

Aalborg Universitet

Privacy Preservation in Distributed Optimization via Dual Decomposition and ADMM

Tjell, Katrine ; Wisniewski, Rafal

Published in:
2019 IEEE 58th Conference on Decision and Control (CDC)

DOI (link to publication from Publisher):
10.1109/CDC40024.2019.9028969

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Tjell, K., & Wisniewski, R. (2020). Privacy Preservation in Distributed Optimization via Dual Decomposition and
ADMM. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 7203-7208). Article 9028969 IEEE.
https://doi.org/10.1109/CDC40024.2019.9028969

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://doi.org/10.1109/CDC40024.2019.9028969
https://vbn.aau.dk/en/publications/b426aaf9-689b-46b0-a1b1-049e2c444088
https://doi.org/10.1109/CDC40024.2019.9028969

Privacy Preservation in Distributed Optimization
via Dual Decomposition and ADMM

Katrine Tjell∗ and Rafael Wisniewski∗

Abstract— In this work, we explore distributed optimization
problems, as they are often stated in energy and resource
optimization. More precisely, we consider systems consisting
of a number of subsystems that are solely connected through
linear constraints on the optimized solutions. The focus is put
on two approaches; namely dual decomposition and alternating
direction method of multipliers (ADMM), and we are interested
in the case where it is desired to keep information about
subsystems secret. To this end, we propose a privacy preserving
algorithm based on secure multiparty computation (SMPC) and
secret sharing that ensures privacy of the subsystems while
converging to the optimal solution. To gain efficiency in our
method, we modify the traditional ADMM algorithm.

I. INTRODUCTION

Developments in technology have enabled efficient col-
lection of data and ensured powerful signal transmissions.
This is beneficial in many cases since collected data has the
potential of aiding accurate estimations and predictions as
well as the calculation of solutions customized to individuals.
Take for instance electricity production and pressure control
in water networks as examples of control systems with a
potential of reducing resource losses by accurately predicting
the consumption through fine grained measurements. An-
other example could be the future smart house that will adapt
more and more to the occupants in pace with the more data
it collects. To this end, collected data is valuable, however,
more often than not it contains privacy sensitive information.
For instance, the activities of occupants in a household can
be inferred from electricity consumption measurements as
showed in [1]. Most people are cautious to share this kind
of information; hence, they will also be reluctant to share
their consumption data. The idea, thus, is to develop methods
that can exploit the benefits of the data without risking the
privacy of individuals.

The focus in this paper is on distributed optimization
where several agents each hold a part of the optimization
problem. This kind of problem appears in many applications,
take for instance resource allocation between subsystems,
formation control of autonomous vehicles and distributed
resource generation.

The problem in focus can be described as a system
containing N agents that each have a private objective. More-
over, the overall system describes a set of linear constraints
that couples the N individual optimization problems. To
exemplify, the agents could be power production units and a
constraint could be that the sum of produced power meet

∗Faculty of IT and Design, Department of Electronic Systems, Automa-
tion and Control, Aalborg University, Denmark,
{kst,raf}@es.aau.dk

a certain requirement or that the sum of resources used
may not exceed a given limit. Each agent is unwilling to
share information concerning their system, so the individual
objectives as well as optimized solutions must be kept
private. Furthermore, the constraints must also remain secret
as they may reveal information about the individual systems.
Specifically, we assume that the constraints are designed by
a superintendent and will only be used in encrypted form.

We study distributed optimization via dual decomposition
and Alternating Direction Method of Multipliers (ADMM)
and propose privacy preserving solutions. In particular, we
put forward a method based on Secure Multiparty Com-
putation (SMPC) and cloud computing, that minimizes the
objective while leaking no information about the system.

Related work. The number of papers focusing on privacy
preserving control and optimization is increasing. Zhang et
al.’s work [2] is closely related to ours as they also consider
an ADMM based privacy preserving distributed optimization
solution. However, they allow every agent to communicate
with their neighbour using homomorphic encryption, which
is in contrast to our solution, where the agents communicate
only with a number of so-called computing parties using
secure multiparty computation. We believe that this solution
scales better with the number of agents and is computation-
ally less demanding. Many recent papers within this subject
are based on homomorphic encryption, for instance [3] and
[4]. There is also a substantial amount of work, basing the
privacy preservation on differential privacy, for instance [5],
[6], and [7]. This approach requires at least some trust in the
system, which our solution does not exhibit.

Also of interest to our work is [8] and [9] that investigates
how to preserve privacy and integrity in cloud computations.

Structure. In Section II, the specific problem studied
throughout the paper is presented. Subsequently, Section III
gives an introduction to the two building blocks of the paper,
namely SMPC and secret sharing. In the Sections IV and
V, we introduce the main contribution, which is privacy
preserving distributed optimization. In Section IV, our ideas
are presented using a dual decomposition approach. The
main purpose of this section is to provide intuition about
the methods, since the ADMM based approach presented
in Section V is more likely to have a practical relevance.
Finally, a discussion is provided in Section VI.

II. PROBLEM FORMULATION

In the paper, we consider the setup consisting of N
agents, A1, . . . , AN , each having a local objective function

f1(x1), . . . , fN (xN) and a superintendent having require-
ments for the agents. Remark, we assume that fi(xi) is
known only to agent i and that the constraints are known
only to the superintendent. The agents want to minimize
their individual objective function, while the superintendent
wants the result achieved by the agents to fulfill certain
requirements. These requirements are formulated as M linear
constraints on the form

N∑
i=1

Bixi = c, (1)

where xi ∈ Rq , Bi ∈ RM×q , and c ∈ RM×1. The overall
problem can thus be stated as

minimize
x

N∑
i=1

fi(xi)

subject to
N∑
i=1

Bixi − c = 0,

(2)

where x = [x1, . . . ,xN].
Concerning the approach to solving (2), we are interested

in the case where each agent are not willing to share
information about their system with the other agents or the
public in general. A reason for this could for instance be
that the system information is considered corporate secrets.
At the same time, we assume that the agents are honest in
the sense that they will follow computational instructions
and not tamper with any intermediate results. Nonetheless,
they may attempt to disclose the secret information of other
participants and our methods must prevent this.

The goal in the paper is to solve (2), without leaking any
private information. We base the methods on SMPC and
secret sharing. However, one could exchange SMPC with
homomorphic encryption in our protocols. This would entail
less communication but more computation, thus the choice
is application dependent. A short introduction to SMPC and
secret sharing is provided in the following section, and the
reader is referred to [10] for a more elaborate explanation.

III. SECURE MULTIPARTY COMPUTATION
BASED ON SECRET SHARING

Consider the evaluation of a function f(x1, . . . , xn),
where each of the inputs are provided by a distinct party,
say P1, . . . , Pn. The parties want to learn the output of the
function, nonetheless, they are not willing to reveal their
individual inputs.

This scenario is the central problem in SMPC, that has
the aim of developing protocols that allow the parties to
evaluate the function without disclosing their private infor-
mation. This is achieved by applying encryption techniques
to hide the secret data. In particular, secret sharing methods
are popular to use as the encryption technique in SMPC,
since this usually entails protocols with a low computational
complexity.

Secret sharing aims to avoid the situation where one entity
holds a secret, since in case of an attack, the adversary then

has to attack multiple entities to learn the secret. The secret is
”chunked” into pieces that can be distributed among several
parties. One piece of information is referred to as a share
and by itself it reveals nothing about the secret. Specifically,
it takes some or all shares to recreate the secret. In Definition
1, we give a definition of a secret sharing scheme.

Definition 1 (Secret Sharing Scheme): A secret sharing
scheme consists of two algorithms namely Share and Re-
construct. The first one takes a secret s and creates the
shares, which are values s1, . . . , sn, where n is the number
of parties. The latter one outputs s upon given any set of
at least t shares, where t is the threshold for the scheme.
Additionally, it holds that no information about the secret
can be gained from a set of fewer than t shares.

Since a set of fewer than t shares reveals nothing about the
secret, the threshold can be used to adopt the protocol to the
expectation of so-called corrupted parties. If a set of parties
collude in inferring information about private values of other
parties they are referred to as corrupted parties. Moreover, we
distinguish between corrupted parties that follow the protocol
and ones that do not. The former is referred to passive
corruption, while the latter is referred to as active.

We use {·} to denote the secret sharing scheme, i.e., {s}
is the shares (s1, . . . , sn) of the secret s.

The particular choice of the algorithm Share in the SMPC
protocol, determines the computations that can be done on
the secrets. In this paper, one can use any linear secret
sharing scheme that takes an integer secret modulo some
prime p and outputs integer shares also modulo p. Moreover,
the scheme should satisfy that a shared version of the sum
{x + y} and product {xy} modulo p, can be computed
given {x} and {y}. One can for instance use Shamir’s secret
sharing scheme, for which the above mentioned properties
hold when the threshold t < n

2 .
To give an overview, the privacy preserving protocols

proposed in this paper works by hiding secret values using
the Share algorithm. A caveat is that, as mentioned, secret
values are integers modulo a prime p. We can choose p large
enough, so that we do not have wrap-arounds, but eventually
the values x,B and c needs to be truncated before Share
can be used to create shares of them. Scaling can be used
to minimize the truncation error, however, it is unavoidable
not to induce quatization errors. We will not touch upon this
issue any further.

The desired output is computed as each party alternately
distributes the shares among the parties and performs local
operations on the shares. At the end, all parties can use the
Reconstruct algorithm to learn the output.

In our case, the aforementioned parties can be the agents
themselves or to reduce communication, independent com-
puting parties (for instance cloud servers), can be applied
to perform the calculations. For the latter choice, efficient
frameworks such as ABY3 and SecureML introduced by
Mohassel and Rindal in [11] and Mohassel and Zhang in [12]
respectively, can be employed. The number of computing
parties are three in the case of ABY3 and two in the case
of SecureML, and security is achieved against one actively

Fig. 1. The N agents connected to the n computing parties.

corrupted server.
For this work, we consider the case where n computing

parties perform the SMPC, but one can adapt the protocols
to the other case as well. That is, only the computing
parties will do computations on shares, and the agents and
superintendent will only provide inputs to the protocol. Fig. 1
gives an illustration of how the agents are connected to
the computing parties while the computing parties are all
connected to each other.

A. Preliminaries

As already mentioned, we will use {x} to denote the
shares of the value x. When we say that a number of parties
hold {x}, we mean that each party has one share of x. In
continuation, when a number of parties hold {x} and {X},
it means that each party has a share of each of the entries
in the vector x, respectively the matrix X . Furthermore, the
following is a recap of the assumptions we make.
• The agents are honest but curious. That is, they will

follow instructions but may attempt to disclose infor-
mation. However, we assume the agents do not collude.

• A majority of the computing parties are honest and not
colluding. If active attacks on the computing parties
are expected, one can for instance use the techniques
presented in [13] to prevent this, otherwise one can use
for instance Shamir’s Secret sharing scheme to ensure
privacy against a passive adversary.

• The superintendent is honest and not colluding with any
other entity.

• Only Ai knows fi.
• Only the superintendent knows the constraints.

IV. DUAL DECOMPOSITION BASED PRIVACY
PRESERVING OPTIMIZATION

In this section, we use the idea in dual decomposition to
solve (2). In the following, we merely present the standard
dual decomposition algorithm, thus the interested reader is
referred to [14] for a more thorough introduction to the
subject.

For (2), the Lagrangian is

L(x,λ) =

N∑
i=1

(fi(xi)) + λ
>(Bx− c), (3)

where B = [B1, . . . ,BN]. However, it can equivalently be
written as

L(x,λ) =

N∑
i=1

(
fi(xi) + λ

>Bixi

)
− λc. (4)

The idea in dual decomposition is then to minimize the
Lagrangian by solving N sub problems, one for each xi. This
is done in iterations, where subsequently the dual variables
are updated. The algorithm can be described by the following
to steps, where the first is performed in parallel by each agent
i:

xk+1
i = min

xi

fi(xi) + λ
k>Bixi

λk+1 = λk + α(Bxk+1 − c),
(5)

where α > 0 is a step size and xk = [xk
>

1 , . . . ,xk
>

N]>.
In the following section, SMPC and cloud computing are
employed to introduce a privacy preserving version of dual
decomposition, where xk, B and c remain secret during
protocol execution.

A. Privacy Preserving Optimization using Dual Decomposi-
tion

We start by make a couple of remarks. The first one is
that by sampling a uniform random matrix T and applying
it on the constraints, i.e.,

TBx− Tc = 0,

yields the same constraints, but they are now masked by a
random matrix. This will only work if T is non-singular. A
singular T can almost always be avoided by constructing it
in a special way. This result is stated in Lemma 1, which
follows from application of Theorem 2 in [15].

Lemma 1: Let K be a finite field with cardinality |K|.
Suppose T = UL, where

U =

1 u2 u3 . . . un
0 u1 u2 . . . un−1
. . .
0 0 0 . . . u2
0 0 0 . . . 1

 ,

L =

1 0 0 . . . 0
v2 1 0 . . . 0
v3 v2 1 . . . 0
. . .
vn vn−1 vn−2 . . . 1

are Kn×n Toeplitz matrices with independent uniformly
distributed random entries. Then

P[det(T) 6= 0] ≥ 1− n(n+ 1)

|K|
.

We propose to create T using Lemma 1 and a preprocess-
ing phase that the computing parties will run before protocol

execution, i.e., each party will obtain a share of each entry in
T and no party will know the actual T . For details about how
T is created in a preprocessing phase, we refer to [10]. After
T is created, the computing parties must securely check the
determinant of T , which can be done directly on the shares as
shown in [16]. If the determinant is zero they will start over,
thus ensuring a non-singular T at the beginning of protocol
execution.

The second remark is that the minimization of agent i can
be written as

xk+1
i = min

xi

fi(xi) + v
k>
i xi, (6)

where
vk>i = λk>TBi. (7)

The privacy preserving algorithm will then alternate between
the agents solving their individual minimization problem in
parallel and the computing parties doing SMPC. When each
agent has solved its problem, it will create shares of the result
and send one share to each of the computing parties. Each
computing party will also receive a share of B and c from
the superintendent, meaning that the parties can compute vki ,
by performing computations directly on shares. In order to
avoid having the computing parties working with α, which is
not an integer, we introduce an integer d > 1 and let α = 1

d .
The computing parties will then compute ṽki = dvki .

Each agent i will receive ṽki from the computing parties
where after it can compute vki = 1

d ṽ
k
i . It is of course vital

that vki does not leak information allowing agent i to learn
either B, c, or xj for j 6= i. We provide a proof that vki
does not leak information in the following.

Lemma 2: Disclosing vki to agent i at time k does not
leak information.

Proof: Because T is applied on B, each entry in vki is
a sum of uniformly distributed random variables. Thus, agent
i does not learn more from vki than he could from drawing
numbers from a uniform distribution.
The protocol is written formally in Protocol 1.

We now expand the solution presented in this section, to
a solution based on the ADMM algorithm.

V. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

The ADMM method is based on the augmented La-
grangian, which entails that the ADMM has convergence
advantages over dual decomposition. We refer the reader to
[14] for an introduction to ADMM; here, we merely present
the algorithm. In regards to this, we note that the standard
ADMM problem is on the form

minimize
x

f(x) + g(z)

subject to A1x+A2z = b,
(11)

and the augmented Lagrangian for this problem is

Lρ(x, z,λ) =f(x) + g(z) + λ>(A1x+A2z − b)

+
1

2
ρ||A1x+A2z − b||22.

(12)

Protocol 1 Privacy Preserving Dual Decomposition Method
1: The computing parties hold {T }, where {T } is a uni-

formly random M×M matrix obtained in a preprocess-
ing phase.

2: The computing parties hold {B} and {c}, received from
the super intended.

3: d > 1 is an integer.
4: α = 1

d , v0 = 0, λ0 = 0.
5: for all k = 0, . . . do
6: Each agent i computes

vki =
1

d
ṽki . (8)

after receiving all shares of ṽki from the computing
parties.

7: Each agent i computes xk+1
i by solving (6).

8: Each agent i creates shares of xk+1
i and send one

share to each of the computing parties.
9: The computing parties compute jointly:

{λk+1} = {λk}+ ({T }{B} − {T }{c}){xk+1},
(9)

and
{ṽk+1>

i } = {λk+1>}{T }{Bi}. (10)

for i = 1, . . . , N .
10: The computing parties send all shares of {ṽi} to

agent i for i = 1, . . . , N .

Consequently, the ADMM algorithm consists of the fol-
lowing steps

xk+1 = min
x
Lρ(x, z

k,λk)

zk+1 = min
z
Lρ(x

k+1, z,λk)

λk+1 = λk + ρ(A1x
k+1 +A2z

k+1 − b),

(13)

where ρ > 0.
The problem in (2) is almost on the standard ADMM form,

the main difference is that instead of two blocks in (11), there
are N blocks in (2). This modification is important to avoid
communication among agents. The augmented Lagrangian
for (2) is

Lρ(x,λ) =

N∑
i=1

(fi(xi)) + λ
>(Bx− c) + 1

2
ρ||Bx− c||22.

(14)
Depending on the size of N , performing the sub opti-

mizations sequentially may take a long time. Therefore, we
propose that each agent solve their individual minimization
in parallel, i.e., we propose the modified ADMM algorithm

xk+1
i = min

xi

Lρ(x
k
1 , . . . ,xi, . . . ,x

k
N ,λ

k) for i = 1, . . . , N

λk+1 = λk + ρ

(
N∑
i=1

Bix
k+1
i − c

)
.

(15)

Unfortunately, this approximation of the ADMM algo-
rithm is likely to diverge unless precautions are taken. One
approach is proposed (and proved) by [17] and involves
adding an underrelaxation step, such that the algorithm
becomes the following;

x̃k+1
i = min

xi

Lρ(x
k
1 , . . . ,xi, . . . ,x

k
N ,λ

k) for i = 1, . . . , N

λ̃
k+1

= λk + ρ

(
N∑
i=1

Bix̃
k+1
i − c

)
.

xk+1
i = xki −

1

N + 1
(xk − x̃k+1

i)

λk+1 = λk − 1

N + 1
(λk − λ̃

k+1
).

(16)

A. Privacy Preserving ADMM
For obtaining a privacy preserving ADMM protocol, we

use the same principles as we did in the privacy preserving
dual decomposition method. Namely, we mask B and c
with a uniformly random matrix T , such that the masked
constraints yields

TBx = Tc. (17)

Next, we rewrite the minimization problem of each agent.
To do this, consider the minimization of (14), where we focus
on λ>(Bx−c)+ ρ

2 ||Bx−c||
2
2 since these terms cannot be

computed locally. We consider the minimization with respect
to only one element, xe, in the vector x.

min
xe

λBx+
ρ

2

 M∑
j=1

(bjx− cj)2

=min
xe

M∑
j=1

λjbj,exe +
ρ

2

 M∑
j=1

bjxx
>b>j − 2bjxcj

=min

xe

M∑
j=1

λjbj,exe +
ρ

2

M∑
j=1

b2j,exe
2

+
ρ

2
xe

M∑
j=1

N∑
k=1,k 6=e

2bj,ebj,kxk −
ρ

2
xe

M∑
j=1

2bj,ecj

=min
xe

xe
2 ρ

2

M∑
j=1

b2j,e+

xe

M∑
j=1

bj,e

λj − ρcj + ρ

N∑
k=1,k 6=e

bj,kxk

=min

xe

β1,exe
2 + β2,exe,

(18)
where bj is the j’th row of B, bj,e is the j, e’th element of
B and

β1,e =
ρ

2

M∑
j=1

b2j,e

β2,e =

M∑
j=1

bj,e

λj − ρcj + ρ

N∑
k=1,k 6=e

bj,kxk

 .

(19)

Most of the reductions in (18) are because terms that are
constant with respect to xe does not affect the minimization
and can be disregarded.

Define st,j = [βt,(j−1)q+1, βt,(j−1)q+2, . . . , βt,(j−1)q+q]
for j = 1, . . . , N and t = 1, 2. To improve readability, s1,j
and s2,j are illustrated in the following.

β1,1

...
β1,q

 s1,1
β2,1

...
β2,q

 s2,1
β1q+1

...
β12q

 s12
β2q+1

...
β22q

 s22
...

...
β1,(N−1)q+1

...
β1,Nq

 s1,N
β2,(N−1)q+1

...
β2,Nq

 s2,N

(20)

The optimization problem of node i is now formulated as;

x̃ki = min
xi

fi(xi) + diag({s1,i})x2
i + diag({s2,i})xi, (21)

where diag(x) is a matrix with x on the diagonal and 0
everywhere else.

The privacy preserving algorithm will then operate by at
each time k, each agent i will calculate x̃ki by solving (21)
upon receiving sk1,i and sk2,i from the computing parties. The
agents then create shares of x̃ki and sends one share to each
computing party. The computing parties will calculate sk+1

1i

and sk+1
2,i for i = 1, . . . , n by operating directly on the shares.

The algorithm will obviously only be privacy preserving if
sk+1
1,i and sk+1

2,i does not leak information. We provide a proof
of this immediately.

Lemma 3: Disclosing sk1,i and sk2,i to agent i does not
disclose information.

Proof: Since T is a uniformly random matrix, and
the sum and product of two uniform random variables are
uniformly distributed, [10] page 254, it can be verified that
all terms in sk1,i and sk2,i are uniformly distributed random
variables. Thus, that agent i learns these two values does not
reveal information.

In Protocol 2, the privacy preserving protocol for the
modified ADMM algorithm is stated formally.

Protocol 2 Privacy Preserving ADMM
1: The computing parties hold {T }, where {T } is a uni-

formly random M×M matrix obtained in a preprocess-
ing phase.

2: The computing parties hold {B} and {c}, received from
the super intended.

3: ρ > 1 is an integer.
4: B̂ = TB, ĉ = Tc, λ0 = λ̃

0
= 0, x = x̃ = 0.

5: s01,i = 0 and s02,i = 0 for i = 1, . . . , N .
6: for all k = 0, . . . do
7: Each agent i receives sk1i and s̃k2,i.
8: Each agent i computes sk2,i = 1

d s̃
k
2,i and x̃k+1

i by
solving (21).

9: Each agent i creates shares of x̃k+1
i and send one

share to each computing party.
10: The computing parties compute jointly:

{λ̃
k+1
} = {λk}+ ρ({B̂}{x̃k+1} − {ĉ}). (22)

11: The computing parties compute

{xk+1
i } = {xki } −

({xk} − {x̃k+1
i })

N + 1

{λk+1} = {λk} − ({λk} − {λ̃
k+1
})

N + 1
.

(23)

and {sk+1
1,i } and {sk+1

2,i } by using (20) and

{β1,e} =
⌊ρ
2

⌋ M∑
j=1

{b̂j,e}{b̂j,e}

{β2,e} =
M∑
j=1

{b̂j,e}{λk+1
j } − ρ{ĉj}+ ρ

N∑
t=1,t6=e

{b̂j,t}{xk+1
t }

 ,

(24)
for e = 1, . . . , Nq.

12: Each of the computing parties sends their share of
{sk+1

1i
} and {sk+1

2i
} to agent i for i = 1, . . . , N .

Remark, in (23) we have assumed that there exist SMCP
protocols for dividing a secret with a public integer, see [18]
for more on this topic.

VI. DISCUSSION

The paper presents a privacy preserving dual decomposi-
tion protocol as well as a privacy preserving ADMM proto-
col. The former serves mostly as a more gentle introduction
to the ideas in the paper, while the main contribution is the
latter protocol.

Our proposed methods enjoy a decentralized setting, all
though a number of so-called computing parties are em-
ployed to avoid communication between sub-systems. The
computing parties are feed exclusively with encrypted values

and only by attacking all parties (which we assume is
infeasible) can information be learned.

VII. ACKNOWLEDGMENTS
This work is supported by SECURE project at Aalborg

University.

REFERENCES

[1] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin,
“Private memoirs of a smart meter,” in Proceedings of the 2Nd ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency in
Building, BuildSys ’10, (New York, NY, USA), pp. 61–66, ACM,
2010.

[2] C. Zhang, M. Ahmad, and Y. Wang, “Admm based privacy-preserving
decentralized optimization,” IEEE Transactions on Information Foren-
sics and Security, vol. 14, pp. 565–580, March 2019.

[3] Y. Lu and M. Zhu, “Privacy preserving distributed optimization using
homomorphic encryption,” Automatica, vol. 96, pp. 314 – 325, 2018.

[4] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Sri-
vastava, and P. Tabuada, “Privacy-aware quadratic optimization using
partially homomorphic encryption,” in 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 5053–5058, Dec 2016.

[5] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 2015 International Conference
on Distributed Computing and Networking, ICDCN ’15, (New York,
NY, USA), pp. 4:1–4:10, ACM, 2015.

[6] V. Rostampour, R. Ferrari, A. M. Teixeira, and T. Keviczky,
“Differentially-private distributed fault diagnosis for large-scale non-
linear uncertain systems,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 975
– 982, 2018. 10th IFAC Symposium on Fault Detection, Supervision
and Safety for Technical Processes SAFEPROCESS 2018.

[7] E. Nozari, P. Tallapragada, and J. Corts, “Differentially private dis-
tributed convex optimization via objective perturbation,” in 2016
American Control Conference (ACC), pp. 2061–2066, July 2016.

[8] Z. Xu and Q. Zhu, “Secure and resilient control design for cloud
enabled networked control systems,” in Proceedings of the First ACM
Workshop on Cyber-Physical Systems-Security and/or PrivaCy, CPS-
SPC ’15, (New York, NY, USA), pp. 31–42, ACM, 2015.

[9] N. Drucker, S. Gueron, and B. Pinkas, “Faster secure cloud computa-
tions with a trusted proxy,” IEEE Security Privacy, vol. 15, pp. 61–67,
November 2017.

[10] R. Cramer, I. B. Damgaard, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 1 ed.,
2015.

[11] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” IACR Cryptology ePrint Archive, vol. 2018, p. 403,
2018.

[12] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security
and Privacy (SP), pp. 19–38, May 2017.

[13] M. Pettai and P. Laud, “Automatic proofs of privacy of secure multi-
party computation protocols against active adversaries,” in 2015 IEEE
28th Computer Security Foundations Symposium, pp. 75–89, July
2015.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–
122, Jan. 2011.

[15] E. Kaltofen and B. D. Saunders, “On wiedemann’s method of solving
sparse linear systems,” in Proceedings of the 9th International Sympo-
sium, on Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, AAECC-9, (London, UK, UK), pp. 29–38, Springer-Verlag,
1991.

[16] R. Cramer and I. Damgård, “Secure distributed linear algebra in a
constant number of rounds,” in Proceedings of the 21st Annual Inter-
national Cryptology Conference on Advances in Cryptology, CRYPTO
’01, (London, UK, UK), pp. 119–136, Springer-Verlag, 2001.

[17] B. He, L. Hou, and X. Yuan, “On full jacobian decomposition of the
augmented lagrangian method for separable convex programming,”
SIAM Journal on Optimization, vol. 25, no. 4, pp. 2274–2312, 2015.

[18] O. Catrina and S. de Hoogh, “Improved primitives for secure multi-
party integer computation,” in Security and Cryptography for Networks
(J. A. Garay and R. De Prisco, eds.), (Berlin, Heidelberg), pp. 182–
199, Springer Berlin Heidelberg, 2010.

