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Online Multichannel Speech Enhancement Based on
Recursive EM and DNN-based Speech Presence

Estimation
Juan M. Martı́n-Doñas, Jesper Jensen, Zheng-Hua Tan, Senior Member, IEEE, Angel M. Gomez,

and Antonio M. Peinado, Senior Member, IEEE

Abstract—This paper presents a recursive expectation-
maximization algorithm for online multichannel speech enhance-
ment. A deep neural network mask estimator is used to compute
the speech presence probability, which is then improved by
means of statistical spatial models of the noisy speech and noise
signals. The clean speech signal is estimated using beamforming,
single-channel linear postfiltering and speech presence masking.
The clean speech statistics and speech presence probabilities are
finally used to compute the acoustic parameters for beamforming
and postfiltering by means of maximum likelihood estimation.
This iterative procedure is carried out on a frame-by-frame
basis. The algorithm integrates the different estimates in a
common statistical framework suitable for online scenarios.
Moreover, our method can successfully exploit spectral, spatial
and temporal speech properties. Our proposed algorithm is
tested in different noisy environments using the multichannel
recordings of the CHiME-4 database. The experimental results
show that our method outperforms other related state-of-the-art
approaches in noise reduction performance, while allowing low-
latency processing for real-time applications.

Index Terms—Recursive expectation-maximization, multichan-
nel speech enhancement, deep neural networks, speech presence
probability, Kalman filter

I. INTRODUCTION

MULTICHANNEL speech enhancement techniques have
gained an increasing interest in the last decade mainly

due to the availability of communication devices with micro-
phone arrays and increasing computational capabilities [1].
These techniques improve the performance on different speech
processing tasks, such as noise reduction, dereverberation or
source separation, and can be applied in different scenarios:
mobile communications, far-field speech recognition, hearing
aid devices, etc.

The most common multichannel technique is beamforming
[2], which applies a spatial filter to the multichannel speech
signal for interference reduction. Different beamformers with
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different goals can be found in the literature. For example,
the minimum variance distortionless response (MVDR) [3],
[4] preserves the target signal, while minimizing the power
of the noise. The multichannel Wiener filter (MWF) [5]
estimates the clean speech signal in terms of linear minimum
mean square error (MMSE) and can be decomposed into an
MVDR beamformer and a single-channel Wiener postfilter.
This beamformer-plus-postfilter architecture has been also
explored for non-linear postfilters [6], [7]. Recently, a mul-
tichannel Kalman filter (MKF) was proposed in [8], showing
improvements with respect to the classical MWF. The authors
also showed that the algorithm is equivalent to an MVDR
beamformer followed by a single-channel modulation-domain
Kalman filter (KF) [9]. The time-domain modeling capability
of KF has also been exploited in other speech processing
tasks, as multichannel online dereverberation [10], [11] or
noise power spectral density tracking [12].

The previous methods require knowledge of acoustic param-
eters: the second-order statistics of clean speech and noise, the
relative transfer function (RTF) between acoustic channels [13]
and, in the case of KF, a linear prediction model for the clean
speech spectra amplitudes. Frequently, certain assumptions
about the noisy speech signal are made to estimate these
parameters. For example, the estimation of the noise spatial
statistics can be addressed assuming a specific noise field [14]–
[16] or the availability of knowledge about the RTF [17], [18].
A possible solution to overcome the need for assumptions
is that of exploiting the sparsity of the clean speech signal
in the time-frequency (TF) domain. The problem is then the
estimation of the speech presence probability (SPP) [19],
[20] in each TF bin, so that the noise spatial statistics can
be estimated by an SPP-controlled recursive procedure [21].
Therefore, these statistics are computed only in bins where
speech is absent. Then, the RTF can be estimated from the
clean speech spatial statistics e.g. using sub-space methods
[22]. Alternatively, some recent deep neural network (DNN)
mask estimators [23]–[28] obtain speech and noise dominant
soft masks for the estimation of the clean speech and noise
spatial statistics needed for beamforming.

Another approach for parameter estimation is that derived
from the adoption of a Bayesian framework. In this case, the
acoustic parameters can be obtained using a maximum likeli-
hood estimation (MLE), which requires knowledge about the
clean speech statistics. The expectation-maximization (EM)
iterative algorithm can be used to jointly estimate the clean
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speech signal and the acoustic parameters. This method has
been applied to different offline multichannel speech enhance-
ment, dereverberation and source separation problems [29]–
[32]. In [33], an EM multichannel source separation technique
using MWF, where the source spectra are estimated using
DNNs models, was proposed. On the other hand, to deal
with online scenarios, a recursive version of the EM algorithm
(REM) [34] can be used instead. This approach was used for
speech dereverberation [10] and speech enhancement [35].

Other EM approaches are based on the estimation of the
active speech source in each TF bin during the E-step [36],
[37], which corresponds to the SPP in the one-speaker case.
This clustering approach allows for the estimation of the
acoustic parameters during the M-step. Finally, an MVDR
beamformer or MWF can be applied for the enhancement
task. In [38] an online estimation of the SPP under the EM
framework is proposed, establishing a relationship between
the MLE approach and the recursive procedure in [21]. The
integration of DNNs and statistical models has been also
evaluated in [39], [40]. A new approach that estimates both
the clean speech statistics and the predominant speaker was
proposed in [41] for offline blind source separation.

In this work we propose a novel REM framework for
multichannel speech enhancement that incorporates a DNN-
based SPP estimator into the framework. Our proposal uses
beamforming and postfiltering to enhance the noisy speech sig-
nal, employing two different postfilters, Wiener and Kalman,
in its formulation. In this way, the SPP estimation performed
by a DNN spectral model is further refined using the estimated
spatial statistics. Moreover, the obtained clean speech and SPP
estimates allow for a re-estimation of the acoustic parameters
of the model. The Kalman-based posfiltering variation of our
proposal is inspired by the Switching Kalman filter framework
proposed in [42], but we simplify it into two models for
speech presence and absence, respectively, and the transition
probabilities between states are replaced by the estimated
probabilities given by a DNN. A remarkable advantage of our
approach is the joint estimation, in an online fashion, of the
different statistics and parameters required for beamforming
as well as postfiltering. This allows for better performance,
while keeping the algorithm suitable for real-time applications.
The evaluation of the algorithm and its comparison with other
state-of-the-art approaches show the benefits of the proposal.

The remainder of this paper is organized as follows. First,
the main contributions of our proposal and their relation with
other existing techniques are discussed in Section II. The
statistical model and the introduction of the recursive EM
algorithm is formulated in Section III. The estimation of the
clean speech statistics and SPP (E-step), and the acoustic pa-
rameters (M-step) is derived in Section IV and V, respectively.
In Section VI, the integration of the DNN SPP estimator in
the algorithm is described, and some practical considerations
are shown in Section VII. Finally, the experimental framework
and results are presented in Section VIII, and conclusions are
drawn in Section IX.

II. CONTRIBUTIONS AND RELATED WORK

In this paper we develop a complete REM framework for
multichannel speech enhancement, which considers the SPP of
each TF bin, and integrates DNNs to improve the robustness
against noise. Conveniently gathering a number of techniques
from the state-of-the-art, we propose a novel framework which
outperforms other existing approaches. The main contributions
of our proposal are:

1) The derivation of a novel REM algorithm for speech
enhancement that fully integrates a joint estimation of
the clean speech statistics, the SPPs and the different
acoustic parameters of the noisy speech signal.

2) The use of Kalman filtering to model the temporal prop-
erties of the clean speech signal in the REM framework,
allowing for MLE estimation of the KF parameters.

3) An estimator of the clean speech power spectral density
that avoids the distortion introduced by the SPPs in the
clean speech signal at the system output.

4) The use of DNN prior estimates in the REM framework
in order to improve the robustness in non-stationary
noisy scenarios.

The use of EM frameworks for offline speech processing
tasks has been explored in different works [29]–[32]. The EM
source separation approach in [41] extended most of these
previous ideas with the use of speech presence posteriors
to better discriminate between the active source at each TF
bin. However, this approach has several drawbacks, including
the distortion introduced by the SPP in the estimated speech
signals or the potentially high number of iterations needed.
Alternatively, a REM framework for multichannel speech en-
hancement was proposed in [35]. However, this approach only
considers a simple distortion model with delayed responses
between microphones, it does not include the SPP in its
analysis, and a priori knowledge of some acoustic parameters
(RTFs or noise statistics) is needed. As shown in the following
sections, our approach overcomes these limitations.

The proposed REM approach extends and adapts the idea
of MKF in the STFT amplitude domain [8] by changing
the filtering model so that it can better represent the abrupt
changes of natural clean speech. In addition, the required
acoustic parameters are more accurately computed thanks to
the MLE approach employed in our proposal, which considers
the clean speech estimates and the SPP probabilities. Although
KFs have previously been used in a REM framework [10]
and a multichannel linear prediction framework [11], these
approaches model the effect of a convolutive transfer function
in scenarios with reverberations. As such, the proposed KF
uses a completely different state-space model, which describes
the temporal correlations in the clean speech amplitude coef-
ficients and the multichannel distortion model.

Finally, we must point out that the use of DNNs in an
EM framework for multichannel speech enhancement has only
been very little explored in existing works. Unlike other works
like [33], [39], [40], we propose an approach that exploits the
DNN outputs as a priori SPP estimates to jointly obtain the
clean speech statistics, the a posteriori SPPs and the acoustic
parameters. Specifically, the approach in [33] uses DNNs to
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estimate the speech sources spectra and does not consider
the speech presence. Furthermore, [39] and [40] combine
DNNs with spatial statistical models to compute speech and
noise dominant masks, which are then used to obtain the
beamformer coefficients. Thus, a clustering approach is used
where the TF bins are classified as speech or noise bins, and
complex angular models are applied to model the distribution
of the normalized noisy vectors. The use of the clean speech
estimates in our statistical models improves the estimation of
the a posteriori SPP and the acoustic parameters. As a result,
and in contrast to previous methods, our model allows noise
estimation even in speech presence frames, which increases
the robustness against non-stationary noises.

III. FORMULATION OF THE STATISTICAL MODEL

Let us first express the multichannel noisy speech signal,
captured by a microphone array, in the short-time Fourier
transform (STFT) domain under a narrowband assumption [2]
as,

yt,f = ht,fX1,t,f + nt,f , (1)

where X1,t,f is the clean speech signal at the reference
microphone (in the following, we use the microphone with
index 1 as the reference microphone, for convenience) and

yt,f =
[
Y1,t,f Y2,t,f · · · YM,t,f

]>
, (2)

nt,f =
[
N1,t,f N2,t,f · · · NM,t,f

]>
, (3)

ht,f =
[
1 H21,t,f · · · HM1,t,f

]>
, (4)

represent the noisy speech, the noise and the set of relative
transfer functions, respectively. The model in (1) is defined
under a speech presence hypothesis (Hx). When speech is
absent (Hn), this model can be simplified to

yt,f = nt,f . (5)

From now on, with no loss of generality, we will omit the
frequency index f for the sake of simplicity.

We assume that the noise signal follows a circularly sym-
metric complex normal distribution, nt ∼ N (0,ΦN,t), and
that it is uncorrelated with the speech signal. The clean speech
X1,t is a zero mean circularly symmetric complex random
variable, whose variance, under speech presence assumption,
can be defined as

φx,t = E
{
|X|21,t

∣∣∣Hx} , (6)

where we define |X|1,t , |X1,t|. In addition, let

qx,t = P (Dt = Hx) (7)

denote the a priori SPP, where Dt = {Hx,Hn} is a discrete
random variable, which indicates speech presence/absence in
a time-frequency bin.

Additionally, we employ a single-channel temporal linear
prediction model over the clean speech amplitudes [8],

|X|1,t = a>t xt−1 + Vt, (8)

where

xt−1 ,
[
|X|1,t−1 |X|1,t−2 · · · |X|1,t−p

]>
(9)

is a vector of clean speech amplitudes from previous time
frames,

at =
[
At,1 At,2 · · · At,p

]>
(10)

is the vector of linear prediction coefficients (LPC), Vt ∼
N (0, φv,t) is the prediction error and p is the prediction order.

Using the aforementioned models, we can define
the likelihood of the data sequence until time t as
f (y1:t, X1,1:t,D1:t; Θ1:t), where y1:t is the observable
data (until time t), X1,1:t and D1:t are the latent variables,
and Θt = {at, φv,t,ht,ΦN,t, qx,t} are the required model
parameters. Assuming a Markov process, this likelihood can
be developed as

f (y1:t, X1,1:t,D1:t; Θ1:t) =

f (x0)
t∏

τ=1

P (Dτ ) · f
(
|X|1,τ

∣∣∣xτ−1,Dτ ; at, φv,t

)
·

f
(
X1,τ

∣∣∣|X|1,τ ,Dτ ) · f(yτ |X1,τ ,Dτ ; ht,ΦN,t

)
.

(11)

This separates the linear prediction model for the clean
speech amplitudes, f

(
|X|1,τ

∣∣∣xτ−1,−), and the multichan-
nel noisy observation model given the clean speech signal,
f (yτ |X1,τ ,−). The phase term f

(
X1,τ

∣∣∣|X|1,τ ,Dτ) will
be ignored as the phase estimation is not considered in
our REM framework (we keep the phase provided by the
beamformer, see Section IV). We are interested in an online
estimation of the clean speech signal at the reference micro-
phone. To this end, we define the exponentially-weighted log-
likelihood of the data sequence at time t,

Lλ,t =
t∑

τ=1

λt−τ log f (yτ , X1,τ ,Dτ ; Θτ ) , (12)

where λ ∈ (0, 1] is a forgetting factor. Our objective is to
obtain an MLE estimate of the model parameters at each time
step. There is no closed form solution to this problem, as we
have to estimate at the same time the latent variables and the
model parameters. Instead, we can use the REM algorithm
[34] to achieve a good approximation. This is a frame-wise
procedure which is repeated for a given frame until a number
of iterations is reached. Given the computed model parameters
Θl
t at iteration l, the parameters are re-computed by means of

the following two-step procedure:
• E-step: An auxiliary function is calculated taking the

conditioned expectation of the log-likelihood Lλ,t given
the observations and the current parameters,

Q
(

Θt|Θl
t

)
= E

{
Lλ,t|yt; Θl

t

}
, (13)

This results in a function that depends on the conditional
expectations over the latent variables X1,t and Dt. There-
fore, we will need to estimate the first- and second-order
moments of X1,t, and the a posteriori SPP,

plx,t = P
(
Dt = Hx|yt; Θl

t

)
, (14)

in order to be able to derive the M-step by using the Q
function.
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Fig. 1. Block diagram of the proposed REM algorithm for multichannel
speech enhancement. Only the most relevant parts of the algorithm are
indicated in the flowchart for clarity purposes. The dashed lines mean the
feedback due to the M-step of the algorithm.

• M-step: Once the expectations over the latent variables
are computed, a new set of parameters is obtained by
maximizing the auxiliary function,

Θl+1
t = argmax

Θt

Q
(

Θt|Θl
t

)
. (15)

Fig. 1 depicts a diagram of our proposed REM algorithm
for speech enhancement. In the next sections we will detail
each block, the parameters involved in each one and the latent
variables they depend on. For simplicity, we will omit the
iteration index l in the following two sections, where the E-
step and M-step of the algorithm are particularized.

IV. ESTIMATION OF THE LATENT VARIABLES

The E-step of the algorithm considers the computation of the
expectation in Eq. (13), which gives the auxiliary Q function.
This Q function, and its maximization for the computation of
the acoustic parameters (M-step), depends on the a posteriori
SPP px,t and the statistics of the clean speech signal X1,t (see
Appendix A for this derivation). In this section we will address
the estimation of these expectations and the a posteriori SPP.

The first- and second-order expectations of the clean speech
signal X1,t conditioned on the observations are obtained using
the E-step in the REM framework as indicated in [41],

X̂1,t = E {X1,t|yt; Θt} = px,tX̃1,t, (16)

Sx,t = E
{
|X|21,t

∣∣∣yt; Θt

}
= |̂X|

2

1,t + Pt, (17)

where
X̃1,t = E {X1,t|yt,Hx; Θt} (18)

is the filtered clean speech signal (i.e. MMSE estimate and
system output) when speech presence is assumed [38], and

Pt = E

{∣∣∣X1,t − X̂1,t

∣∣∣2∣∣∣∣Hx} (19)

is the error variance for the estimated clean speech signal when
speech presence is assumed (i.e. X̂1,t = X̃1,t).

The expectations in (18) and (19) are obtained using a
multichannel MMSE estimator, which can be implemented by

concatenating a spatial filtering stage with a single-channel
linear postfilter. We first apply an MVDR beamformer to the
noisy speech signal,

Zt = FHt yt, (20)

with the MVDR beamformer coefficients given by [4],

Ft =
Φ−1N,tht

hHt Φ−1N,tht
. (21)

Under the distortionless constraint of the MVDR beamformer,
the signal at the beamformer output is given by

Zt = X1,t +Ot, (22)

where Ot ∼ N (0, φo,t) is the residual noise, with variance

φo,t =
(
hHt Φ−1N,tht

)−1
. (23)

Then, the single-channel postfilter is applied to the beam-
former output Zt to obtain X̃1,t and its error Pt. This postfilter
only modifies the amplitude of the signal, while the phase
remains the same as that of the MVDR output.

We use X̃1,t as the output signal in our REM framework
instead of X̂1,t. This is because, in practice, the SPP masking
in (16) introduces speech distortions that deteriorate the speech
quality and intelligibility. Nevertheless, the estimation X̂1,t is
still required to obtain the acoustic parameters in the M-step.

In the next subsections we will describe the two different
linear postfilters that we use in our REM framework. Also, we
will define an estimator for the a posteriori SPP px,t.

A. Wiener filter

The Wiener filter (WF) is a linear MMSE estimator that
only considers the variance of the clean speech and the noise
at the current time-frequency bin. The filtered clean speech
signal is obtained as [43]

X̃ (WF)
1,t = WtZt (24)

where
Wt =

φx,t
φx,t + φo,t

=
ξt

ξt + 1
. (25)

is the Wiener gain, and ξt = φx,t/φo,t is the a priori signal-
to-noise ratio (SNR). The error variance in (19) is computed
as

P (WF)
t = (1−Wt)φx,t. (26)

B. Kalman filter

The Kalman filter (KF) takes into account the time-domain
linear prediction model for the clean speech amplitudes de-
scribed by Eq. (8). We slightly modify the modulation-domain
Kalman filter proposed in [8] by estimating only the filtered
speech signal at the current time step given the estimated clean
speech from previous frames, which differs from the standard
Kalman filtering for vector states [43]. First, we consider an
estimate x̂t−1 of the vector of clean speech amplitudes in
the previous time steps, xt−1 (9). Similarly, we consider a
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vector x̃t−1 with the filtered amplitudes of previous time steps,
without the SPP masking. In addition, we define

Pt−1 = E
{

(xt−1 − x̃t−1) (xt−1 − x̃t−1)
>
}
, (27)

as the error covariance matrix of this filtered version of the
previous clean speech amplitudes.

The temporal prediction model in (8) is used to obtain a
prediction of the clean speech amplitude,

|̃X|1,t|t−1 = a>t x̂t−1, (28)

and its corresponding error variance,

Pt|t−1 = a>t Pt−1at + φv,t. (29)

The Kalman filter combines the previous prediction and the
MVDR output (modeled according to Eqs. (20)-(23)), which
gives the following linear MMSE estimator [43],

|̃X|
(KF)

1,t = |̃X|1,t|t−1 +Kt

(
|Zt| − |̃X|1,t|t−1

)
(30)

where

Kt =
Pt|t−1

Pt|t−1 + φo,t
(31)

is the Kalman gain. The error variance in (19) is computed as

P (KF)
t = (1−Kt)Pt|t−1. (32)

Moreover, we can compute the cross-covariance error vector
between the current frame and the previous frames as

pt,t−1 = E

{(
|X|1,t − |̃X|1,t

)(
xt−1 − x̃t−1

)>}
=

= (1−Kt) a>t Pt−1.

(33)

Finally, the filtered estimation of the clean speech signal X̃ (KF)
1,t

is obtained by using |̃X|
(KF)

1,t and the phase of Zt.
The values needed for the next frame, x̂t and Pt, are

obtained by using the values of the previous frames and the
new estimations,

x̂t = Ux̂t−1 + u|̂X|
(KF)

1,t , (34)

Pt = UPt−1U
> + Upt,t−1u

> + up>t,t−1U
> + uP (KF)

t u>,
(35)

where
u =

[
1 01×p−1

]>
, (36)

U =

[
01×p

Ip−1×p−1 0p−1×1

]
, (37)

are a structure vector and matrix, respectively, 0 is a zero
vector and I is the identity matrix.

In the case that there is no prediction of the clean speech
amplitudes (the coefficients at are zero), so that Pt|t−1 = φx,t,
both filters, WF and KF, are equivalent. Therefore, the Kalman
filter is a generalization that includes the Wiener filter as a
specific case.

C. A posteriori speech presence probability

The a posteriori SPP px,t defined in (14) can, using the
Bayes’ rule, be re-written as

px,t =
qx,tf (yt|Hx; Θt)

qx,tf (yt|Hx; Θt) + (1− qx,t) f (yt|Hn; Θt)
. (38)

This expression takes into account the a priori SPP and the
likelihood of speech presence and absence given the observed
data. In our proposed model, the likelihoods in (38) are mul-
tivariate Gaussian distributions. They can also be expressed
directly from the MVDR output, which simplifies into the
following Gaussian likelihoods,

f (yt|Hx; Θt) = N (Zt; 0, φz,t) , (39)

f (yt|Hn; Θt) = N (Zt; 0, φo,t) , (40)

where
φz,t = px,tSx,t + φo,t. (41)

is the variance of Zt given the residual noise variance φo,t,
the second-order statistics of the clean speech signal from (17)
and the a posteriori SPP [41].

In our iterative procedure, the a posteriori SPP is first
initialized as pl=0

x,t = qx,t and, after applying the postfiltering
step, it is updated at each E-step iteration.

V. ESTIMATION OF THE MODEL PARAMETERS

In this section we will describe the estimation of the
different acoustic parameters by means of the estimated latent
variables during the previous E-step. The acoustic parameters
for the beamforming and Kalman filtering are obtained using
the M-step in our REM framework. These parameters need
an estimate of the speech variance under speech presence.
Therefore, we will first describe how to obtain this variance.

A. Speech variance

Although the speech variance can be estimated under the
REM framework (M-step), this procedure has two problems.
First, the REM framework assumes slowly time-variant pa-
rameters [34], which is not necessarily true for the speech
variance. Secondly, the resulting variance estimate takes into
consideration the SPP [41]. Initial experiments reveal that
this yields a filtered signal with a high degree of sparsity,
which can degrade the perceptual quality and intelligibility of
the enhanced speech signal. Therefore, we propose a specific
estimation of the speech variance under the speech presence
assumption (Eq. (6)).

To this end, we adapted the estimation proposed in [10].
Specifically, we estimate the speech variance directly from the
signal at the beamformer output as

φx,t = Gx,t |Z|2t , (42)

where
Gx,t =

ξt
1 + ξt

(
1

γt
+

ξt
1 + ξt

)
(43)

is a gain function derived as in [44], and γt = |Z|2t /φo,t is
the a posteriori SNR. The advantage of this gain estimator is
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that it approximates the Wiener suppression rule at high in-
stantaneous SNR, while lessens the severity of the attenuation
otherwise [44].

However, the a priori SNR is not available (we would need
knowledge about the speech variance). Therefore, we propose
the following estimate,

ξ̂t =
Rz,t
φo,t

, (44)

where

Rz,t =
1− λ
1− λt

t∑
τ=1

λt−τpx,τ |Z|2τ (45)

is a smoothed estimate of the clean speech squared magnitude
spectrum given the MVDR output and the a posteriori SPP.

B. Kalman filter parameters

The parameters of the prediction model can also change
quickly, so their estimation should be done in a frame-wise
fashion. The LPC coefficients and the prediction error variance
can be obtained in the M-step as

at = R−1x,t−1rx,t,t−1, (46)

φv,t = φx,t − a>t Rx,t−1at, (47)

where

Rx,t−1 = E
{

xt−1x
>
t−1
∣∣yt; Θt

}
= x̂t−1x̂

>
t−1 + Pt−1, (48)

rx,t,t−1 = E
{
|X|1,t xt−1

∣∣∣yt; Θt

}
= |̂X|1,tx̂t−1 + pt,t−1

(49)
are MMSE estimates of the speech signal correlations obtained
during the E-step. The complete derivation of the previous
expressions can be found in Appendix A. The subtraction in
(47) could produce negative values. In such cases, the LPC
coefficients are set to zero and φv,t = φx,t, so the Kalman
filter reduces to the Wiener filter.

C. Beamformer parameters

We assume that the MVDR beamforming parameters, that
is, the RTF and the spatial covariance matrix of the noise,
are slowly variant. These parameters can be obtained in the
M-step as follows,

ht = ryx,tR
−1
x,t , (50)

ΦN,t = ΦY,t − htRx,th
H
t , (51)

where

Rx,t =
1− λ
1− λt

t∑
τ=1

λt−τpx,τSx,τ (52)

is a smoothed estimate of the clean speech power spectrum
obtained from Eqs. (16)-(17) in the E-step,

ryx,t =
1− λ
1− λt

t∑
τ=1

λt−τpx,τyτ X̂
∗
1,τ (53)

is a smoothed cross-correlation estimate between noisy and
clean speech, and

ΦY,t =
1− λ
1− λt

t∑
τ=1

λt−τyτy
H
τ (54)

is a smoothed estimate of the spatial covariance matrix of
the noisy speech. The complete derivation of the previous
expressions can be found in Appendix A.

The advantage of the noise estimator in (51) is that it
can be updated even in speech presence bins, which allows
for a quicker adaptation, especially in non-stationary noisy
scenarios.

VI. A PRIORI SPP ESTIMATION BASED ON DEEP NEURAL
NETWORK

We have described the estimation of the different model
parameters under the EM framework. Nevertheless, this pro-
cedure is not convenient for some parameters that can change
quickly over time, as in the case of the speech variance.
The same problem arises with the a priori SPP. Taseska et
al. [38] analyzed the estimation of this parameter under a
REM framework for noise estimation. They concluded that,
although elegant, the estimation is not robust enough when the
noise is not stationary. Several algorithms have been proposed
to compute this parameter: the SNR-based single-channel
SPP estimator [19] and its multichannel version [21] or the
coherence to diffuse ratio estimator [38] are some examples.
Also, we have recently proposed an a priori SPP estimator for
dual-channel smartphones [45] combining spatial properties
and the power level difference between microphones.

In this work we propose to estimate the a priori SPP
using a deep neural network (DNN)-based mask estimator
[23]. These DNN estimators have been successfully applied
in speech and noise covariance estimation for multichannel
speech enhancement [24], [25] in both offline and online sce-
narios [26]–[28]. They often work in each microphone channel
individually using only spectral information, so they are called
spectral models. Recently, these models have been successfully
combined with statistical spatial models [39], [40] to improve
the performance of the estimator. These combinations have
also shown promising results in blind source separation [46].
Therefore, our approach integrates the use of statistical signal
processing with deep learning for the difficult situation where
classical assumptions are no longer valid.

Our mask estimator is based on the one proposed in
[24], [47]. The model consists of a recurrent neural network
followed by two fully connected layers with ReLU activa-
tions and an output layer with sigmoid activation. We use
a unidirectional long-short term memory (LSTM) recurrent
neural network, so the mask estimator can be used in an online
scenario. The input feature vector is the noisy log magnitude
spectrum,

Ym,t ,
[
log |Y |m,t,0 · · · log |Y |m,t,F−1

]>
, (55)

where m refers to the microphone channel index and F
is the number of frequency bins. A time-recursive mean
normalization is applied on the input features before feeding
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Algorithm 1 REM algorithm with DNN-based SPP estimation
1: Initialize variables and parameters
2: for each t in T (total frames) do
3: Update ΦY,t using yt (54)
4: Update ht (60) and ΦN,t (62) if needed
5: Compute qx,t using DNN and initialize p0x,t = qx,t
6: for l = 1 to lmax do
7: Beamformer: Compute Zt (20) and φo,t (23) (E-step)
8: Compute speech variance φx,t (42)
9: if using Kalman filter then

10: Compute at (46) and φv,t (47) (M-step)
11: end if
12: Postfilter: Estimate X̃1,t (18) and Pt (19) (E-step)
13: Estimate X̂1,t (16) and Sx,t (17) (E-step)
14: Estimate px,t (38) (E-step)
15: Update Λt (61)
16: Compute ht (50) and ΦN,t (51) (M-step)
17: end for
18: Update variables for next frame
19: end for

them into the network [47]. A single speech presence mask is
obtained for each channel. The target features used during the
training phase are ideal binary masks (IBMs) for the speech
signal,

IBMxm,t,f =

1 if
|X|2m,t,f
|N |2m,t,f

> 10µf ,

0 otherwise,
(56)

where µf are frequency-dependent thresholds [24]. During
evaluation, the output masks of each channel are combined in
a single mask by means of a median operation, thus providing
the final a priori SPP estimate qx,t.

VII. IMPLEMENTATION ISSUES

The proposed REM algorithm for multichannel speech
enhancement with DNN-based SPP estimation is summarized
in Algorithm 1. In the following, we discuss some practical
aspects that must be considered for the implementation of the
algorithm.

A. Recursive estimation

In the computation of the acoustic parameters we have to
deal with several expressions that include a sum over the time
frames, with the following structure,

RB,t =
1− λ
1− λt

t∑
τ=1

λt−τBτ , (57)

where Bt is any expression computed at time instant t. For an
efficient computation, we can translate the previous expression
to a recursive estimation,

RB,t = (1− αt)RB,t−1 + αtBt (58)

where
αt =

1− λ
1− λt

(59)

is a time-dependent recursive parameter. Therefore, we only
need to save the values from the previous frame to update the
recursions.

B. Initialization of the relative transfer function

The estimation of the RTF in (50) is not possible until the
first speech frames are processed. This causes the problem that
the MVDR beamformer may not be correctly steered towards
the target speaker during the first speech frames, which leads
to a poor performance of the algorithm. The same problem
arises after long speech inactivity periods. To prevent this, we
propose an initialization of the RTF in iteration l = 0 (before
the MVDR beamforming step) in those bins where there has
been no recent speech activity. This initialization can be done
by eigenvalue decomposition (EVD) [48] of an estimate of the
speech covariance matrix,

hl=0
t = P (ΦY,t −ΦN,t) , (60)

where P (·) gives the eigenvector corresponding to the max-
imum eigenvalue of the matrix and ΦY,t and ΦN,t are com-
puted according to Eqs. (51)-(54). To quantify the speech ac-
tivity in the previous frames, we propose a weighted recursive
sum of the SPP in the previous frames,

Λt,f = λΛt−1,f + px,t,f , (61)

with Λ0,f = 0. At time t, we use the EVD-based initialization
in those bins where Λt−1,f is below a threshold value Λthr.

C. Initialization of the noise covariance matrix

A good initialization of the spatial covariance matrix of the
noise in the first frames can improve the convergence of the
REM algorithm. Moreover, these are usually noise-only frames
or frames with low speech activity. Therefore, we can use
the noisy observations of these frames to update the spatial
noise statistics. During the first Tinit frames of the signal, we
initialize the spatial noise matrix at iteration l = 0 using the
following recursion,

Φl=0
N,t = βtΦN,t−1 + (1− βt) yτy

H
τ (62)

where
βt = 1 + (qx,t − 1)αt. (63)

is a recursive factor that uses the a priori SPP to prevent
updating if speech presence bins are found. This procedure can
be seen as an adaptation of the minima controlled recursive
averaging (MCRA) method in [21]. For the next iterations or
the next time frames, the noise spatial covariance matrix is
computed using (51), as indicated in Algorithm 1.

D. Updating the Kalman filter parameters

The LPC coefficients and the error prediction variance
should be updated before using the Kalman postfilter to track
the speech variability. The problem is that this computation
requires the computation of rx,t,t−1 using (49), which depends
on the Kalman filter output. Therefore, in the first EM iteration
we propose to compute a Wiener filter with an SPP masking
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TABLE I
HYPERPARAMETER VALUES USED IN OUR ALGORITHM

Param. λ lmax p Λthr Tinit

Value 0.9 2 2 1.0 10

to approximate it as rx,t,t−1 ' |̂X|1,tx̂t−1. Once the param-
eters are obtained, the Kalman filter is applied. In the next
iterations, we directly compute these parameters as indicated
in Section V-B by using the estimates obtained in the previous
iteration.

VIII. EXPERIMENTAL RESULTS

A. Experimental framework

To test the performance of the proposed algorithm, we
evaluate it in the simulated set for the CHiME-4 database
[49]. This database comprises six-channel tablet recordings
in different noisy environments: cafe (CAF), street (STR),
pedestrian (PED) and bus (BUS). The SNR of the noisy
speech signals is in the range between 0 dB and 15 dB. The
training subset has 7138 utterances from 83 speakers, while
the development and evaluation subset consists of 1640 and
1320 utterances, respectively, from four different speakers in
each subset. The audio signals are sampled at 16 kHz. The
fifth microphone of the tablet is used as the reference channel
for the different algorithms and the evaluations.

For STFT computation, a 512-point DFT is applied using
a 32 ms square-root Hann window with 50% overlap. This
results in a total of 257 frequency bins for each time frame.
The values of the different parameters used in our algorithm
are summarized in Table I, where the same value of λ is used
in the different equations of our algorithm.

The DNN model has an LSTM layer with 512 units, two
fully connected layers with 512 units each and an output
layer with 257 units. We train the model using the training
subset. The loss function used for training and validation is
the binary cross-entropy between the estimated and target
masks, as in [23]. During the training phase, a batch size
of five utterances and the ADAM optimizer [50] are used.
To prevent overfitting, dropout is applied in the hidden layers
with a de-activation probability factor of 0.5. After each epoch,
the DNN is validated using the development subset. The
training is stopped after 20 epochs without improvement on
the development subset and the best model obtained is saved.
We use Pytorch as deep learning framework.

We evaluate the performance of the proposed REM frame-
work either using a Wiener postfilter (WF) or using a Kalman
postfilter (KF). For comparison purposes, the enhanced signal
before (REMWF-BF and REMKF-BF) and after (REMWF
and REMKF) the postfilter is considered and evaluated for
both algorithms (i.e. Zt and X̃1,t outputs).

B. Evaluation results

In this subsection we use three objective performance mea-
sures to assess the quality of the enhanced signal: the wideband
Perceptual Evaluation of the Speech Quality (PESQ) [51], the

TABLE II
PESQ RESULTS FOR THE DIFFERENT EVALUATED ALGORITHMS. RESULTS

ARE BROKEN DOWN BY NOISE ENVIRONMENT.

Method
Noise

Avg.
BUS CAF PED STR

Noisy 1.32 1.24 1.26 1.28 1.27 ± 0.01
MVDR 1.71 1.51 1.58 1.57 1.59 ± 0.01

REMWF-BF 1.87 1.67 1.74 1.69 1.74 ± 0.02
MWF 2.07 1.83 1.94 1.90 1.94 ± 0.01

REMWF 2.19 1.96 2.07 1.98 2.05 ± 0.02
REMKF-BF 1.89 1.68 1.75 1.70 1.76 ± 0.02

MKF 1.97 1.68 1.79 1.78 1.81 ± 0.01
REMKF 2.22 1.98 2.10 2.01 2.08 ± 0.02

Extended Short-Time Objective Intelligibility (ESTOI) [52],
[53], and the scale-invariant Signal to Distortion Ratio (SDR)
[54]. We compare the four variants of our REM framework
with three state-of-the-art methods. For a fair comparison, all
of these methods use the SPP masks provided by the DNN to
obtain the beamformer parameters. The recursive procedure
used in the MCRA method [21] is applied over these masks
to obtain the noise spatial covariance matrices, while the
RTF is computed by means of EVD decomposition [48]. The
reference methods are:
• MVDR beamforming (MVDR) as described in [21].
• Multichannel Wiener filter (MWF) using the rank-1 ap-

proximation for the speech spatial covariance matrix, as
described in [55].

• Multichannel Kalman filter (MKF) as proposed in [8].
This method uses the baseline MVDR and a Kalman
postfilter. The LPC parameters are computed from the
baseline MWF output via LPC analysis. For a first
comparison, we update these parameters each frame, and
a total of five previous frames are used to compute them.

Tables II, III and IV show, respectively, the results obtained
by the tested methods for each metric. We include the average
results for each noise type, and the average result of each
technique with the 95% confidence intervals indicated. The
results of the unprocessed noisy speech signals are also
included to compare the gains of the different methods. The
evaluation subset of the simulated set from the CHiME-4
database is used in our evaluations. As can be observed,
the proposed REMWF and REMKF outperform the reference
methods in terms of quality, intelligibility and signal distortion.
Moreover, the results obtained for REMWF-BF and REMKF-
BF improve the baseline MVDR beamformer. The postfiltering
implies an increase on PESQ and SDR metrics, while ESTOI
keeps similar when comparing with the beamformer output.
The results using KF in our REM framework are slightly
better than its WF counterpart, both for the beamforming and
postfiltering. Regarding the reference methods, both MWF
and MKF perform better than a basic MVDR beamformer
for PESQ and SDR. Nevertheless, MKF does not outperform
MWF. Finally, the gains obtained are consistent for the differ-
ent noises analyzed, with REMKF as the best approach.

These results show that the use of the REM framework
with DNN-based SPP estimation improves the performance
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TABLE III
ESTOI (X100) RESULTS FOR THE DIFFERENT EVALUATED ALGORITHMS.

RESULTS ARE BROKEN DOWN BY NOISE ENVIRONMENT.

Method
Noise

Avg.
BUS CAF PED STR

Noisy 70.9 65.9 68.7 67.1 68.2 ± 0.5
MVDR 82.9 77.2 79.6 78.5 79.5 ± 0.4

REMWF-BF 86.3 82.2 83.8 82.4 83.7 ± 0.4
MWF 83.3 78.0 80.1 79.1 80.1 ± 0.4

REMWF 86.1 81.7 83.2 82.1 83.3 ± 0.4
REMKF-BF 86.8 82.6 84.3 82.9 84.1 ± 0.4

MKF 80.6 74.7 76.8 76.3 77.1 ± 0.4
REMKF 86.9 82.5 84.0 82.9 84.1 ± 0.4

TABLE IV
SDR RESULTS (IN DB) FOR THE DIFFERENT EVALUATED ALGORITHMS.

RESULTS ARE BROKEN DOWN BY NOISE ENVIRONMENT.

Method
Noise

Avg.
BUS CAF PED STR

Noisy 6.79 7.77 8.60 6.86 7.51 ± 0.11
MVDR 11.42 11.12 11.94 10.88 11.34 ± 0.14

REMWF-BF 12.49 12.26 12.83 11.74 12.33 ± 0.14
MWF 13.72 12.44 13.05 12.83 13.01 ± 0.15

REMWF 15.22 14.06 14.47 14.08 14.46 ± 0.16
REMKF-BF 12.63 12.36 12.96 11.88 12.46 ± 0.15

MKF 13.58 11.71 12.39 12.45 12.53 ± 0.16
REMKF 15.75 14.38 14.90 14.54 14.89 ± 0.16

of the multichannel speech enhancement approaches. This is
observed in the gains in both beamforming and postfiltering
when comparing with the reference methods. The estimation
of the beamforming parameters benefits both on the use of the
estimated clean speech statistics and an improved SPP estima-
tion using spectral (DNN) and spatial (statistical) models. This
shows the advantage of using a DNN mask estimator, which
does not need explicit assumptions about the a priori SPP,
in combination with a statistical spatial model for the noisy
speech. The postfilter further enhances the speech signal at the
beamformer output, increasing the noise reduction at the cost
of a slight degradation of speech intelligibility. This improves
speech quality metrics as PESQ and SDR when comparing
with the beamforming approaches (REMWF-BF and REMKF-
BF), while speech intelligibility metrics such as ESTOI are
not severely affected. The separation of postfiltering and SPP
masking has the advantage that additional speech distortion
is not introduced in the filtered signal, which could degrade
PESQ and ESTOI metrics, while the algorithm still benefits
from this masking to obtain the acoustic parameters.

By comparing the Wiener and Kalman postfiltering ap-
proaches, we conclude that the REM framework benefits
from using the Kalman filter to take into account temporal
correlations, improving the Wiener filter estimation in speech
presence bins. This also allows a better estimation of the
beamforming parameters during the M-step. The same be-
havior is not observed when comparing MWF and MKF,
where the use of the temporal model degrades the metrics.
Although these results do not match with those from [8],
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Fig. 2. Results for the evaluation using baseline and oracle estimates for the
SPP and the acoustic parameters. The improvement with respect to the noisy
speech results is showed along with the 95% confidence intervals: (a) PESQ
results, (b) SDR results.

this could be explained in part by the fact that we use
longer analysis windows and smaller overlapping between
windows than the original implementation, which could affect
the MKF performance. We choose the same window length
and overlapping in the different methods we compare to use
the same DNN architecture in them. On the other hand, MKF
uses LPC analysis on the enhanced signal obtained by MWF,
which contains residual noise, and several frames are needed to
compute the matrices to solve the linear equations system. Our
proposal directly uses the estimated clean speech statistics of
the current frame in a maximum-likelihood estimation of these
parameters. Moreover, the SPP is considered in this procedure,
which allows to better discriminate between clean speech and
noise bins. Thus, our REM framework allows for a better
estimation of the LPC parameters needed for the Kalman filter.

C. Analysis using oracle and baseline estimates for the SPP
and the acoustic parameters

The upper-bound performance of our proposed algorithm
can also be analyzed using oracle estimates for the SPP and
the acoustic parameters. Fig. 2 compares the results in terms
of PESQ and SDR scores obtained using REMKF and three
experiments with oracle estimates: the REMKF and MWF
approaches using oracle IBM masks instead of the DNN
estimation (IBM-RKF and IBM-MWF), and REMKF using
oracle estimates of the RTF and the noise spatial covariance
matrix (O-RKF), but with DNN estimates for the a priori
SPP. The goal of this last experiment is to clearly distinguish
the contribution of the acoustic parameters from SPPs. Oracle

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2020.3036776

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

noise estimates can be obtained using Eq. (54) with the noise
signal instead of the noisy speech signal. On the other hand,
the oracle RTF can be derived from Eq. (50), where the
correlations are now obtained directly from the clean speech
signal, avoiding the use of the clean speech estimates and the
a posteriori SPP. We also include an additional experiment,
named C-RKF, which uses the REMKF framework along with
the a priori SPP estimates obtained from the coherent-to-
diffuse ratio (CDR)-based a priori SPP estimator proposed in
[38]. The motivation for this is to compare the performance
using a priori SPP estimates from the DNN (which rely on
spectro-temporal signal characteristics) with a scheme that
finds a priori SPP estimates based on assumptions about the
spatial signal characteristics.

As can be observed, the REMKF approach outperforms C-
RKF, which indicates that the DNN estimates yield a better
SPP initialization than the CDR-based approach. That is, the
DNN estimator provides more discriminative SPP estimates
than classic signal processing methods. This increases the
performance of the REM framework which takes advantage
of a good initialization for the a priori SPP. Regarding the
oracle estimators, IBM-RKF performs better than IBM-MWF,
especially in the case of the PESQ metric. This suggests that
the robustness of the REM framework is not only due to the
availability of accurate SPP estimates, but also to the use of the
clean speech expectations and SPPs to compute the acoustic
parameters in non-stationary environments. On the other hand,
O-RKF outperforms the rest of the oracle estimators, showing
that a good estimation of the acoustic parameters has a larger
contribution to the performance than the use of oracle SPP
estimates. This highlights the importance of integrating DNN
estimators with statistical spatial models, which, in addition,
improves the estimation of both the a posteriori SPP and the
clean speech signal.

D. Performance of the SPP estimators
In order to compare the a priori SPP estimates given by the

DNN and the a posteriori SPP estimates obtained using our
framework, we consider a binary detector as [38]

M̂x,t,f =

{
1 if px,t,f > pthr,

0 otherwise,
(64)

where pthr is a selected threshold. In the case of the DNN
output, we use qx,t,f instead of px,t,f . We can also define
a ground truth detector Mx,t,f = 1 when speech is present
(Hx) and zero otherwise. The values of this ideal detector are
chosen from the IBM masks used to train the DNN. Then, we
define the true positive rate (TPR) and the false positive rate
(FPR) of the detector for a given utterance as

TPR =

∑
t,f

[(
M̂x,t,f = 1

)
&
(
Mx,t,f = 1

)]
∑
t,f [Mx,t,f = 1]

(65)

FPR =

∑
t,f

[(
M̂x,t,f = 1

)
&
(
Mx,t,f = 0

)]
∑
t,f [Mx,t,f = 0]

(66)

We can evaluate the performance of the binary detector by
means of the Receiver Operating Characteristics (ROC) curve
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Fig. 3. ROC curves of detectors obtained using the DNN output (a priori SPP)
and the a posteriori SPP estimates of the REMWF and REMKF algorithms.
The values of the threshold pthr are chosen between 0.2 and 0.8 with a
step of 0.05. The noisy environments analyzed are: (a) bus, (b) cafeteria, (c)
pedestrian street and (d) street.

[56], which is a representation of TPR vs. FPR for different
threshold values. The higher the area under the curve, the best
the performance of the binary detector.

Fig. 3 shows the ROC curves obtained using the DNN
output and the SPP estimates from the REMWF and REMKF
algorithms in different noisy environments. We use the values
pthr ∈ [0.2, 0.8] with 0.05 step to focus on the regions of
the curve where the differences are more noticeable. These
ratios are computed using the evaluation subset. A single
value per noisy environment is obtained. The results show
that the proposed algorithms achieve better TPR than the
DNN for same values of FPR, which indicates that the use
of probabilistic spatial models helps to better discriminate
between speech presence and speech absence bins. On the
other hand, the performance of both REMWF and REMKF is
comparable in terms of the SPP estimation. In addition, the
performance is similar across the different noisy environments.

E. EM iterations and computational latency

In this subsection, we evaluate the performance in terms of
the number of EM iterations for the REMWF and REMKF
approaches. First, we evaluate the improvements in terms of
SDR with respect to the noisy speech signal. Fig. 4a shows
that the performance stabilizes after two or more iterations.
This fast convergence has been previously observed in other
works [21], [38]. It can be explained by the fact that the
estimation of the a posteriori SPP in the first iteration uses
the acoustic parameters obtained in the previous frames, but
from the second iteration the acoustic parameters are updated
using information for the current time frame, which allows
for a better estimation of the a posteriori SPP. Thus, we have
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Fig. 4. Performance evaluation of our REMWF and REMKF approaches in
terms of the number of EM iterations: (a) Improvements on SDR metric, (b)
Time needed to process each second of the noisy speech signal. The analysis
of the REMKF using a posteriori SPP estimates directly obtained from the
DNN (RKF-DNN) is also included.

chosen two EM iterations for our evaluations. Moreover, we
also analyze the performance of the REMKF algorithm across
the EM iterations, when the DNN estimates are bypassed and
directly used as a posteriori SPP (RKF-DNN), that is, Eq.
(38) is no longer used to this end. Our goal here is to test
whether the REM framework is able to improve the SPP
estimates from the DNN yielding an increase on the final
performance. It is observed in Fig. 4a that the estimation of the
a posteriori SPP in the REM framework outperforms the RKF-
DNN approach for the different EM iterations. Moreover, the
RKF-DNN approach does not show significant improvements
from the first iteration as in the case of the REMKF approach.
This highlights how both frameworks, REM and DNN, are
successfully integrated and help each other to improve the
performance.

In addition, we evaluate the computational latency of our
implementations in terms of the number of iterations. It must
be noted that the algorithms are implemented using Python,
while we run our implementations on an Intel Core i7-4790
CPU at 3.6 GHz with four cores, 16 GB of RAM, and an
Nvidia GeForce GTX 1060 GPU with 6 GB of memory.
The GPU is only used for DNN inference of the a priori
SPP. The algorithms are evaluated over 220 files from the
evaluation subset, and the ratio between the time needed to
process the file and its total duration is computed. The obtained
average ratios are showed in Fig. 4b. The results show that the
computational time increases almost linearly with the number
of iterations and that both algorithms can be executed faster
than real-time on a computer with similar settings.

F. Example results

For a qualitative evaluation of the proposed framework,
Fig. 5 shows example spectrograms of the noisy speech signal
(Fig. 5a), the enhanced signal at the beamformer (Fig. 5b)
and the enhanced signal at the postfilter output (Fig. 5c) for
the REMKF approach. In addition, the corresponding a priori
(Fig. 5d) and a posteriori SPP (Fig. 5e), and the Kalman gain
(Fig. 5f) are also shown. It can be observed that efficient
noise reduction is achieved, especially at the postfilter output
(Fig. 5c), where much of the noise is removed at medium
and high frequencies. Furthermore, the speech formants appear

preserved, which is in line with the objective results obtained.
The a priori SPP (Fig. 5d) obtained by the DNN-based mask
estimator shows the suitability of these deep learning models
for accurately estimating the speech presence without the need
of any assumptions about the spectral properties of the speech
signal. The a posteriori SPP (Fig. 5e) obtained using the REM
framework can improve this estimation by using statistical
models on the multichannel noisy observations, which helps
to differentiate more clearly between speech presence and
absence bins. This turns out in more discriminative SPP masks
as shown in the example. Finally, it is observed that the
Kalman gain (Fig. 5f) does not show the sparse pattern of
the a posteriori SPP, but it presents higher values in high
SNR bins, as expected, and a smooth decay when speech is
absent. The same behavior was observed for the Wiener gain
in the REMWF variant. These gains depend on the speech
variance, whose estimation is addressed without using the
M-step to avoid the problem with the sparsity of the SPP.
Thus, these results suggest the decoupling achieved between
the postfiltering and the SPP masking used for the estimation
of the acoustic parameters.

IX. CONCLUSION

In this paper we have proposed a recursive expectation-
maximization algorithm with a deep neural network-based
speech presence probability estimation for multichannel
speech enhancement. Our proposal combines a statistical
framework for the joint estimation of the clean speech signal
and the acoustic parameters with the powerful modeling capa-
bilities of deep learning models for the estimation of speech
presence probabilities. The combined use of beamforming and
postfiltering, based on a Wiener or a Kalman filter, is proposed
to take advantage of the spatial, spectral and temporal prop-
erties of the speech signal for noise reduction. Moreover, the
sparsity of the speech signal is exploited for the estimation
of the different acoustic parameters needed for beamforming
and postfiltering. The main advantages of the proposal are
the use of statistical spatial models to improve the DNN
estimation and the separation between the postfiltering step
and the SPP masking, which prevents severe speech distortion.
The experimental results show that the proposed framework
helps to outperform other state-of-the-art approaches in terms
of speech quality and intelligibility, and noise reduction, with
the KF-based approach achieving the best results. Moreover,
our proposal allows for online processing with low-latency.

As future work, we will address the estimation of the
clean speech phase and the use of this framework in other
challenging scenarios including speech dereverberation and
blind source separation with multiple speakers.

APPENDIX A
DERIVATION OF THE RECURSIVE EM ALGORITHM

In order to derive the acoustic parameters, we have to
reformulate the Q function previously defined in Eqs. (11)-
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Fig. 5. Example of different noisy and enhanced spectrograms and estimated masks when the REMKF approach is applied to the audio file F05 444C0214 CAF
(cafeteria noise, SDR = 7.23 dB) from the CHiME-4 database. (a) Noisy speech spectrogram at the reference channel. (b) Beamformer output spectrogram.
(c) Filtered speech signal spectrogram. (d) A priori SPP obtained by the DNN. (e) A posteriori SPP obtained using the REM framework. (f) Kalman gain
used in the postfilter.

(13). Using them, we can rewrite the Q function in (13) as
follows,

Q
(

Θt|Θl
t

)
= C+

t∑
τ=1

λt−τ
∑
Dτ

pDτE
{

log f
(
|X|1,τ

∣∣∣xτ−1,Dτ ; at, φv,t

)}
+

t∑
τ=1

λt−τ
∑
Dτ

pDτE {log f (yτ |X1,τ ,Dτ ; ht,ΦN,t )} ,

(67)
where C refers to the sum of terms that are independent of
the parameters of interest and therefore can be neglected, and
pDt = P (Dt|yt) . The expectation depends on the noisy
speech signal and the current acoustic parameters (omitted for
clarity purposes). Let us start with the second non-trivial term,
which depends on the RTF and the noise spatial statistics.
Given that the noise signal follows a multivariate complex
Gaussian distribution, the expectation can be developed as

E {log f (yτ |X1,τ ,Hx; ht,ΦN,t )} = C − 1

2
log |ΦN,t| −

1

2
E
{

[yτ − htX1,τ ]
H

Φ−1N,t [yτ − htX1,τ ]
}
,

(68)
when speech is present, and

E {log f (yτ |Hn; ΦN,t )} = C− 1

2
log |ΦN,t|−

1

2
yHτ Φ−1N,tyτ ,

(69)
when speech is absent (C is used for the independent terms).
The RTF is derived directly from the speech presence assump-

tion. Computing the derivative of Q with respect to the RTF
yields

∂Q

∂ht
=

t∑
τ=1

λt−τpx,τE
{

Φ−1N,t [yτ − htX1,τ ]X∗1,τ

}
, (70)

and by making this expression equals to zero, we obtain the
following MLE estimate,

ht =

∑t
τ=1 λ

t−τpx,τyτ X̂
∗
1,τ∑t

τ=1 λ
t−τpx,τSx,τ

, (71)

which is equivalent to that in Eq. (50). The same procedure can
be used to derive ΦN,t in Eq. (51), now taking both hypotheses
Hn and Hx into consideration, which yields

∂Q

∂Φ−1N,t
= −1

2

t∑
τ=1

λt−τ
[
yτy

H
τ − px,τ

(
htX̂1,τy

H
τ +

yτh
H
t X̂

∗
1,τ − htSx,τh

H
t

)]
+

1

2
ΦN,t

t∑
τ=1

λt−τ .

(72)

Given the previous definition of ht and by using
∑t
τ=1 λ

t−τ =
1−λt
1−λ , the noise covariance matrix can be finally obtained using

the following MLE estimate,

ΦN,t =
1− λ
1− λt

t∑
τ=1

λt−τ
(
yτy

H
τ − px,τhtSx,τhHt

)
. (73)

To obtain the Kalman filter parameters, we use the first
non-trivial term of the Q function, when speech is present.
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Given the stochastic process in (8), which follows a Gaussian
distribution, the expectation can be expanded as,

E
{

log f
(
|X|1,τ

∣∣∣xτ−1,Hx; at, φv,t

)}
= C − 1

2
log φv,t−

1

2
E

{[
|X|1,τ − a>t xτ−1

]>
φ−1v,t

[
|X|1,τ − a>t xτ−1

]}
.

(74)
In order to consider the fact that these parameters can change
quickly, we compute the derivatives in the case λ = 0,

∂Qλ=0

∂a>t
= px,tE

{
φ−1v,t

[
|X|1,t − a>t xt−1

]
x>t−1

}
, (75)

∂Qλ=0

∂φ−1v,t
= −1

2
px,t

(
E
{
|X|21,t − a>t xt−1 |X|1,t−

x>t−1at |X|1,t + a>t xt−1x
>
t−1at

}
− φv,t

)
,

(76)

so only the instantaneous statistics are used. Thus, the follow-
ing MLE estimates can be obtained for the LPC coefficients,

at = E
{
xt−1x

>
t−1
}−1

E
{
|X|1,t xt−1

}
, (77)

and the error prediction variance,

φv,t = E
{
|X|21,t

}
− a>t E

{
xt−1x

>
t−1
}

at. (78)

We use the speech variance under speech presence, φx,t,
instead of E

{
|X|21,t

}
in the above expression to avoid the

problem of the sparsity in the filtered signal X̃1,t. This yields
to the expressions of Eqs. (46) and (47).
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