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ABSTRACT

The shamisen is a Japanese three-stringed lute. It is a chor-
dophone that has the front of the body covered by a ten-
sioned membrane which greatly contributes to the distinct
sound of the instrument. Although the shamisen is a tra-
ditional Japanese instrument, it is a rare instrument in the
rest of the world, making it mostly inaccessible by the ma-
jority of artists. To our knowledge, no physically modelled
synthesizer of the shamisen is available, forcing produc-
ers and musicians to use samples. The objective of this
paper is to make the shamisen’s distinct sound more acces-
sible to digital music artists. The real-time implementation
of the shamisen physical model is presented along with
the derivation of solution using the finite-difference time-
domain (FDTD) methods. The digital instrument sounds
mostly as intended, though lacking the shamisen’s distinct
buzzing sound requiring further development.

1. INTRODUCTION

The shamisen (see Figure 1) is a Japanese three-stringed
lute, with origins in China. This instrument is a chordo-
phone that has a membrane covering its soundbox; this
stretched membrane contributes to the distinct sound of the
instrument. The instrument is played using a bachi, a large
plectrum which is held in one hand, while using the fingers
of the other hand to pinch the strings against the neck of the
instrument, allowing the user to play different pitches. The
timbre of the shamisen has a very distinct buzzing which is
associated with a low nut which lets a vibrating string come
in the contact with the neck [1] and the specific playing
technique that increases the percussiveness of the instru-
ment by hitting the body with the bachi during the plucking
of the strings [2].

The main goal of this paper is the digitalization and real-
time simulation of an instrument that, due to its rarity, is
not easily available to the majority of artists. Currently, the
only method of obtaining shamisen sounds without having
the instrument at hand is by using a sample of the instru-
ment [4] or one of the audio plugins [5–7] which are also
based on a sampled shamisen. Usually, a single sample
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Figure 1. The shamisen (taken from [3]).

of a note played at a single pitch is pitch-shifted enabling
artist to play melodies and chords. Such a method relies
on the recordings being done in an anechoic chamber to
reduce the effects of the room response. Moreover, due to
only usually recorded one note sample, the pitch shifting
can introduce artifacts. Even when the sampling is done
for all possible pitches on each string, the user is stuck
with the way the performer played the instrument during
the recording. To rectify these undesirable qualities of the
sampling method and to create more scope for skillful ar-
ticulation when performing, the shamisen can be simulated
using a physical model instead.

Although several stringed musical instruments have been
mostly simulated using digital waveguides [8–10], in this
paper we model the shamisen by using Finite Difference
Time Domain (FDTD) methods [11]. FDTD methods re-
quire developing a full mathematical description of the sys-
tem. Such a description development uses partial differ-
ential equations which are discretized using FDTD meth-
ods, yielding finite difference schemes (FDSs). FDTD
methods provide better spatial accuracy when the model
has frequency-dependent damping and dispersion [12,13];
in addition, FDTD methods are more flexible as no as-
sumptions are being made about the linearity of the so-
lution [11]. Alternatively, a modal approach – such as
in [14, 15] – could be used as it is generally much more
efficient. Additionally, modal synthesis for 2D systems
appeared in [16, 17], however, to retain generality for con-
trol and easier implementation when connecting multiple
models, FDTD methods are chosen here . In addition,
the nonlinear collision of the bachi with the membrane
can be modelled straight-forwardly using FDTD methods.
The real-time implementation of similar models, modelled
using FDTD approach have been achieved by the authors
of [18], where a real-time banjo is recreated using a field
programmable gate array and by the authors of [19] where
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a real-time implementation of tromba marina is achieved
using C++ and the JUCE framework [20]. In this work, we
offer a real-time implementation of a physical model of
the shamisen based on FDTD methods due to its benefits
regarding flexibility and accuracy.

This paper is organized as follows: Section 2 presents
the physical models used to model the shamisen and Sec-
tion 3 shows the discretization of these models. Section
4 shows details of the implementation such as parameter
choices, excitation and the output of the system, a high
level overview of the calculation order and the graphical
user interface and control. Section 5 shows the results re-
garding output sound and speed of the algorithm and dis-
cusses these, while the future work as well as concluding
remarks are presented in Section 6.

2. MODELING THE SYSTEM

The shamisen can be simplified down to five major parts
that make up the whole instrument: the three strings, the
bridge and the membrane. The rest of the body is excluded
to reduce model complexity which is desirable in order to
achieve a model capable of running in real-time. This sec-
tion will derive partial differential equations (PDEs) in a
form

ℒ𝑞 = 0, (1)

for the mentioned parts of the instrument in isolation.
Here, ℒ is a partial differential operator and 𝑞 = 𝑞(𝑥, 𝑡)
with time t and spatial coordinate 𝑥 ∈ 𝒟, where domain 𝒟
is one-dimensional for the strings and the bridge, and two-
dimensional for the membrane. Moreover, the subscripts
‘s’, ‘b’ and ‘m’ indicate that the variables are used for the
strings, bridge and the membrane respectively.

2.1 Damped Stiff String

Consider a damped stiff string of length 𝐿s defined over
domain 𝒟 = 𝒟s = [0, 𝐿s]. Recalling Equation (1), the
dependent variable 𝑞 = 𝑢(𝑥, 𝑡) describes the transverse
displacement of the string. Furthermore, the operator ℒ =
ℒs can be defined as

ℒs = 𝜌s𝐴s𝜕
2
𝑡−𝑇s𝜕

2
𝑥 + 𝐸s𝐼s𝜕

4
𝑥

+2𝜌s𝐴s𝜎0,s𝜕𝑡 − 2𝜌s𝐴s𝜎1,s𝜕𝑡𝜕
2
𝑥.

(2)

Here, 𝜕𝑡 and 𝜕𝑥 indicate a partial differentiation with re-
spect to time and space respectively. Furthermore, various
parameters are used to define the string behaviour such
as the material density 𝜌s, (circular) cross sectional area
𝐴s = 𝜋𝑟2, 𝑟 being the radius of the string, tension of the
string 𝑇s, Young’s modulus of the string material 𝐸s and
area moment inertia 𝐼s = 𝜋𝑟4/4, along with damping co-
efficients 𝜎0,s and 𝜎1,s.

2.2 Damped Bridge

The bridge of the shamisen is modeled as a damped linear
bar of length 𝐿b with domain 𝒟b = [0, 𝐿b], and dependent
variable 𝑞 = 𝑣(𝑥, 𝑡) describing the transverse displace-
ment. The operator ℒ = ℒb is similar to ℒb in Equation

(2) without the tension term resulting in the following

ℒb = 𝜌b𝐴b𝜕
2
𝑡 +𝐸b𝐼b𝜕

4
𝑥

+2𝜌b𝐴b𝜎0,b𝜕𝑡 − 2𝜌b𝐴b𝜎1,b𝜕𝑡𝜕
2
𝑥.

(3)

Various parameters are used to define the behaviour of the
bridge, such as the material density 𝜌b, (rectangular) cross
sectional area 𝐴b = 𝑏𝐻b, 𝑏 being the width and 𝐻𝑏 the
thickness of the bridge, the Young’s modulus of the bridge
material 𝐸b and the area moment inertia 𝐼b = 1

12𝑏𝐻
3
b ,

along with damping coefficients 𝜎0,b and 𝜎1,b.

2.3 Damped stiff membrane

Finally, the membrane covering the instrument’s soundbox
is modelled as a rectangular damped stiff membrane with
side lengths 𝐿𝑥 and 𝐿𝑦 , domain 𝒟 = 𝒟m = [0, 𝐿𝑥] ×
[0, 𝐿𝑦] and dependent variable 𝑞 = 𝑤(𝑥, 𝑦, 𝑡). The stiff-
ness of the membrane is simulated using a Kirchhoff thin
plate stiffness term. Using the 2D Laplacian

∆ , 𝜕2
𝑥 + 𝜕2

𝑦 , (4)

where 𝜕𝑥 and 𝜕𝑦 indicate partial differentiation with re-
spect to two spatial dimensions, the operator ℒ = ℒm can
be defined as:

ℒm = 𝜌m𝐻𝜕2
𝑡−𝑇m∆ + 𝐷∆∆

+2𝜌m𝐻𝜎0,m𝜕𝑡 − 2𝜌m𝐻𝜎1,m𝜕𝑡∆.
(5)

Again, various parameters are used to define the behaviour
of the membrane, such as the material density 𝜌m, the
membrane thickness 𝐻m, the tension of the membrane 𝑇m,
the stiffness parameter 𝐷 = 𝐸m𝐻

3
m/12(1 − 𝜈2), where

𝐸m is the Young’s modulus of the membrane material and
Poisson ratio 𝜈, along with the damping coefficients 𝜎0,m
and 𝜎1,m.

2.4 Boundary Conditions

Something about distributed systems requiring definitions
for what happens at the boundaries.

The string is clamped at the boundaries according to

𝑢 = 𝜕𝑥𝑢 = 0, where 𝑥 = 0, 𝐿s. (6)

Similarly, the membrane is clamped according to

𝑤 = n · ∇𝑤 = 0 (7)

where ∇𝑤 denotes the gradient of 𝑤 and n is a normal to
the membrane area at the boundary.

The bridge is free at the boundaries according to

𝜕2
𝑥𝑣 = 𝜕3

𝑥𝑣 = 0 where 𝑥 = 0, 𝐿b. (8)

2.5 The complete system

Until now, only systems in isolation have been consid-
ered, i.e., of form (1). To connect the different compo-
nents, a spatial Dirac delta function 𝛿(𝑥−𝑥c) can be used,
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which locates the interaction force between two compo-
nents to the location 𝑥c ∈ 𝒟. The complete system for the
shamisen can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℒs𝑖𝑢𝑖 = −𝛿(𝑥− 𝑥s𝑖)𝐹t𝑖, (9a)

ℒb𝑣 =
3∑︀

𝑖=1

𝛿(𝑥− 𝑥b𝑖)𝐹t𝑖 (9b)

− 𝛿(𝑥− 𝑥bL)𝐹bL − 𝛿(𝑥− 𝑥bR)𝐹bR,

ℒm𝑤 = 𝛿(𝑥− 𝑥mL, 𝑦 − 𝑦mL)𝐹bL (9c)
+ 𝛿(𝑥− 𝑥mR, 𝑦 − 𝑦mR)𝐹bR,

where subscript 𝑖 indicates the 𝑖’th string, 𝐹t𝑖 is the force
between individual strings and the bridge and 𝐹bL and 𝐹bR
are the forces between the bridge and the membrane at the
left (L) and right (R) sides of the bridge respectively. The
locations 𝑥s𝑖 and 𝑥b𝑖 are the locations where the bridge
connects to each individual string and vice versa, the ‘s’
subscript denotes that it is a location along a string and the
‘b’ subscript denotes the location on the bridge. The three
strings have one connection each, while the bridge is con-
nected to all three strings. In addition, the locations with
subscripts ‘bL’ and ‘mL’ correspond to where the mem-
brane connects to the left side of the bridge and vice versa.
The same is indicated for the right side using subscripts
‘bR’ and ‘mR’.

3. DISCRETIZATION

This section discretizes the full system described in (9) us-
ing FDTD methods. These methods subdivide continuous
systems (such as described in the previous section) into
time samples and grid points in space. The notation used
in this section follows [11].

3.1 Finite Difference Operators

The first step of implementing FDSs is to define a sampling
interval of the continuous system. Time is discretized as
𝑡 = 𝑛𝑘, with temporal index 𝑛 ∈ [0, 1, 2...∞) and sam-
pling interval 𝑘 = 1/𝑓s where 𝑓s is the sample rate. Space
is discretized as 𝑥 = 𝑙ℎ, where the dimension of spatial
index 𝑙 is determined by the number of dimensions of the
system at hand and ℎ is some spatial sampling interval.
Since up-sampling or down-sampling is not needed, 𝑘 re-
mains the same for all the parts of the model. Once the
sampling intervals have been defined, 𝑞(𝑥, 𝑡) is approxi-
mated as a grid function 𝑞𝑛𝑙 .

Regardless of the dimension of 𝑙, shift operators can be
applied to a grid function. Temporal shift operators are
defined as

𝑒𝑡+𝑞
𝑛
𝑙 = 𝑞𝑛+1

𝑙 , 𝑒𝑡−𝑞
𝑛
𝑙 = 𝑞𝑛−1

𝑙 . (10)

Using these shift operators, more complex difference op-
erators can be defined for approximating a first-order time
derivative. The forward, backward and centered difference
in time operators can be defined as

𝛿𝑡+ :=
𝑒𝑡+ − 1

𝑘
≈ 𝜕𝑡, 𝛿𝑡− :=

1 − 𝑒𝑡−
𝑘

≈ 𝜕𝑡,

𝛿𝑡· :=
𝑒𝑡+ − 𝑒𝑡−

2𝑘
≈ 𝜕𝑡.

(11)

where the forward and backward difference are first-order
accurate and the centered difference is second-order ac-
curate. Using these first-order difference operators, the
second-order difference operator can be defined as a com-
bination of the forward and backward difference operators:

𝛿𝑡𝑡 = 𝛿𝑡+𝛿𝑡− :=
𝑒𝑡+ − 2 + 𝑒𝑡−

𝑘2
≈ 𝜕2

𝑡 . (12)

Spatial shift operators in 1D, i.e., 𝑙 = 𝑙 can be similarly
defined as

𝑒𝑥+𝑞
𝑛
𝑙 = 𝑞𝑛𝑙+1, 𝑒𝑥−𝑞

𝑛
𝑙 = 𝑞𝑛𝑙−1, (13)

after which the following first-order difference operators
can be defined using the spatial sampling interval ℎ

𝛿𝑥+ :=
𝑒𝑥+ − 1

ℎ
≈ 𝜕𝑥, 𝛿𝑥− :=

1 − 𝑒𝑥−
ℎ

≈ 𝜕𝑥,

𝛿𝑥· :=
𝑒𝑥+ − 𝑒𝑥−

2ℎ
≈ 𝜕𝑥,

(14)

(following the same orders of accuracy as the first-order
time operators) and second-order difference in space oper-
ator

𝛿𝑥𝑥 = 𝛿𝑥+𝛿𝑥− :=
𝑒𝑥+ − 2 + 𝑒𝑥−

ℎ2
≈ 𝜕2

𝑥. (15)

The fourth-order spatial derivative operator is obtained by
applying operator (15) twice:

𝛿𝑥𝑥𝑥𝑥 = 𝛿𝑥𝑥𝛿𝑥𝑥 =
1

ℎ4
(𝑒2𝑡+−4𝑒𝑡++6−4𝑒𝑡−+𝑒2𝑡−), (16)

where a squared shift operator simply means to apply it
twice.

The mixed temporal-spatial derivative operator is ob-
tained by applying the backward-time difference operator
from (10) to operator (15)

𝛿𝑡−𝛿𝑥𝑥 :=
𝑒𝑥+ − 2 + 𝑒𝑥− − 𝑒𝑡−(𝑒𝑥+ − 2 + 𝑒𝑥−)

𝑘ℎ2
≈ 𝜕𝑡𝜕

2
𝑥,

(17)
where a backward difference in time is chosen to keep the
system explicit.

Furthermore, in 2D, i.e., 𝑙 = 𝑙,𝑚, shift operators are de-
fined as

𝑒𝑥+𝑞
𝑛
𝑙,𝑚 = 𝑞𝑛𝑙+1,𝑚, 𝑒𝑥−𝑞

𝑛
𝑙,𝑚 = 𝑞𝑛𝑙−1,𝑚,

𝑒𝑦+𝑞
𝑛
𝑙,𝑚 = 𝑞𝑛𝑙,𝑚+1, 𝑒𝑦−𝑞

𝑛
𝑙,𝑚 = 𝑞𝑛𝑙,𝑚−1,

(18)

and finite difference operators can be defined as

𝛿Δ = 𝛿𝑥𝑥 + 𝛿𝑦𝑦 ≈ ∆ and
𝛿Δ𝛿Δ = 𝛿𝑥𝑥𝑥𝑥 + 2𝛿𝑥𝑥𝛿𝑦𝑦 + 𝛿𝑦𝑦𝑦𝑦 ≈ ∆∆,

(19)

where 𝛿𝑦𝑦 and 𝛿𝑦𝑦𝑦𝑦 are similarly defined to Equations
(15) and (16) but using shifting operator 𝑒𝑦+. Finally, the
mixed temporal-spatial operator in 2D is similarly defined
as operator (17) using a backward difference in time oper-
ator.

It is important to mention that the discrete FDSs derived
from the continuous equations such as (9) are an approxi-
mation rather than a sampled version of the system.
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3.2 Discrete Models

In the following, parameters containing a subscript 𝑖 indi-
cate that these vary between each individual string.

In the case of the strings, we use 𝑥 = 𝑙ℎs𝑖 to get
𝑢𝑖(𝑥, 𝑡) ≈ 𝑢𝑛

𝑖,𝑙, where 𝑙 ∈ [0, . . . , 𝑁s𝑖] and 𝑁s𝑖 =
floor(𝐿s/ℎs𝑖). All the strings are the same length, 𝐿s, but
the grid spacing ℎs𝑖 depends on the individual string pa-
rameters. The minimal grid spacing where the solution
is stable is calculated using von Neumann stability anal-
ysis [11]:

ℎs𝑖 ≥

√︃
𝑐2s𝑖𝑘

2 + 4𝜎1,s𝑘 +
√︀

(𝑐2s𝑖𝑘
2 + 4𝜎1,s𝑘)2 + 16𝜅2

s𝑖𝑘
2

2
.

(20)
Here, the wave speed 𝑐s𝑖 =

√︀
𝑇s𝑖/𝜌s𝐴s𝑖 and the stiffness

𝜅s𝑖 =
√︀

𝐸s𝐼s𝑖/𝜌s𝐴s𝑖. The closer ℎs𝑖 is to this condition,
the higher the simulation quality will be. The same goes
for the conditions given below.

For the bridge we use 𝑥 = 𝑙ℎb to get 𝑣(𝑥, 𝑡) ≈ 𝑣𝑛𝑙 , where
𝑙 ∈ [0, . . . , 𝑁b] and 𝑁b = floor(𝐿b/ℎb). The grid spacing
ℎb is defined as

ℎb ≥
√︂

2𝑘
(︁
𝜎1,b +

√︁
𝜎2
1,b + 𝜅2

b

)︁
, (21)

with stiffness parameter 𝜅b =
√︁
𝐸b𝐻b

2/12𝜌b.
In the case of the membrane, we use 𝑥 = 𝑙ℎm and

𝑦 = 𝑚ℎm to get 𝑤(𝑥, 𝑦, 𝑡) ≈ 𝑤𝑛
𝑙,𝑚 where the horizontal

index 𝑙 ∈ [0, . . . , 𝑁𝑥] with 𝑁𝑥 = floor(𝐿𝑥/ℎm) and verti-
cal index 𝑚 ∈ [0, . . . , 𝑁𝑦] with 𝑁𝑦 = floor(𝐿𝑦/ℎm). The
membrane is modelled to be square, i.e., 𝐿𝑥 = 𝐿𝑦 , mak-
ing 𝑁𝑥 = 𝑁𝑦 . The minimal grid spacing ℎm is calculated
using

ℎm ≥
√︂

𝑐2m𝑘2 + 4𝜎1,m𝑘 +
√︁

(𝑐2m𝑘2 + 4𝜎1,m𝑘)2 + 16𝜅2
m𝑘2,

(22)
where the membrane wave speed 𝑐m =

√︀
𝑇m/𝜌m𝐻 and

the stiffness 𝜅m =
√︀

𝐷/𝜌m𝐻 .
In order to discretize the Dirac delta functions found in

system (9) we introduce the spreading operator 𝐽(𝑥c) that
applies the force to the coordinate 𝑥c, which is defined as
[19]

𝐽(𝑥c) =

{︃
1
ℎ𝑑 , 𝑙 = 𝑙c = round(𝑥c/ℎ),

0, otherwise.
(23)

The rounding function here is used for simplicity, but
higher-order spreading functions as found in [11] may be
used. In the equation (23) 𝑑 is a number of the dimensions
of domain 𝒟 on which 𝑥c is defined. So in the case of the
strings and the bridge 𝑑 = 1 and 𝑑 = 2 for the membrane.

3.3 Boundary Conditions

Recalling 𝑁s, 𝑁b, 𝑁𝑥 and 𝑁𝑦 from Section 3.2, and the
finite difference operators from Section 3.1, the strings and
the membrane have their boundaries set as clamped which
yields boundary conditions for the strings to be

𝑢𝑛
0 = 𝛿𝑥+𝑢

𝑛
0 = 0, and 𝑢𝑛

𝑁s
= 𝛿𝑥−𝑢

𝑛
𝑁s

= 0, (24)

and the membrane to be

𝑤𝑛
0,𝑚 = 𝛿𝑥+𝑤

𝑛
0,𝑚 = 0,

𝑤𝑛
𝑁𝑥,𝑚 = 𝛿𝑥−𝑤

𝑛
𝑁𝑥,𝑚 = 0,

𝑤𝑛
𝑙,0 = 𝛿𝑦+𝑤

𝑛
𝑙,0 = 0,

𝑤𝑛
𝑙,𝑁𝑦

= 𝛿𝑦−𝑤
𝑛
𝑙,𝑁𝑦

= 0.

(25)

The bridge on the other hand, has a free boundary condi-
tion, which is described as

𝛿𝑥𝑥𝑣
𝑛
0 = 𝛿𝑥𝑥𝛿𝑥·𝑣

𝑛
0 = 0, and

𝛿𝑥𝑥𝑣
𝑛
𝑁b

= 𝛿𝑥𝑥𝛿𝑥·𝑣
𝑛
𝑁b

= 0.
(26)

3.4 Complete Discrete System

The discretized version of continuous complete system (9)
is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓs𝑖𝑢
𝑛
𝑖,𝑙 = −𝐽(𝑥s𝑖)𝐹t𝑖, (27a)

ℓb𝑣
𝑛
𝑙 =

3∑︀
𝑖=1

𝐽(𝑥b𝑖)𝐹t𝑖 − 𝐽(𝑥bL)𝐹bL (27b)

− 𝐽(𝑥bR)𝐹bR,

ℓm𝑤
𝑛
𝑙,𝑚 = 𝐽(𝑥mL, 𝑦mL)𝐹bL (27c)

+ 𝐽(𝑥mR, 𝑦mR)𝐹bR,

where the ℓ operators are discretized versions of the par-
tial differential operators ℒ in system (9) and follow [11]
using centered temporal differences for the frequency in-
dependent damping terms and backward differences for the
frequency dependent damping terms to keep the system ex-
plicit (as mentioned in Section (3.1)). Due to the fact that
the forces acting on two connected components are equal
and opposite due to the rigid connections used, it can be
shown that the system is stable as a whole [11].

3.5 Coupling

The shamisen model consists of 3 strings, a bridge and
a membrane, all coupled together to form a complete
instrument (see Figure 2).

 

𝑙c,s1 and 𝑙c,b1 

𝑙c,s2 and 𝑙c,b1 

𝑙c,s3 and 𝑙c,b3 

𝑙c,bL and 𝑙c,mL, 𝑚c,mL 

 

𝑙c,bR and 𝑙c,mR, 𝑚c,mR 

 

Bridge 𝑣 

Membrane 𝑤 

Strings 𝑢1, 𝑢2 and 𝑢3 

Figure 2. Schematic showing the full coupled system. The
different components are highlighted, together with the lo-
cations at which they are connected. For the latter, also see
Table 1.

The only thing left to do is to calculate the interaction
forces between the components. To do this, all schemes in
system (27) need to be expanded (written in full) around
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every individual connection location which is done by tak-
ing an inner product with every individual spreading op-
erator 𝐽 [11]. Expanding ℓs𝑖 in Equation (27a) and using
subscript 𝒮𝑖 = 𝑖, 𝑙c,s𝑖 for compactness, where 𝑖 ∈ [1, 2, 3]
is the string index and 𝑙c,s𝑖 is the corresponding location
on string 𝑖 where it connects to the bridge, we obtain the
following

𝛿𝑡𝑡𝑢
𝑛
𝒮𝑖

= 𝑐2s𝑖𝛿𝑥𝑥𝑢
𝑛
𝒮𝑖

− 𝜅2
s𝑖𝛿𝑥𝑥𝑥𝑥𝑢

𝑛
𝒮𝑖

− 2𝜎0,s𝛿𝑡·𝑢
𝑛
𝒮𝑖

+ 2𝜎1,s𝛿𝑡−𝛿𝑥𝑥𝑢
𝑛
𝒮𝑖

− 𝐹t𝑖

ℎs𝑖𝜌s𝐴s𝑖
.

(28)

Similarly, for the bridge, we can expand ℓb from Equation
(27b) and take the inner product with the spreading opera-
tors belonging to the connections with the strings to obtain

𝛿𝑡𝑡𝑣
𝑛
𝑙c𝑖,b

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙c𝑖,b

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c𝑖,b

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c𝑖,b

+
𝐹t𝑖

ℎb𝜌b𝐴b
,

(29)

where 𝑙c𝑖,b indicates the location where the bridge connects
to string 𝑖. Taking the inner product with the spreading
operators belonging to the connections with the membrane
yields

𝛿𝑡𝑡𝑣
𝑛
𝑙c,bL

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙c,bL

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c,bL

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c,bL

− 𝐹bL

ℎb𝜌b𝐴b
,

𝛿𝑡𝑡𝑣
𝑛
𝑙c,bR

= − 𝜅2
b𝛿𝑥𝑥𝑥𝑥𝑣

𝑛
𝑙b,bR

− 2𝜎0,b𝛿𝑡·𝑣
𝑛
𝑙c,bR

+ 2𝜎1,b𝛿𝑡−𝛿𝑥𝑥𝑣
𝑛
𝑙c,bR

− 𝐹bR

ℎb𝜌b𝐴b
,

(30)

where 𝑙c,bL and 𝑙c,bR indicate the locations where the left
and right side of bridge connect to the membrane respec-
tively.

Finally, we can follow the same process for the mem-
brane. For brevity, the locations where the bridge and the
membrane are connected are defined as mL = 𝑙c,mL,𝑚c,mL
for the left connection location and mR = 𝑙c,mR,𝑚c,mR for
the right:

𝛿𝑡𝑡𝑤
𝑛
mL = 𝑐2m𝛿Δ𝑤𝑛

mL − 𝜅2
m𝛿Δ𝛿Δ𝑤𝑛

mL

− 2𝜎0,m𝛿𝑡·𝑤
𝑛
mL + 2𝜎1,m𝛿𝑡−𝛿Δ𝑤𝑛

mL +
𝐹bL

ℎ2
m𝜌m𝐻m

,

𝛿𝑡𝑡𝑤
𝑛
mR = 𝑐2m𝛿Δ𝑤𝑛

mR − 𝜅2
m𝛿Δ𝛿Δ𝑤𝑛

mR

− 2𝜎0,m𝛿𝑡·𝑤
𝑛
mR + 2𝜎1,m𝛿𝑡−𝛿Δ𝑤𝑛

mR +
𝐹bR

ℎ2
m𝜌m𝐻m

.

(31)

All the connection locations where the individual compo-
nents are coupled together are summarised in Table 1.

There are multiple ways of connecting components to-
gether [11]. In this work, rigid connections are assumed,
which means that for all 𝑛

𝑢𝑛
𝒮𝑖

= 𝑣𝑛𝑙c𝑖,b
, 𝑣𝑛𝑙c,bL

= 𝑤𝑛
mL,

and 𝑣𝑛𝑙c,bR
= 𝑤𝑛

mR .
(32)

All the operators in Equations (28), (29) and (30) can
be expanded according to the definitions given in Section
(3.1) and solved for the states at 𝑛+1. We can introduce an
intermediate state 𝑞I

𝑙 which is 𝑞𝑛+1
𝑙 without the effect of the

Strings 𝑙c,s1 𝑙c,s2 𝑙c,s3
Bridge 𝑙c1,b 𝑙c2,b 𝑙c3,b

𝑙c,bL 𝑙c,bR

Membrane 𝑙c,mL, 𝑚c,mL 𝑙c,mR, 𝑚c,mR

Table 1. All the connection locations in discrete sys-
tem (27) (also see Figure 2). Subscripts ‘c, s1’, ‘c, s2’
and ‘c, s3’ indicate the connection points to the bridge
on the different strings, ‘c1, b’, ‘c2, b’ and ‘c3, b’ are the
corresponding connection points on the bridge for these
strings. The subscripts‘c, bL’ and ‘c, bR’ indicate connec-
tion points on the left the right side of the bridge, in turn,
‘c,mL’ and ‘c,mR’ are the same points on the membrane.

connection forces. As we know that Equation (32) is true
for all 𝑛, and thus also for 𝑛 + 1, we can set the expanded
schemes at their connection locations at 𝑛+1 equal to each
other. This yields, for the string-bridge connections

𝑢I
𝒮𝑖
− 𝐹t𝑖𝑘

2

ℎs𝑖𝜌s𝐴s𝑖(𝜎0,s𝑘+1)
= 𝑣I

𝑙c𝑖,b +
𝐹t𝑖𝑘

2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
, (33)

and for the bridge-membrane connections

𝑣I
𝑙c,bL−

𝐹bL𝑘
2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
= 𝑤I

mL+
𝐹bL𝑘

2

ℎ2
m𝜌m𝐻m(𝜎0,m𝑘+1)

,

𝑣I
𝑙c,bR−

𝐹bR𝑘
2

ℎb𝜌b𝐴b(𝜎0,b𝑘+1)
= 𝑤I

mR+
𝐹bR𝑘

2

ℎ2
m𝜌m𝐻m(𝜎0,m𝑘+1)

.

(34)
These can then be solved for the forces which can finally
be substituted back into system (27).

4. IMPLEMENTATION

The physical model of the shamisen has been implemented
in real-time in C++ using the JUCE framework [20]. The
code is available at [25]. The control of the digital instru-
ment is limited to the excitation of the separate parts of the
instrument including the bridge and the membrane. This
section will elaborate on some important considerations
regarding the setup of the system, the algorithm and the
parameter design. In the end, the graphical user interface
(GUI) of the application will be presented.

4.1 System setup

The parameters are set at the beginning of the simulation
according to Table 2. From this, the spatial sampling inter-
vals ℎ for each individual component are calculated using
conditions (20), (21) and (22). After ℎm is calculated, we
check whether it is smaller than a set minimum value and
if it is, use this value instead. Though reducing the quality
of the membrane simulation, it increases the computational
speed, ultimately allowing the real-time implementation to
run smoothly. The value ℎm,min = 0.03 was heuristically
found to be a good trade off between speed and quality.

The spatial sampling intervals are then used to calculate
the number of grid points 𝑁s𝑖, 𝑁b, 𝑁𝑥 and 𝑁𝑦 which deter-
mine the sizes of the state vectors of each component. For
every component three vectors (or matrices in the case of
the membrane) need to be initialised, saving the states of
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Symbol Value (Unit) Parameter
𝑏 2.69 · 10−3 (m)* Width of the bridge
𝐸s 9.9 · 109 (Pa)** String Young’s Mod.
𝐸b 9.5 · 109 (Pa)⋆ Bridge Young’s Mod.
𝐸m 3 · 109 (Pa)⋆ Memb. Young’s Mod.
𝐻b 7.5 · 10−3 (m)* Bridge thickness
𝐻m 0.2 · 10−3 (m)⋆⋆ Membrane thickness
𝐿s 1 (m)† String length
𝐿b 1 (m)† Bridge length
𝐿𝑥 1 (m)† Membrane length
𝐿𝑦 1 (m)† Membrane width
𝜈 0.4 Poisson’s ratio
𝑟s1 4.15 · 10−4 (m) Radius string 1
𝑟s2 2.83 · 10−4 (m) Radius string 2
𝑟s3 2.10 · 10−4 (m) Radius string 3
𝜌s 1156 (kg/m3)** String density
𝜌b 500 (kg/m3)⋆ Bridge density
𝜌m 1150 (kg/m3)⋆ Memb. density

Frequency independent damping
𝜎0,s 1.378 (s−1) String damping
𝜎0,b 1.343 (s−1) Bridge damping
𝜎0,m 2.756 (s−1) Membrane damping

Frequency dependent damping
𝜎1,s 3.57 · 10−3 (m2/s) String damping
𝜎1,b 7.59 · 10−2 (m2/s) Bridge damping
𝜎1,m 0.192 (m2/s) Membrane damping
𝑇m 4 · 103 (N/m) Membrane tension
𝑇s1 138.67 (N) String 1 tension
𝑇s2 145.53 (N) String 2 tension
𝑇s3 140.73 (N) String 3 tension
𝑓s 48 · 103 (Hz) Sample rate

Table 2. List of parameter values used when simulating
the shamisen. Parameters were taken from * [21]; ** [22];
⋆ [23]; ⋆⋆ [24]; all the lengths† are set to 1 and the other pa-
rameters are tuned empirically to produce a desired sound.

𝑞𝑛+1
𝑙 , 𝑞𝑛𝑙 and 𝑞𝑛−1

𝑙 respectively. All of these are initialised
to 0.

4.2 String Tuning

The strings are tuned to ‘C4’, ‘G4’ and ‘C5’ as it is a
common tuning for the shamisen. The desired pitch for
each string is achieved through empirical testing by mainly
changing the tension and adjusting the radius of strings be-
fore the start of the simulation. Although the other pa-
rameters could be adjusted in order to tune the instrument,
changing the density of the string or the Young’s modu-
lus would not be possible with a real instrument so it was
decided to leave these parameters out when tuning.

4.3 Excitation

The system is excited by “plucking” one of the compo-
nents. Simplified plucking is modeled as a raised cosine
added to the current and previous states of the component.
1D components like the string and the bridge use a one di-
mensional raised cosine, where the membrane uses a 2D

Figure 3. GUI of the digital shamisen. Three green rows at
the top are the three strings, red column on the right is the
bridge and the blue matrix is the membrane.

version of this as its excitation. A more realistic excitation
model is left for future work.

4.4 Output

The output of the shamisen is a sum of the components’
outputs. The strings and the bridge have a single output
location which is defined independently for all the compo-
nents. The membrane output is simplified to be is a sum
of the displacements of all the grid points. Depending on
the membrane grid size the gain of the output has to be ad-
justed according to the number of samples in the scheme.

4.5 Order of Calculations

The pseudocode shown in Algorithm 1 gives a very high-
level overview of the order of the calculations done in the
application.

Initialise the parameters;
Calculate the number of grid points 𝑁 ;
Initialise the state vectors ;
while The application is running do

if Mouse click on the component then
Excite the component;

end
Calculate the schemes;
Calculate the connection forces;
Add the force to the schemes;
Retrieve output sound;
Update the states: 𝑞𝑛−1

𝑙 =𝑞𝑛𝑙 ; 𝑞𝑛𝑙 =𝑞𝑛+1
𝑙 ;

end

Algorithm 1: Pseudocode showing the order of calcu-
lations when the program is started and running.

4.6 Graphical User Interface

The graphical user interface (GUI) has a simplistic de-
sign, where the state variables 𝑞𝑛𝑙 are displayed as shown
in Figure 3. Three different colours were chosen, to in-
dicate the three different types of elements. The intensity
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of the colour indicates the displacement of 𝑞 at location
𝑙. The graphical representation is more suited for show-
ing the normalized vibrations of the different components
rather than visualising the instrument itself. Just clicking
on the component will excite it and along with the auditory
feedback, a graphical representation of what is happening
will be shown. The graphics are updated at a rate of 15 Hz.

5. RESULTS AND DISCUSSION

Informal listening tests by the authors and some fellow
students have confirmed that the shamisen has a spe-
cific attack sound that when compared with the recreated
shamisen exhibited similar timbral qualities. Naturally,
formal listening tests need to be conducted to verify this.
The output spectrogram of the three strings excited in suc-
cession is visualised in Figure 4.

Figure 4. A spectrogram of the three shamisen strings be-
ing excited in a succession from the lowest one to the high-
est. The audio sample used to create this spectrogram is
available at [25].

Concerning computational cost, the CPU usage of the
real-time application was tested using a MacBook Pro with
a 2.2 GHz Intel i7 processor. The strings were continu-
ously excited during the profiling process. The full ap-
plication uses ca. 51% CPU, whereas the physical model
alone without the graphics update uses ca. 39% CPU. This
shows that the physical model can easily run in real-time.

As the excitation is adding to the states, sometimes the
audio can start clipping, in some cases producing a desir-
able percussive sound of the membrane and in some cases
producing a digital clipping sound, which can affect the
timbre of the instrument.

6. CONCLUSION AND FUTURE WORK

In this paper, a real-time implementation of a physical
model of the shamisen has been presented. The physical
model is based on FDTD methods and was implemented
in C++ using the JUCE framework. Informal evaluations
show that, while lacking the buzzing, the sound has been
found natural but not entirely faithful to the real instrument
sound.

Future work includes an addition of the buzzing to the
instrument timbre which could possibly be achieved by a
FDS collision modeling as described in [26] or a modal
collisions model by authors of [27]. Furthermore, a com-
parison between the different sized membranes is needed
in order to find the balance of the audio quality and the
CPU usage.

Lastly, a physical implementation of the the “fretting”
and “plucking” would benefit the model by adding the ex-
pressiveness. It would be nice to model “fretting” as done
by the authors of [28] and the “plucking” as described
in [29–31]. Alternatively a less costly functional transfor-
mation method could be applied to model “fretting” [32].
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