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Highlights

 Pre-movement EEG data in planning and preparation time-period 
can be used for accurate classification of complex movement.

 Spatio-spectral features are extracted using a combination of 
stationary wavelet transform and common spatial patterns.

 The gamma and beta frequency bands had the most contribution in 
the classification of complex movements

 A subset the most effective EEG channels for the complex 
movement classification is distributed over the prefrontal and frontal 
areas of the brain. 
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Abstract 

Background and Objective: Decoding functional movements from electroencephalographic 
(EEG) activity for motor disability rehabilitation is essential to develop home-use brain-computer 
interface systems. In this paper, the classification of five complex functional upper limb 
movements is studied by using only the pre-movement planning and preparation recordings of 
EEG data. 

Methods: Nine healthy volunteers performed five different upper limb movements. Different 
frequency bands of the EEG signal are extracted by the stationary wavelet transform. Common 
spatial patterns are used as spatial filters to enhance separation of the five movements in each 
frequency band. In order to increase the efficiency of the system, a mutual information-based 
feature selection algorithm is applied. The selected features are classified using the k-nearest 
neighbor, support vector machine, and linear discriminant analysis methods.

Results: K-nearest neighbor method outperformed the other classifiers and resulted in an average 
classification accuracy of 94.0±2.7% for five classes of movements across subjects. Further 
analysis of each frequency band’s contribution in the optimal feature set, showed that the gamma 
and beta frequency bands had the most contribution in the classification. To reduce the complexity 
of the EEG recording system setup, we selected a subset of the 10 most effective EEG channels 
from 64 channels, by which we could reach an accuracy of 70%. Those EEG channels were mostly 
distributed over the prefrontal and frontal areas. 

Conclusions: Overall, the results indicate that it is possible to classify complex movements before 
the movement onset by using spatially selected EEG data. 

Keywords. EEG, Movement Classification, Wavelet Transform, k-nearest neighbors, Common 
spatial patterns, brain-computer interface.
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Introduction

In recent years, brain-computer interfaces (BCIs) have been proposed as a means for 
neurorehabilitation after e.g. stroke [1, 2]. The BCI has been shown to artificially close the motor 
control loop that is disrupted by the lesion. The BCI can decode attempted movements through the 
EEG and trigger a device such as an exoskeleton or electrical stimulation that can provide relevant 
somatosensory feedback in response to the attempted movement [3-6]. By pairing the cortical 
activity associated with the attempted movement and the somatosensory feedback, it is 
hypothesized that Hebbian-associated plasticity is induced [7]. The clinical effect of using BCIs 
for stroke rehabilitation has been outlined in several studies where there is a general tendency that 
plasticity is induced in the patients and that they improve that motor function [8-11]. To further 
refine the use of BCI in motor disability rehabilitation, the next step could be to decode functional 
movements that are more complex and clinically relevant than simple isolated movements, 
although they are important too. These complex movements can also be more easily executed with 
modern exoskeletons that have become more sophisticated. However, the limitation could be the 
decoding of the functional movements from single-trial EEG since the electrical activity that is 
recorded is a blurred image of the underlying activity due to e.g. volume conduction [12]. In 
previous studies, it has been shown that different movement types with different kinetic profiles 
can be decoded [4, 6, 13, 14], but this is primarily simple isolated movements such as dorsiflexion 
of the ankle joint or wrist extension/flexion. Moreover, different movement types of the same limb 
have been decoded as well [15, 16]. It has also been shown that more complex movements can be 
detected from the EEG such as in [17], but to be used in rehabilitation where plasticity is induced 
only pre-movement activity should be used to fulfill the strict temporal association between 
efferent activity and somatosensory feedback [18]. It is expected that the somatosensory feedback 
should arrive at the cortical level <200-300 ms after the maximal efferent activity [7], which is at 
the time point where the motor control signal is sent to the spinal cord. This limits the amount of 
discriminative information that can be used to decode the intended movements. Despite the limited 
spatial resolution of the EEG, the hardware (amplifiers and electrodes) and the signal processing 
techniques improve and it may be possible to decode complex functional movements from single-
trial EEG. 

The time-frequency analysis of non-stationary EEG signals using wavelet transform is a widely 
used feature analysis technique in BCI systems [19-22]. Mousavi et al. have used wavelet packets 
(WP) decomposition, followed by common spatial pattern (CSP) filtering to analyze BCI signals 
[21]. CSP is commonly used in a two-class problem in BCI studies, but it can be used in multi-
class problems as well [12, 23-25]. It finds a linear combination of the band-pass filtered EEG 
channels to increase the separability of two different classes of movements. It attempts to increase 
the variance of one class and simultaneously decrease the variance of the other class. This 
methodology is very useful in the BCI systems because the variance of a band-pass filtered signal 
is equal to its band-power. In [22], the discrete wavelet decomposition (DWT) was employed 
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before a regularized CSP filtering for classification of simple center-out movements in four 
different directions. However, the time segment extracted for their analysis was one second before 
and after the movement cue. In other words, they have used the EEG data for the time of movement 
preparation, execution and a post-movement period, which is not well suited for the online BCI 
applications for inducing neural plasticity for neurorehabilitation. 

The aim of this study is to decode five different complex functional upper limb movements that 
are trained in rehabilitation clinics by using only the EEG data corresponds to the pre-movement 
planning and preparation period. Here, we used the stationary wavelet transform (SWT) to 
decompose EEG signals into various sub-bands following by CSP filtering for classification of 
five different complex movements. Moreover, it is investigated what the effect of the number of 
channels is as well as the spectral contribution to the decoding. This will provide an estimate of 
the feasibility of developing a 5-class BCI that can decode functional movements from single-trial 
EEG using only motor planning activity. A brief review of the advantages and disadvantages of 
the current and previous similar studies is presented in Table 1.

Table 1. Comparison of the advantages and disadvantages for the current and previous studies.

Study Task Advantages Disadvantages

[4]
Motor execution/imagery of 
four isometric palmar 
grasps 

Using signals only 2 s before 
movement 
Employing stroke patients

Mean accuracy of 40% in four 
classes

[17] Reaching and grasping the 
objects in a horizontal plane

Studying different numbers of 
channels

Mean accuracy of 65.9% in four 
class
Using signals after movement onset

[22]
Center-out movement in 
four orthogonal directions 
in 2D horizontal plane

Mean accuracy of 80.2 % in 
four classes

Simple movements limited to the 
2D horizontal plane
Using signals after movement onset

[15]

Upper-limb gestures (elbow 
flexion/extension, arm 
supination/pronation and 
hand open/close)

Six classes of different kind of 
upper-limb gestures in the 3D 
space

Using signals after movement onset
Mean accuracy of 55% in six 
classes

[46]

Foot reach to maximum 
voluntary contraction with 
fast+high and slow+low 
forces

Using signals only 2 s before 
movement 
Employing stroke patients

Two classes of simple movements 
Mean ACC of 57% in 2 class

[47] Open and close the affected 
hand  in stroke patients

Employing stroke patients Mean accuracy of 69.5% for
two classes
Using signals after movement onset

*This 
Study

Five different complex 
functional upper-limb 
movements

Using signals only 3s before 
movement
Mean accuracy of 94.0 % in 
five classes
Studying different numbers of 
channels

Employing only healthy subjects
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Methods

A. Subjects

Nine right-handed healthy volunteers participated in this study (5 male and 4 female, age: 23±3 
years). All procedures were approved by the local ethics committee (N-20130081), and the 
experiments were conducted according to the Helsinki Declaration. All subjects gave their written 
informed consent prior to participation. 

B. Experimental protocol

Initially, the subject was seated in a chair and a 64-channel active EEG cap using the 10-10 system 
was mounted (g.GammaCap, Guger Technologies, Austria). The EEG was amplified (g.HIamp, 
Guger Technologies, Austria) and referenced to the left and right ear lobe. The EEG was recorded 
with a sampling frequency of 512 Hz. Continuous EEG was recorded while the subject performed 
five different functional tasks of the upper extremities, each of the five functional tasks was 
performed 50 times in total. The movements were performed in blocks of 10 movements of the 
same task; the order of the blocks was randomized. Each movement was verbally cued by the 
experimenter who indicated the initiation of the movement by counting down from three, after 
which the experimenter placed a marker in the continuous EEG. This was used to synchronize the 
EEG into epochs in the processing. During this pre-movement period, and during the movement 
execution, the subject was instructed to sit as still as possible and avoid blinking. Each movement 
was separated by ~5-10 s. The starting and ending position for each movement was when the 
subject rested both hands in the lap. The five different movements were: 1) Reaching out and 
picking up an empty glass from a table with the right hand, raise the glass to the mouth and place 
it on the table again (the position of the glass was fixed), 2) a ball toss from the right to the left 
hand, 3) lifting a tray ~20 cm up from the table with both hands and placing it on the table again, 
4) push a glass forward from one position to another on the table with the right hand (the distance 
between the positions was 20 cm), 5) pick up a pen and write the letter “H” using the right hand. 

C.  Preprocessing

First, the EEG data were filtered between 0.3 Hz to 70 Hz by means of a 4th order zero-phase 
Butterworth filter to remove the direct current shifts and to remove the high-frequency noise 
components in the signal. In addition, the power-line interference was suppressed with a notch 
filter at 50 Hz. To remove artifacts caused by eye-blinks, eye movements, and muscle activities 
from the face, neck and shoulder movements a SOBI blind Source Separation algorithm [27] from 
the automatic artifact removal (AAR) toolbox as an EEGLAB plug-in [28] was used. Afterward, 
we re-referenced the data to a common average reference where the average across all channels as 
an estimate of common noise reference was removed from each channel independently [29]. In 
this study, we only used the EEG signals in a three seconds time-window before the physical 
movement. Therefore, the continuous EEG data were segmented into three seconds trials leading 
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to the movement initiation. Fig. 1 shows an example of single-trial EEG data in a three seconds 
time-window before the movement for 5 different movement types in selected channels from 
frontal, central and parietal lobes. After the pre-processing step, the data is further processed using 
the proposed algorithm as described in the following sections. An overview of the proposed 
algorithm as a block diagram is presented in Fig. 2. 

Figure 1. Single-trial pre-movement EEG signals after preprocessing in F1, Fz, F2, C3, Cz, C4, P1, Pz and P2 channels in 5 
movements.

Figure 2. The block diagram of the proposed algorithm for classification of hand movements. Splitting the pre-
processed data into training and testing folds during the cross-validation is indicated. After frequency sub-band 
decomposion, the training data create the best CSP filters, select the best features and train the classifier 
model. The learned CSP matrix, best features, and classifer model are used in the testing phase for the 
evaluation.
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(1)

D. Feature extraction 

D.1.Wavelet decomposition analysis. Here, we used the stationary wavelet transform (SWT) to 
decompose EEG signals into various sub-bands. The SWT can overcome the problem of shift-
variance that exists in the DWT by removing the decimation step at each decomposition level [30].  
Daubechies mother wavelets have resulted in more accurate BCI systems in other studies [31, 32]. 
Hence, in this study, we used the db4 mother wavelet for SWT decomposition. By applying eight 
levels of SWT decomposition on the filtered EEG signals, eight wavelet details and one wavelet 
approximation sub-bands were created (Fig. 3). According to 256 Hz sampling rate of the signal, 
after the decomposition, the following frequency sub-bands were created: 64-128 Hz, 32-64 Hz, 
16-32 Hz, 8-16 Hz, 4-8 Hz, 2-4 Hz, 1-2 Hz, 0.5-1 Hz, 0.25-0.5 Hz, and 0-0.25 Hz. The highest 
frequency sub-band was not used because the signal has been previously filtered up to 70 Hz in 
the preprocessing step. Therefore, we had nine sub-bands to produce features. For comparison, we 

also used the filter-bank and DWT method with the same frequency sub-bands as the SWT. The 
filter-bank decomposition was made by using 4th order zero-phase Butterworth band-pass filters 
with the cut-off frequencies of 32-64 Hz, 16-32 Hz, 8-16 Hz, 4-8 Hz, 2-4 Hz, 1-2 Hz, 0.5-1 Hz, 
0.25-0.5 Hz, and 0-0.25 Hz.

D.2.Spatial filtering. In the next step, we spatially filtered each filter bank or wavelet sub-band 
using a CSP spatial filter. In this research, we applied a CSP in each sub-band over all EEG 
channels to increase the difference between various movement classes. The one-versus-all (OVA) 
scheme was used to obtain multiple binary CSPs for this multi-class problem. If the band-pass 
filtered EEG data denoted as S, the normalized covariance matrix is calculated as follows:

𝐶 =  
𝑆𝑆𝑇

𝑡𝑟𝑎𝑐𝑒(𝑆𝑆𝑇)

Where “T” denotes the transpose operator and the trace (.) is the sum of the diagonal elements of 
a matrix. For each of the binary classes, the class covariance (i.e.,  or is calculated by 𝐶1 𝐶2) 
averaging the covariance matrix over the trials of each class. Considering , the  𝐶𝑐 = 𝐶2

‒ 1𝐶1
Eigen decomposition of the Cc results in Cc = UɅɅUT, where U is the eigenvector matrix and Ʌ 

Figure 3. Magnitude frequency responses for SWT sub-band decomposition filters based on db4 mother wavelet.
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is the diagonal eigenvalue matrix with the eigenvalues are sorted in descending order. The CSP 
filter is comprised of the first m columns of eigenvector matrix associated with the m highest 
eigenvalues of the matrix. The feature vector of dimensions was obtained from  𝐶𝑐 (𝑚 × 5 × 9) 
the logarithm of variance over the first m outputs from five OVA-CSPs in nine wavelet sub-bands. 
For setting the parameter m, we obtained the accuracies over all subjects for training data 
containing the first recorded session with different values of m in one loop. The highest accuracy 
was obtained when using m=17. 

E. Feature selection 

A high dimension feature space is usually associated with a higher data collection cost, more 
difficulty in model interpretation, a higher computational cost for the classifier, and decreased 
accuracy of the system. Therefore, one of the important parts of the system is selecting an 
informative feature subset.  The mutual information (MI) based feature selection methods have 
been successfully used with the filter-bank CSP (FBCSP) approach in BCI studies to select the 
best subset of features that maximize the MI between class labels and feature sets [22, 33, 34]. In 
this study, we used the MI [35] to choose a subset of features that provide the most discrimination 
in classes, produce higher classification accuracy and increase the efficiency of the system. 
Regarding the selection of m=17 in this study, over the total number of 765 features, we selected 
the first N=95 features for each subject. This parameter (i.e. N) was obtained by an optimization 
process on the training data across all subjects. The training data of each subject were divided into 
the estimation and the evaluation subsets based on 10-folds cross-validation. The MI criterion was 
used to sort the features in the estimation subset in descending order while the accuracy was 
calculated when using the first N features from the sorted list on the evaluation subset. The average 
accuracy across all folds and all subjects was optimized by varying the N parameter. The best result 
was obtained when using the first N=95 features. 

F. Classification

To discriminate between these five classes, the k-nearest neighbors (K-NN) classifier was 
employed. This classifier assigns the class label of new data based on the class with the most 
occurrences in a set of k nearest training data points usually computed using a distance measure 
[34]. In this study, we used the Manhattan (L1-Norm) distance and K=1 for K-NN implementation. 
To compare the efficiency of K-NN, we also used support vector machine (SVM) and linear 
discriminant analysis (LDA) as other commonly used classifiers in similar studies [4, 6, 14, 15, 
22]. To apply LDA and SVM binary classifiers to our multi-class problem, the one-versus-one 
technique is used. 

G. Evaluation

The following three performance parameters were calculated in order to quantify the classification 
performance for different methods: Accuracy (in %) - correctly predicted observations with respect 
to all observations. Precision (in %) - correctly predicted positive observations with respect to all 
predicted positive observations. Recall (in %) - correctly predicted positive observations with 
respect to the total observations. For calculation of the classification performance parameters, the 
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data set of each subject is divided into a training and test set. The training set is used for training 
the classifier model and selecting the best features, whereas the test set was used for evaluating 
the classification. For this aim, 10-fold cross-validation is used. 

Paired-wise t-test is used for statistical comparison of the performance parameters of different 
methods. The level of significance was considered as P=0.05.

In BCI problems, information transfer rate (ITR) or bit rate (i.e. bits/min) is usually a matter of 
concern. As described in [12], the number of bits, or B, transmitted per a single-trial of multi-class 
selection can be calculated as:

1log( ) log( ) (1 ) log
1

PB N P P P
N

       

Where N is the number of possible classes and P is the classifier accuracy. ITR or bits/min can 
then be computed by dividing B by the trial duration in min.  

Although the online classification was not included in the scope of this work, in order to evaluate 
the overall feasibility of the proposed method for later investigations in online mode, we calculated 
the computational cost for running one trial movement classification. The computational cost was 
defined as the time needed for extracting selected features and obtaining the class labels using the 
trained classifier in a single-trial. To obtain this execution time, we used the MATLAB® R2016a 
on a PC with an Intel Core i7 CPU.

Results

In this paper, we studied the classification of five different kinds of movements with the upper 
extremities on the time segment of 3s before the movement using wavelet decomposition and CSP 
filtering. The broad frequency range of the EEG signal was decomposed to several frequency sub-
bands. In this study, we used all sub-bands between 0.3-70 Hz that includes the full EEG spectrum. 
The classification results and efficiency of these sub-bands and various supporting analyses are 
provided in this Section.

A. Mother wavelet selection

The choice of the mother wavelet is an important issue and can affect classification performance. 
In this study, the classification accuracies were based on seven different mother wavelet functions: 
db3, db4, db6, coif3, Bior2.2, sym3, and sym4. The obtained results are shown in Fig. 4. Although 
there is not any significant difference between the accuracies obtained from different mother 
wavelets, the db4 mother wavelet outperformed others on average, and therefore it was used for 
all calculations in this paper.

(2)
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B. Classification results

 The summary of the classification performance parameters achieved across all subjects for the 
FBCSP, the DWT-CSP and the SWT-CSP with K-NN, SVM, and LDA classifiers are shown in 
Table 2. Performance parameters include accuracy, precision, and recall. We obtained an average 
(± standard deviation) classification accuracy of 94.0±2.7% using SWT-CSP followed by K-NN 
classification for 5-class movement discrimination. With the same features, the average accuracies 
of 88.9±7.4 and 60.0±14.7 were calculated with SVM and LDA, respectively. Because of the better 
performance of K-NN in comparison to SVM and LDA, K-NN was used for further analysis. When 
using K-NN as the classifier, different feature extraction methods are compared in the first three 
rows of Table 2. The results showed that SWT-CSP in terms of all performance parameters 
significantly outperformed (p-value < 0.01) both DWT-CSP and FBCSP. On the other hand, with 
the fixed K-NN classifier, the average (± standard deviation) ITR of 5.2± 4.3, 12.14±3.7 and 13.5± 
1.2 Bit/min were obtained for FBCSP, DWT-CSP and SWT-CSP feature extraction methods, 
respectively. This shows the superiority of SWT-CSP over FBCSP and DWT-CSP in terms of ITR 
criterion. Therefore, The SWT-CSP feature extraction method was selected to be used for further 
analyses. 

The results of classification accuracy performances for all subjects using different feature 
extraction methods including, SWT-CSP, FBCSP, and DWT-CSP with K-NN classifier are 
presented as bar charts in Fig. 5. Subject 2 showed the best classification result (accuracy of 
98.8±1.9%), while the worst accuracies were obtained for subjects 6 and 9 (90.4±9.3% and 
92±6.2%, respectively).

Figure 4. Classification accuracies based on seven different mother-wavelet functions including db4, db3, db6, 
coif3, bior 2.2, sym3, and sym4.
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Table 2. Summary of the average (± standard deviation) classification performance parameters obtained across all 
subjects for three feature extraction methods of FBCSP, DWT-CSP, and SWT-CSP and three classification methods 
of K-NN, SVM and LDA.

Classification Feature Extraction Accuracy Precision Recall

FBCSP 62.6±17.8 61.2±22.1 58.9±21.6
DWT-CSP 89.0±9.9 89.1±18.7 89.0±16.3K-NN

SWT-CSP 94.0±2.7 95.1±2.1 94.0±2.7
FBCSP 58.1± 10.3 61.0± 12.0 58.1± 22.3

DWT-CSP 88.7±8.0 91.0±8.6 88.7±10.2SVM
SWT-CSP 88.9± 7.4 90.6± 6.3 88.9± 7.4

FBCSP 45.6± 11.9 43.1± 12.5 45.6± 11.7
DWT-CSP 56.6±16.7 54.1± 22.9 56.4±22.2LDA
SWT-CSP 60.0± 14.7 58.0± 12.8 60.0± 11.4

Figure 5. K-NN classification accuracies of all subjects for three feature extraction methods: FBCSP, DWT-CSP 
and SWT-CSP.
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C. Contribution of different frequency sub-bands

In this part, we studied the contribution of different wavelet frequency sub-bands in the 
classification performance. For this purpose, the classification accuracy was obtained for each 
frequency band alone. The calculation was performed without using feature selection. The results 
are reported in Fig. 6. According to the obtained results, high-frequency sub-bands had better 
performance compared to low frequency. The results showed that using either the beta (16-32 Hz) 
or the gamma (32-64 Hz) sub-bands, a classification accuracy over 90% can be obtained. 

In order to investigate the contribution percent of different frequency sub-bands in MI-based 
feature selection, the average number of the selected features of each frequency sub-band obtained 
by MI selection across subjects and 10-folds of cross-validation was calculated and divided by the 
total number of features. Fig. 7 demonstrates these percent’s contribution for each frequency sub-
band. This figure shows that more than 70% of the MI-based selected features belong to the alpha, 
beta and gamma sub-bands. 

D. Channel selection

According to [37], many of the EEG channels may represent redundant information. This means 
that there is no need to analyze all 64 EEG channels [38]. On the other hand, recording from a 
large number of EEG channels involves high costs, user difficulties and timely procedure for 
setting up, which makes it unsuitable for online applications and clinical applications. Therefore, 
in this work, we aimed to study how to select a small subset of EEG channels while keeping the 
high classification performance to reduce the complexity of the system. For this purpose, the 
absolute channel weight values of the corresponding CSP filters for the best 10 selected features 

Figure 6. Average performance accuracy of all subject in different frequency ranges. 
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in each subject were normalized into the range (0, 1). The obtained normalized channel weight 
vectors were averaged across 10 folds and across subjects. Fig. 8 depicts the topographic 
distribution of the averaged channel weight vector for all 64 channels. This topography map shows 
the representative contribution of the prefrontal and frontal EEG channels in the classification of 

Figure 8. The topographic distribution of the averaged channel weight vectors across the selected features 
and across subjects.

FP1 FPZ FP2
AF7 AF3 AF4 AF8

F7 F5 F3 F1 FZ F2 F4 F6 F8

FT7 FC5 FC3 FC1 FCz FC2 FC4 FC6 FT8

T9 T7 C5 C3 C1 Cz C2 C4 C6 T8 T10

TP9
TP7 CP5 CP3 CP1 CPZ CP2 CP4 CP6 TP8

TP10

P7 P5 P3 P1 PZ P2 P4 P6 P8

PO7 PO3 POz PO4 PO8
O1 Oz O2

Figure 7. Average number of selected features in each frequency sub-band with MI feature selection criterion 
across subjects and cross-validation folds.
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different movement tasks during movement preparation and planning period. Also, some 
electrodes in the central and temporal areas have considerable weights on the map. 

For selecting the best subset of important channels, the channels were sorted according to their 
averaged channel weight vector in the descending order. Fig. 9 represents the average classification 
accuracies obtained when only the n first number of the EEG channels from the sorted list were 
used in the proposed algorithm. According to this figure, by using only 10 first channels, we can 
reach a classification accuracy close to 70%. Comparing this result with the previous results 
obtained when using all 64 channels, shows nearly 24% of accuracy loss in return for an 85% 
reduction in the number of used channels. The average computational cost of the proposed method 
for a single-trial movement feature extraction and classification using all 64 channels was 
0.93±0.03 sec, whereas after reducing the number of channels into 10 channels, the average 
computational cost was reduced to 0.72±0.02 sec. 

Discussion

In this paper, five complex movements of the upper limb are classified using the combination of 
CSP and SWT. On the contrary to many other studies, only the EEG signal before the start of 
movement was used to classify these movements. Applying this processing limitation makes it 
possible to implement the application and use it in BCI systems for neurorehabilitation where 
neural plasticity is induced. In addition, another goal of this study was to analyze the effect of 
reducing the number of recorded channels on classification accuracy of the system, so that it can 
be used for online applications and it is feasible to use in a clinical setting. In the previous sections, 

Figure 9. Average classification accuracies for different number of channel subsets.
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signal processing techniques were used and the results of them presented. In this section, we will 
discuss the results obtained.

A. Major findings

A multi-class complex movement decoding problem is successfully addressed by combining the 
method of extracting the SWT and CSP features with 9 healthy users. In addition, FBCSP and 
DWT-CSP methods, which have been previously employed in motor imaginary/execution 
classification [22, 33, 39], are used with the same frequency bands. The results of this work showed 
that SWT-CSP outperformed both FBCSP and DWT-CSP in all classification performance 
parameters and in information transfer rate. The reason may lie in the over complete representation 
of the SWT which comes from overlaps between adjacent frequency sub-bands. By applying a 
proper method to select the appropriate features, as used in this paper, the probability of extracting 
the optimal features from this over complete representation is increased. Our focus on this paper 
was proposing a method for advanced feature extraction and classification of the complex 
movements from pre-movement EEG signals. Hence we chose the K-NN algorithm because it’s 
useful and simple application in multi-class problems. Other advantages of this classification 
method are that it needs only one hyperparameter setting and has a low computational cost. In our 
analysis, we compared K-NN classifier with both LDA and SVM algorithms and it outperformed 
both of the compared methods. 

With the evaluation of different frequency bands, the gamma, beta, and alpha bands had major 
contributions in the MI-based selected subset of features (Fig. 7). Also, when the accuracy of the 
classification was calculated by using single-frequency sub-bands, the beta and gamma bands led 
to the highest accuracies (Fig. 6). In previous studies, BCI systems that use motor execution or 
motor imagery classification have often reported the significant role of the mu and beta bands in 
the production of sensory-motor rhythms [12]. Although most of these studies have used the signal 
from before to after the movement or motor imagery, we only used the time before the start of the 
movement. In line with these results, the power modulation of the beta and gamma bands during 
motor execution was reported in [40], and also the effect of the gamma band during movement 
preparation and planning period has been emphasized in [41].

One of the objectives in this study was to reduce the number of EEG channels, so the system 
complexity is reduced in terms of setup time and cost, and potentially the user-friendliness for 
home users. For this objective, a subset of the best channels was selected by employing the MI 
criterion. Studying the MI-based selected channels showed a spatial distribution of them over the 
prefrontal and frontal areas (Fig. 8). In [42], the anatomy of the cortex has been studied in different 
areas related to the direction of arm movement. They reported the gamma band from the frontal 
and central areas had the most contribution to the movement direction. According to the functional 
actions of the frontal area that carries out many activities, such as planning, decision-making, and 
movement execution, these results are expected. The function of the system has been recalculated 
using only this selected subset of channels. With the results obtained, only by using 10 channels, 
we could achieve the 70% accuracy and reducing 22% runtime of the algorithm. Moreover, the 
setup time will be reduced. To design a more practical BCI system, a higher computational speed, 
a lower complexity of the method and reducing setup time has great importance. 
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B. Limitations

In the current study, all steps including the feature extraction, model learning, and classification 
were implemented offline. However, for a more practical BCI system, which was not the scope of 
this study, there is a need to develop an online system and reduce the computational time for 
classification further to obtain the strict timing needed for neurorehabilitation purposes. In future 
studies, the reduced number of channels can be used in areas that are specific for movement, so 
that more information can be obtained. On the other hand, this test has been performed only on 
healthy subjects, while one of the requirements for the development of the uses of this 
classification for BCI applications is to help people with motor disabilities while they attempt to 
do the movement. By doing this, the results can be generalized to patient groups. On the other 
hand, in some cases the EEG activity after a stroke because of damage the motor cortex makes a 
challenge to detect movement intentions. In this case, adding other signal related to movement like 
EMG can be useful [47]. 

There are, of course, many other useful features that can be extracted from the EEG signals for 
classification of movements such as higher-order moments or other nonlinear
statistical features that have not been tested in this work. However, our initial intention was to 
focus on combining the CSP as a powerful spatial filter with wavelet or filter-bank spectral features 
for the classification of movements. Other features as indicated can also be further studied in future 
works.

Conclusion

In this paper, the classification of five different complex functional upper limb movements using 
only time segment before the start of movement was studied. For this purpose, a time-frequency 
feature obtained by SWT, combined with CSP was extracted. Overall, the K-NN algorithm 
performed better as compared to LDA and SVM. According to the results, this method has been 
able to classify 5 different movements successfully with obtaining a mean accuracy of 94%. To 
study different frequency bands, gamma and beta had the most contribution to performance, which 
can indicate the relationship between activity related to movement planning time and these 
frequency bands. On the other hand, by studying the effect of different channels selected by mutual 
information, most of the selected channels were placed on the frontal area. According to the above 
results, it is possible to use only gamma and beta bands of the frontal area and obtain similar 
results. Considering that only the time before the movement was extracted it can be used to design 
online BCI systems for neurorehabilitation.
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