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Abstract—Mobile Edge Computing (MEC) is a network archi-
tecture that takes advantage of resources available at the edge of
the network to enhance the mobile user experience by decreasing
the service latency. MEC solutions need to dynamically allocate
the requests as close as possible to their users to avoid high
latency. However, the request allocation does not depend only
on the geographical location of the servers, but also on their
requirements. The task of choosing and allocating appropriate
servers in a MEC environment is challenging because it involves
many parameters. This paper proposes a Stochastic Petri Net
(SPN) model to represent a MEC scenario and analyze its
performance. The model focuses on parameters that can directly
impact the service Mean Response Time (MRT) and resource
utilization level. We propose case studies with numerical analyzes
using real-world values to validate the proposed model. The main
objective is to provide a practical guide to assist infrastructure
administrators to adapt their architectures, finding a trade-off
between MRT and resource utilization level.

Index Terms—Mobile Edge Computing, Internet of Things,
Stochastic Models.

I. INTRODUCTION

According to the Statista (a German online portal for
statistics), the number of mobile devices will be around 16.8
billion in 2023 [1]. This significant adoption is fundamentally
driven by the increase of new mobile users as well as the
development of new interactive applications [2] [3]. However,
the increasing number of mobile devices has an extreme
effect on mobile networks, bringing significant challenges for
telecommunications companies [4]. Mostly, mobile devices
have limited computational capacity (processing, storage, and
battery), and cellular networks are characterized by high
power consumption, low bandwidth, and high latency [5].
Besides, the exponential growth of the Internet of Things (IoT)
promises to make wireless networks even more congested [6].
To cope with these challenges, many researchers have pro-
posed optimized architectures for this context, such as Mobile
Cloud Computing (MCC) [7, 8].

MCC is the integration of cloud computing and mobile
computing, which provides additional capabilities for mobile
devices by centralizing their resources at the cloud infrastruc-
ture [9]. However, the Internet of Things scenario has brought
harder challenges to MCC, such as super high latency, security
vulnerability, and limited data transmission, because cloud
resources are often far away from the end users [10].

As an evolution of the MCC architecture, Mobile Edge
Computing (MEC) has emerged. The main goal of MEC is to
address the challenges that MCC has been facing, deploying
resources closer to the end-users, allowing computing and stor-
age operations to be performed nearby the source device [11].
The MEC concept has emerged to unite telecom operators,
IT, and cloud computing companies to deliver cloud services
directly at the network edge. Differently from traditional cloud
computing systems where remote public clouds are used, MEC
servers are usually owned by the network operator. They are
implemented directly at the cellular tower or the local wireless
Access Points (APs) using a generic-computing platform. With
this position, MEC allows the execution of applications near
the end-users, substantially reducing the end-to-end delay and
releasing the burden on backhaul networks.

Since MEC is still considered a recent topic, some re-
search opportunities are open to being explored, such as
performance evaluation of MEC architectures [12]. Analytical
models are suitable to evaluate the performance of complex
systems, mainly during the initial stages. Stochastic modeling
is a popular formal method for performance evaluation in
concurrent systems with synchronization and communication
mechanisms. Stochastic Petri Nets (SPNs) are special cases
of stochastic models [13], that are enabled to set upstate
equations, algebraic equations, and other mathematical models
governing the behavior of systems. The use of SPNs has
already been successfully applied in the context of MCC in
previous works [14, 15]. However, to the best of our knowl-
edge, performance analytical models in MEC architectures are
scarce until the present moment.

In this paper, we focus on the MEC server performance
evaluation in an environment that provides wireless Internet
coverage for mobile users in a large-scale metropolitan area.
For that, we propose an SPN model to represent the MEC
architecture and evaluate the trade-off between mean response
time (MRT) and resource utilization. The MRT is defined
as the time duration for a request to be processed by MEC
servers and the result to be returned to the mobile client
device. The resource utilization, as the name implies, indicates
the percentage of resources that are on active mode. In
other words, resource utilization is related to the number of
computers (physical machines/VMs/containers) or CPU cores



that are being used.
The main contributions of this paper are: (i) an analytical

model, which serves as a useful tool for system administrators
to evaluate the performance of different MEC architectures,
especially during the planning phase before deployment; (ii)
a case study with real data, which serves as a practical guide
for the performance analysis in MEC architectures.

The remainder of this paper is organized as follows: Sec-
tion II discusses the main related works; Section III presents
the MEC architecture that was used as the basis for the
construction of the model; in Section IV we present the SPN
model with respective metrics and case studies; and Section VI
traces some conclusions and future works.

II. RELATED WORK

Some related works propose MEC architectures in cooper-
ation with other layers. However, these papers do not exploit
different configurations of computational resources. Tong et al.
propose to deploy cloud servers at the edge of the network and
allocate the servers in geographically distributed hierarchies to
use the cloud to meet the peak loads of requests coming from
MEC [16]. Chen et al. focus on an optimization algorithm to
calculate where it will process the workload (MEC or cloud).
The authors use generic applications that require a high level
of processing to validate their solution [17]. Authors in [18]
focus on the MEC and cloud’s ability to process large data
loads. The main objective of the paper is to try to reduce the
latency between the two layers by assigning weights to the
complexities of the tasks to be performed remotely.

Some papers focus on the problem of energy consumption
of mobile devices with the aid of a MEC architecture. Zhang
et al. have studied offloading mechanisms investigating a
MEC architecture and 5G networks [19]. The authors have
formulated an optimization problem to minimize energy con-
sumption by observing processing time and data transfer. Trinh
et al. have studied the potential of MEC to mitigate the
battery limitation of IoT devices [20]. The authors have used
a facial recognition application to demonstrate the feasibility
of offloading decision policies. Mao et al. have also proposed
a battery optimization algorithm on mobile devices [21]. The
algorithm includes frequencies of the MEC server, CPU cycle,
and latency rate. An advantage of this algorithm is that de-
cisions depend only on instantaneous server-side information
without information about the distribution of the task requests.

Unlike these studies, our paper does not directly analyze
the energy expenditure of client devices. However, the MRT
metrics adopted here are proportionally related to the energy
expenditure of client devices. The longer the request takes to
execute, the higher the energy consumption.

The closest related works are those that deal with MEC
infrastructure planning. Premsankar et al. have carried out a
real experimental evaluation with a high interactivity electronic
game, but with the limitation of having only one mobile client
[22]. The work of Jararweh et al. developed an architecture
simulator that included a Cloudlet layer and a MEC layer [10].
The authors try to increase the coverage area for mobile users,

where users can make requests with minimum costs in terms
of energy expenditure. The authors only have adopted the
number of requests as an input parameter and the use of
a custom simulator without detailed explanations about its
characteristics. Liu et al. have adopted a Markov chain model
as a decision process on where tasks should be performed
(locally or on the MEC server) [23]. The model takes into
account the queuing status of the task buffer, the state of the
mobile device execution, and the network state. However, the
authors do not consider the MEC server with multiple parallel
nodes, and thus not taking advantage of the potential of server
parallelism. Badri et al. also used Markov chains to decide
where to execute requests on multiple MEC towers [24]. The
algorithm takes into account the movement of users, the cost of
communication between users and servers, the cost of running
each server, and the allocation cost.

Unlike our proposal, the works mentioned above do not ex-
ploit the resource utilization, and only some consider the MRT
metric. All the papers are limited in terms of parameterization
of the evaluations, with at most observing three architecture
configuration parameters. None of the papers (except [22])
have addressed applications with a high level of interaction.
Besides, none of the papers has adopted Stochastic Petri nets.

III. MEC ARCHITECTURE

This paper presents an SPN to model a MEC architec-
ture where resources of single servers are parallelized using
containers, for example. The main objective is to minimize
resource costs and maximize performance. Figure 1 illustrates
the MEC architecture we are considering for performance
modeling and analysis. The architecture is composed of three
parts: Mobile Devices, FrontEnd, and Edge Computing.
The mobile devices request services to the FrontEnd, and the
FrontEnd distributes the requests among the edge computing.

Mobile 
Devices

Edge Computing

Tower C

Front End 

Or

Tower A

Latency = ~ 3Xms

Latency = ~ 2Xms

Latency = ~ Xms Tower B

Fig. 1. Adopted MEC architecture for performance evaluation

The data streams are generated by applications running on
the Mobile Devices. These applications can range from health
monitoring applications [25] to gaming applications [26], for



example. Therefore, servers proximity and high computing
power are mandatory to provide efficient resource availability
and low mean response time. The FrontEnd is responsible for
receiving requests from the mobile devices and forwarding
them to the servers. For that, it is responsible for choosing
which server is best suited to perform the request. In this
work, for taking this decision, we are considering two different
parameters: (a) each server can have different configurations
(e.g., number of cores), and (b) the distance from the tower
to the mobile devices, which impacts on the server placement
decision. In the Edge Computing layer, we are considering
MEC servers with distinct latencies (Server A, Server B,
and Server C, as shown in Figure 1). Each server has a set
of slave nodes that can be, for example, containers running
microservices. We consider that each container runs in a single
server core. Even though virtual machines have been highly
adopted in the MEC research field [27], containers allow
greater flexibility to scale the computing power according to
the dynamic demand.

Given this architecture, the main objective of this work is
to propose an SPN to evaluate the performance of different
configurations of a MEC environment.

IV. SPN BASE MODEL

An SPN model is useful when a service manager wants to
plan and analyze changes in the system before implementing
them. Figure 2 presents our proposed SPN model composed
of three main blocks (highlighted in red): (i) Device block:
responsible for generating user requests; (ii) FrontEnd block:
represents the FrontEnd server and is responsible for receiving
the user requests and forwarding them to one of the available
servers. Load balancing policies can be applied at this point. In
this work the requests can be forwarded to any of the available
servers; (iii) Edge Computing block: represents the servers
(A, B, and C) that are responsible for receiving and processing
the requests, distributing the data among containers.

The Admission block consists of two places, P Arrival
and P ArrivalQueue. P Arrival represents the generation of
user requests and P ArrivalQueue represents the acceptance
of these requests in the queue. The transition T Arrival is
configured with the arrival request rate. In this model, we
consider the arrival time to be exponentially distributed, but it
can be easily modified to fit other distributions. The transition
ND (network delay) represents the sending and receiving times
of the request to the FrontEnd server. ND fires as soon as
there is a token at P ArrivalQueue and at least one token at
P FrontEndCapacity.

When the transition ND fires, the block FrontEnd is reached,
and one token is consumed from places P ArrivalQueue and
P FrontEndCapacity and one token is produced at places
P FrontEndInProcess and P Arrival. The amount of tokens
at P FrontEndInProcess represents the request queuing at
FrontEnd. The queue happens because there are no available
resources on the servers. When the request processing starts,
the tokens are consumed from the P FrontEndInProcess. If
there are available resources in one of the three servers, one of

Admission

FrontEnd
Server B

Server C

Server A

Edge Computing

T_C

T_B

T_A

P_C

P_B

P_A

FC SCC

SBC

SAC

P_FrontEndInProcess

P_FrontEndCapacity

Fig. 2. SPN model for MEC architecture

the transitions T A, T B, or T C fires and the request follows
the path to be processed.

The transitions T A, T B, and T C represent the trans-
fer time from the FrontEnd to the respective MEC servers.
Considering the Server A, the transition P A represents the
beginning of the processing. The P A fire is conditioned to the
number of available nodes to process requests at P SlavesA
(marking SAC).

Given the proposed model, it is possible to configure 15
parameters, giving the possibility to run a large number of
different scenarios. The configurable parameters are eight
timed transitions and four places related to resource capacities.
Any configuration of these parameters impacts substantially on
the mean service time and consequently, on the infrastructure
cost. The possibility of running a high number of scenarios
is one of the main contributions of this work. Note that the
proposed SPN covers only three MEC servers, but it is easily
expandable to represent more servers.

A. Performance metrics

In this work, we consider two metrics: the mean response
time (MRT), which refers to the time required for a request
to be executed on the system, and the utilization level that
calculates the resource consumption of the computing nodes.

The MRT can be obtained from the Little’s Law [28],
which relates three variables: the mean number of requests
in progress in a system, RequestsInProcess, the arrival rate
of new requests, ARR, and the mean response time, MRT .
The arrival rate is the inverse of the arrival delay, AD. Little’s
Law requires a stable system, meaning that the arrival rate
is lower than the service time. Therefore, MRT is calculated
using the equation: MRT = RequestsInProcess

ARR .
The number of requests in progress is obtained by

summing up the number of tokens in each place that
means work in progress (e.g.: P FrontEndInProcess and



P SlavesInProcessA). This number of requests is obtained by
the probabilistic expected number of requests in each place
(Esp(Place)).

The percentage of resource usage for each machine
can be obtained by the following equations: U(A) =
Esp(P SlavesInProcessA)

SAC , U(B) = Esp(P SlavesInProcessB)
SCB

and U(C) = Esp(P SlavesInProcessC)
SCC . The resource usage

is calculated by the number of tokens in the queue that are
consuming resources from the server divided by the total
resource capacity of that given server. In other words, the
usage of resources is the number of containers that are being
used. Given the utilization per server, we are also able to
calculate the usage of all available resources in the system
by using equation: U(all) = U(A)+U(B)+U(C)

n servers .

B. Case Study

The main contribution of our proposed model is the ver-
satility and flexibility to evaluate different scenarios. So, to
show the applicability of our proposed model, we present some
numerical analyzes that exemplify how our model can be used
effectively by a system administrator. We have considered the
system parameters used in [22] as input parameters for our
model. The authors evaluated a MEC architecture with a single
mobile device as a client and containers executing the services.
Authors have evaluated a 3D game called Neverball, where the
player must tilt the floor to control the ball to collect coins and
reach an exit point before the time runs out. Therefore, our
study evolves the work in [22] by performing numerical anal-
ysis to evaluate the scenarios considering multiple parameters.
In our scenarios, the MEC architecture is composed of three
servers, and the machines available for evaluation have 8, 16,
or 32 cores. We consider one of the scenarios in [22] with a
game resolution of 800 × 600 pixels. The adopted parameter
value corresponding to the processing delay of a request is
10.7ms. All used parameters were: T A = 8.3, T B = 5.2,
T C = 2.5, P A = 10.7, P B = 10.7, P C = 10.7, ND = 2.3.

Therefore, the goal of this case study is to minimize the
MRT and efficiently allocate tasks to machines that do not
present a high resource consumption rate to the game Never-
ball. The aim is to minimize the deployed resources while
still fulfilling the requested demand to lower the financial
investments. We assume that the desired MRT is up to 40ms,
and the desired usage rate should be between 40% and 50% to
avoid overload and idleness in servers. In this case, the request
arrival rate is 0.05 requests per milliseconds. The list of all 27
possible servers’ configurations is presented in Table I.

Figure 3 presents the results. Configuration #1 presents a
setup with MRT equals to 995.82ms, which is far above the
others, so we have omitted this configuration to provide better
visualization. The configurations that satisfy the requirements
(MRT and resource utilization levels) are #27, #18, #24, #15,
#9, #6, #26, #21, #12, #7, #23, #3, #14 and #8. The best
configuration is #27, which is composed of the best available
servers (all of them with 32 cores), and the second-best setting
(ServerA=16, ServerB=32, ServerC=32) is focused on giving
more computation power to servers that are far from the user.

TABLE I
POSSIBLE CONFIGURATIONS FOR CASE STUDY 1 AND 2.

Configuration Server A Server B Server C

#1 8 8 8
#2 8 8 16
#3 8 8 32
#4 8 16 8
#5 8 16 16
#6 8 16 32
#7 8 32 8
#8 8 32 16
#9 8 32 32
#10 16 8 8
#11 16 8 16
#12 16 8 32
#13 16 16 8
#14 16 16 16
#15 16 16 32
#16 16 32 8
#17 16 32 16
#18 16 32 32
#19 32 8 8
#20 32 8 16
#21 32 8 32
#22 32 16 8
#23 32 16 16
#24 32 16 32
#25 32 32 8
#26 32 32 16
#27 32 32 32
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Fig. 3. Results considering MRT ≤ 40ms.

Figure 4 presents the resource utilization of servers’ config-
urations. Now, the configurations that fit the requirement are
#25, #14, #8, #3, #16, #20, #22 and #5. In this case, the best
solution (ServerA=32, ServerB=32, ServerC=8) is based on
machines with more computation power closer to users. So,
analysing the MRT and resource utilization results, one can
note that the configurations #14 (ServerA=16, ServerB=16,
ServerC=16), #8 (ServerA=8, ServerB=32, ServerC=16), and
#3 (ServerA=8, ServerB=8, ServerC=32) fit both requirements.
In configuration #14, the solution balances the computational
power equally, but in configuration #8 and #3, the solutions
are heterogeneous, allocating more computational power on
servers that are further from the user.

V. SPN VALIDATION

To validate our proposed SPN model, we developed a
prototype to compare the MRT calculated by the model against
the MRT collected through real experiments. We simulate



TABLE II
RESULTS OBTAINED WITH THE ONE SAMPLE T-TEST

Number of Requests Sample Number MRT Mean (ms) - Experiment MRT Mean (ms) - Model Confidence Interval Standard Deviation P-Value

3 15 1116.5 1103.1 [1048.8 - 1184.1] 122.1 0.676
6 15 2437.8 2504.2 [2238.4 - 2637.2] 360 0.488
9 15 4398.3 4457.4 [4168.5 - 4628.2] 415 0.59
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Fig. 4. Results considering 40% ≤ resource utilization ≤ 50%.

three towers with one server each. Five computers with the
configuration of Intel Core i3 8GB were used in the validation.
The servers are quad-core; each core runs an independent
container. The requests are distributed among the containers
following a round-robin scheme. A synthetic system was de-
veloped to send requests obeying an exponential distribution.

The execution times are collected at the beginning and
end of each task. A local server plays the role of a global
clock. Each request used in the experiment consists of a file
containing a 10000x10000 matrix filled with random values.
When the input file is sent, the machine requests the global
clock server for the timestamp and saves it in a log. When
the data is received on another server, it performs the same
action. With these two timestamps, we get the total execution
time. From these values, the T A, T B, and T C transitions
were populated with FrontEnd’s transmission times for servers
A, B, and C. In the P A, P B and P C transitions, we add
processing times for each server.

The request generator simulates a fixed amount of clients
sending requests at the same time, FrontEnd receives all
requests simultaneously, distributing them among the servers
and consequently to the containers. To make the result more
reliable, for each server configuration, we repeat the execution
of the experiment 15 times. Considering the numbers of
requests (3, 6, and 9), the MRTs obtained with the SPN model
were respectively 1103.1ms, 2504.2ms, and 4457.4ms.

We applied the one-sample T-Test1 to compare the MRT
generated by the model with the MRT obtained in the experi-
ments. All samples presented normal distribution. To verify
the T-Test significance, we observe the p-value. Table II
summarizes the results. The p-value is higher than 0.05 in
all cases. Therefore, we cannot refute the null hypothesis of

1Sample T-Test https://tinyurl.com/yanthw4e

equality in all cases with 95% of confidence. Therefore, we
can conclude that the results generated by the model are sta-
tistically equivalent to the experiment. The model reflects the
real environment and is useful for planning MEC architectures.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed an SPN model to represent and eval-
uate the performance of a MEC architecture composed of n
servers. Our model allows estimating the Mean Response Time
(MRT) and the resource utilization level at the edge of the
network. One of the most important aspects of our model is
its evaluation flexibility due to the high number of parameters
that can be configured by the user (15 parameters), making
the tests more active and decisive. Numerical analyses were
performed using real data collected from a reference work to
show the applicability of our proposed model. Through the
numerical analyzes, we could observe the MRT behavior and
resource utilization, demonstrating the usefulness of the model
in choosing the best way to implement a MEC architecture.

As future work, we plan to extend the SPN model to include
availability metrics and measure energy. Given the extended
model, we plan to perform new numerical analyzes using
different scenarios.
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