the minimizer
from the previous subproblem; so an interior point algorithm
might not be the best choice of optimization algorithm (John &

120Z Jaquiardag (| uo Jasn Aleiqi] saoualog aii Jo Anoed Aq €20/2609//21S/2/8/3191ue/apal/woo dno-olwapeoe)/:sdiy Wolj papeojumo(]



552 | Practical isogeometric shape optimization

(a) The initial design, E, = 0.200

(c) After 2 reparametrizations, 143 itera- (d) After 10 reparametrizations, 57
ations, Ej = 1.803

tions, Ej, = 1.484

(b) After 1 reparametrization, 6
tions, Ep = 1.230
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Figure 4: The designs at different stages of the optimization process, when using validity constraints and the coarse mesh. The reflector is outlined with a black line,
and the control points of this boundary are colored black. The grey lines are parameter lines mapped with the geometry mabp, to illustrate the parametrization.
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Figure 5: The objective function during optimization process for the coarse and
fine meshes. The vertical lines indicate where the parametrization is updated.
Epsa is the objective calculated on a refined mesh.

Yildinm, 2008). However, with the following parameter tuning,
we found the method to work well with Ipopt. Namely, after solv-
ing one of the subproblems (7) some of the design bounds (7f)
will be active; however, since Ipopt is an interior point algo-
rithm, the starting point for the subsequent subproblem will
be pushed away from the boundary as controlled by the pa-
rameter bound_push. We found that this parameter needs to be
lower than the default value since the constraints on det] are

quite sensitive, and a relatively small perturbation of the con-
trol points might violate these constraints, which is undesirable.
The default value is 0.1, but in the experiments, we set it to
10~° instead.

Another key parameter is the barrier parameter mu_init.
Specifically, we use the monotone strategy, where the barrier pa-
rameter is monotonically decreased as the optimization algo-
rithm progresses. However, if this parameter is too large in the
beginning of the algorithm we found that it will push the de-
sign toward configurations with large det]. To remedy this, in-
stead of the default value 0.1 we use 10~%. For more information
about the optimization algorithm implemented in Ipopt and its
parameters, see Wachter and Biegler (2006).

In Fig. 4, the design at different stages of the optimization is
presented, when using the coarse mesh. We observe that the de-
sign becomes increasingly hard to parametrize as the objective
increases each time we change the reference parametrization. In
Fig. 5, the objective is plotted against the number of iterations.
We see that the objective function increases after the refer-
ence parametrization is changed, but relatively quickly reaches
a plateau. We already use a fairly large tolerance of 10~3 for the
stopping criterion when solving the subproblems (7); however,
this behavior indicates that it might help to relax the stopping
criterion even further in these subproblems to improve the over-
all efficiency of the method. However, to allow for a fair com-
parison between the two methods, we do not investigate this
further and use the same tolerance for both methods. The fi-
nal objective, after 10 reparametrizations when using the coarse
mesh, is E;, = 1.803. However, if we calculate the objective with
a mesh that is refined uniformly twice, we get Ep, = 1.556, i.e.,
a 16% difference. This means that there is actually a significant
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(a) Initial mesh,
N9t = 380

(b) After 1 reparametrization, N9°* = 392.

(c) After 2 reparametrizations, N9°*
448.

(d) After 10 reparametrizations, N9 =
572.

Figure 6: The mesh (knot lines), used for representing det] during the subproblems (7) for the constraints (A.1). The number of constraints is given by N9, and the

designs are obtained using the coarse mesh.

Figure 7: The final design using validity constraints and the fine mesh, E, =
1.638.

discretization error at this refinement level, which leads to an
artificially large objective value.

As described in Section 3, we use local refinement to adapt
the constraints on det] to the current design. This is done
by using local refinements in the areas where the spline co-
efficients are nonpositive. The resulting meshes are plotted in
Fig. 6 to illustrate where the refinement is needed. We see
that local refinement is utilized primarily inside the reflector
and near the reflector-air interface. We see that the number of
constraints increases during the optimization process, but by
no more than a factor of 2. If we were to use uniform refine-
ment, the number of constraints would increase by more than a
factor of 9.

The final design, after five reparametrizations, when using
the fine mesh, is shown in Fig. 7. We see that it is similar to the
design obtained using the coarse mesh. The final objective here

is Ep = 1.638. After the mesh is refined uniformly, the electrical
energy is Ey/s = 1.628, which is only a 0.6% difference. The objec-
tive function during the optimization process is plotted in Fig. 5.
We see that the algorithm converges faster when using the fine
mesh as no progress was observed after five reparametrizations.

In this section, we will present the results obtained with the
method described in Section 4. With this method, we perform
the optimization with all control points as optimization vari-
ables while using the Winslow functional as a regularization
term. Again, we use the interior point solver Ipopt with a toler-
ance of tol = 1073 for solving the problem (8). The regularization
parameter is set to v = 3.

One can compare the design evolution shown in Fig. 8 with
those obtained previously; see Fig. 4. The designs obtained us-
ing the regularization approach seem to have more regular
parametrizations compared to those in Fig. 4.

The final objective is E, = 1.684. If we calculate the electri-
cal energy for this design on a twice refined mesh, we get Ej;y =
1.546, i.e., a difference of 9% . This is less than the 16% we ob-
served when using the boundary-driven method. This increase
in accuracy might be due to the parametrization being of higher
quality.

In Fig. 9, we plot the electric energy Ej, the regularization
term tW, and the objective function tW — Ej,.

When using the method with the fine mesh, we get the fi-
nal design shown in Fig. 10. We see that the shape of the reflec-
tor is very similar to the one shown in Fig. 8d. The main differ-
ence is that when using the fine mesh, the parametrization is
more regular, since the error in the discretization of the PDE is
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7

(a) The initial design, Ej, = 0.202

(c) 143 iterations, Ep = 1.593

(d) The final
Ep =1.683
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Figure 8: The designs at different stages of the optimization process when using the regularization approach. The reflector is outlined with a black line, and the control
points that control this boundary are colored black. The grey lines are parameter lines mapped with the geometry map, to illustrate the parametrization.
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Figure 9: The objective function during the optimization process when using the
regularization-based approach, with the fine and coarse mesh.

smaller, and therefore the optimization cannot exploit it to the
same extent. This is especially notable at the bottom of the re-
flector where the inner control points were moved away from
the point of interest when using the coarse mesh, as seen in
Fig. 8d. The final objective is E; = 1.545, and when evaluating it
on a refined mesh, we get the same result Ej;, = 1.545 with the
difference at the fifth digit. The objective during the optimiza-
tion process is plotted in Fig. 9. The behavior is similar for the
two meshes; however, the tolerance tol = 1073 is reached with
fewer iterations when using the fine mesh.

Figure 10: The final design when using the regularization approach and the fine
mesh, Ey, = 1.545.

5.4 Comparison and discussion

In Table 2, we summarize the performance of the two methods.
We report the objective after a fixed number of iterations, in this
case, after 100 iterations, the final objective computed on 3 dif-
ferent refinement levels and the average running time per iter-
ation.

We observe that the average execution time per iteration is
the same order of magnitude for the two methods. The main por-
tion of the running times is spent on solving the state equation
and computing the gradient of the objective function. The dif-
ference in the running time that we observed between the two
methods might be due to a different number of function evalu-
ations per iteration needed for trial steps of the algorithm. If we
were to consider a larger problem, e.g. in 3D, the large number
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Table 2: Comparison of the two methods from Sections 3 and 4 on two different meshes. Ejr — 100 is the objective after 100 iterations. Ej, is
the objective computed on the mesh used in the optimization. Ey/, and Ey, are the objectives computed after refining the mesh uniformly,
once and twice. The execution time was measured on a 64-bit HP EliteBook 840 G4 with an Intel(R) Core(TM) i7-7500U CPU, with a clock rate of

2.70 GHz.

Method Eiter = 100 En
Linearizations coarse mesh 1.482 1.803
Regularization coarse mesh 1.529 1.684
Linearizations fine mesh 1.495 1.638
Regularization fine mesh 1.482 1.545

Ep Epa % Avg time per iteration
1.589 1.556 16% 9.68 second
1.561 1.546 9% 11.54 second
1.629 1.628 0.6% 53.5 second
1.545 1.545 0.003% 71.0 second

of validity constraints would likely lead to an increase in run-
ning time for the boundary-driven approach. For the boundary-
driven approach, the computation of reference parametrizations
by minimizing the Winslow functional only accounts for 2.4%
and 0.25% of the total running time for the coarse and the fine
grid, respectively.

Regarding the quality of the designs we find, we note that
shape optimization problems are prone to having many local op-
tima, so it could be that the two methods find two different local
optima. Therefore, it can be futile to directly compare objective
values. That being said, we observe that the boundary-driven
approach happens to find solutions with slightly higher (better)
objective value. On the other hand, the regularization-based ap-
proach seems to estimate the objective value more accurately on
coarser meshes, since our results were more reliable using this
method, probably due to the better quality of the parametriza-
tions it produced.

Also, observe that with the regularization-based approach,
we only need the objective Ejy, the Winslow functional, and their
first-order derivatives. In addition, we can solve a single opti-
mization problem with design bounds as the only constraints.
This means that the method is significantly easier to implement.

We described and compared two methods for shape optimiza-
tion on spline-based representations. One uses validity con-
straints to enforce the validity of the geometry parametrization.
The other uses a regularization term, and thus avoids both the
validity constraints and the need for an explicit parametrization
strategy altogether. We demonstrated how this simple approach
performed comparably to the more complicated approach in
terms of the final design, while requiring similar running times
for the 2D problem we considered. The regularization-based ap-
proach seems to produce more reliable results, and it is, in addi-
tion, much simpler to implement, since we only need the objec-
tive, the Winslow functional, and their first-order derivatives.

These results are encouraging, and we plan to use the
regularization-based approach for 3D problems, where we ex-
pect that the efficiency advantages of the regularization ap-
proach will be more prominent, since the number of validity
constraints for 3D parametrizations grows quickly. For obtain-
ing competent overall running times, one can couple the ap-
proach with low-rank approximation techniques, which have
been recently introduced in IGA (Mantzaflaris, Juettler, Khorom-
skij, & Langer, 2017; Scholz, Mantzaflaris, & Juettler, 2018) and
have proved efficient in the frame of PDE-constrained optimiza-
tion (Blnger, Dolgov, & Stoll, 2020).
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As pointwise constraints det(J) > 0 are, generally speaking, dif-
ficult to deal with, we utilize the spline nature of the geom-
etry parametrization (2). Namely, when the geometry map G
€ C* is a spline of degree p, then det] € C¥! is a spline with
degree d - p — 1. This means that we can construct a spline
space Sget that contains det] (Specifically, the smallest spline
space containing det] can be obtained by increasing themulti-
plicity of each knot in geometrymap knotvector by (d — 1) - p to

120Z Jaquiardag (| uo Jasn Aleiqi] saoualog aii Jo Anoed Aq €20/2609//21S/2/8/3191ue/apal/woo dno-olwapeoe)/:sdiy Wolj papeojumo(]



account for the reduction in the differentiability and increase of
the degree.). We can therefore find the expansion coefficients d
of det] with respect to B-splines in this space (This could be
done using either interpolation or L? projection. In either ap-
proach, one has to solve a linear system to obtain the expansion
coefficients. The linear system matrix needs to be inverted only
once for a given spline basis and, moreover, the matrix has a Kro-
necker/separable structure (cf. Mantzaflaris et al., 2017); there-
fore, the solution can be obtained extremely fast.).

Now we can use this expansion to derive a sufficient con-
dition to replace the pointwise parametrization validity con-
straints det(J ) > 0, by requiring that

d>e (A1)

where ¢ is a small positive algorithmic parameter. This condi-
tion guarantees that det] > 0 since B-splines are nonnegative
and form a partition of unity. This is not a necessary condi-
tion, meaning that we might have d; < 0 for some i even though
det] (&) > 0, V& €]0, 1[4. However, if the spline space Sget is re-
fined, then the spline expansion coefficients will move closer to
values of the spline. So if ¢ is small enough and det] > 0 then
the constraint is likely to be satisfied for a sufficiently refined
spline space Sget.

In this section, we review some techniques for finding a
parametrization of the interior given the boundary. In IGA, this
comes down to finding the position of the inner control points
given boundary control points. We do not aim to give a thorough
review of all the techniques that are available, as this is out of the
scope of this work. We will only introduce the methods that are
related, or directly used, by the two shape optimization methods
considered in this work.

Two simple methods for constructing a grid of control points
are the Coons patch (Farin & Hansford, 1999) and the spring
method (Gravesen et al.,, 2012). They both produce inner con-
trol points that depend linearly on the boundary control points;
however, they only produce valid parametrizations for geome-
tries that are not too complicated. In this work, we will use these
methods for finding an initial guess for the optimization-based
approach that is described below.

A more complex, and in general nonlinear, class of parametriza-
tion methods consists of optimization-based methods. Here, the
geometry map G is chosen such that it minimizes a quality met-
ric w(g)

min ] w(e) de, (B.1)
G Jo.1[
s.t. G‘éi[O,l]d =y, (B.2)

where y is a given boundary curve.

There are several different quality metrics to choose from
(cf. Gravesen et al., 2012; Xu, Mourrain, Duvigneau, & Galligo,
2013). In this work, we will consider the Winslow functional,
which is given in terms of the Jacobian matrix J as

W= w() dé. (B.3)
10,1[d

with

_tr( )
w= dety (B.4)

In 2D, the Winslow functional has the nice property that its min-
imizer has a harmonic inverse (Gravesen et al., 2012). This guar-
antees that the minimizer of (B.1) is unique and bijective, i.e.,
det]J # 0. It should be noted that this minimizer is not neces-
sarily a spline, so looking for a spline parametrization on the
form (2) by minimizing (B.1) with the Winslow functional will
only guarantee a valid parametrization if the spline space used
for the parametrization has high enough resolution.

Within the shape optimization context, we also need first-
and second-order partial derivatives of w. The derivative with
respect to a parameter « is given by

ow T L1\ 1y 7))
00 _ a(dety) tr(} ag)—tr(} 3a>7det} . (B3)

. Il a
where we used the relation a—det} =det] tr (} ’18—]). The
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second-order derivative is given by
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using the fact that 2] ' = —] 22 ] ~! and assuming that J de-
pends linearly on «, which is the case when « is a coordinate
of a control point. The calculation of 2 and 355/3 can be imple-
mented as an assembly of linear and bilinear forms within IGA
framework. In G+Smo, this can, for instance, be accomplished
using the gsExprEvaluator class that is typically employed for

isogeometric stiffness matrix assembly purposes.

Using the spline parametrizations of patch geometries, we pull
back the weak form (10) to the parameter domain, which results
in the following equation:

/ i]’TVu-}’TVv\det}\dE—kg/ wruv|det] | dé
10 ]o.1[?

J1[2 €cr

. 1 1
+( jko + —) / —uv
(} 2r¢ G-Y(ry) €cr

1 1 (oul : 1Y
= —(—MOG+(}ko+f)uloG)U
€r Jeiry) €ar \ 0N ig

E‘c‘lt
ot

ﬁ' dt,
at
(1)

where we have u= 1o G, v = 9 0 G, and t is the parameter on the
boundary. After applying the Galerkin method to (C.1), we arrive
at the linear system of linear algebraic equations

Au=(K +M+Tu= f, (C.2)

where u = (ug, ..., uy)" and K, M, T, and f are given by

Ku :f i}’TVRkJ’TVRl |det] | dé, (C.3a)
[0,1)2 €cr
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My = —k(z) _/[.0 : ur Re Ry |det}| de, (C'Sb)
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Note that the values of ¢ and p, are set to the properties of gold
in patch 4 and for air in the other patches. Owing to the restric-
tion of the IGA library we are utilizing, we further reformulate
the system of complex algebraic equations (C.2) as

[m(A) %(A)} [m(u)} _ [m( ) }
=3(A) -R(A) |3 | [
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