

Aalborg Universitet

Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

Ragusa, Edoardo; Gianoglio, Christian; Dosen, Strahinja; Gastaldo, Paolo

Published in:
IEEE Access

DOI (link to publication from Publisher):
10.1109/ACCESS.2021.3109733

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Ragusa, E., Gianoglio, C., Dosen, S., & Gastaldo, P. (2021). Hardware-Aware Affordance Detection for
Application in Portable Embedded Systems. IEEE Access, 9, 123178-123193. Article 9527234.
https://doi.org/10.1109/ACCESS.2021.3109733

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2024

https://doi.org/10.1109/ACCESS.2021.3109733
https://vbn.aau.dk/en/publications/e5ebd1b1-82b9-4a9e-a173-7e4bbbf87161
https://doi.org/10.1109/ACCESS.2021.3109733

Received July 13, 2021, accepted August 15, 2021, date of publication September 1, 2021, date of current version September 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109733

Hardware-Aware Affordance Detection for
Application in Portable Embedded Systems
EDOARDO RAGUSA 1, CHRISTIAN GIANOGLIO 1, STRAHINJA DOSEN 2, (Member, IEEE),
AND PAOLO GASTALDO 1
1Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture, DITEN, University of Genoa, 16145 Genova, Italy
2Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark

Corresponding author: Edoardo Ragusa (edoardo.ragusa@edu.unige.it)

ABSTRACT Affordance detection in computer vision allows segmenting an object into parts according to
functions that those parts afford. Most solutions for affordance detection are developed in robotics using
deep learning architectures that require substantial computing power. Therefore, these approaches are not
convenient for application in embedded systems with limited resources. For instance, computer vision is
used in smart prosthetic limbs, and in this context, affordance detection could be employed to determine the
graspable segments of an object, which is a critical information for selecting a grasping strategy. This work
proposes an affordance detection strategy based on hardware-aware deep learning solutions. Experimental
results confirmed that the proposed solution achieves comparable accuracy with respect to the state-of-
the-art approaches. In addition, the model was implemented on real-time embedded devices obtaining a
high FPS rate, with limited power consumption. Finally, the experimental assessment in realistic conditions
demonstrated that the developed method is robust and reliable. As a major outcome, the paper proposes and
characterizes the first complete embedded solution for affordance detection in embedded devices. Such a
solution could be used to substantially improve computer vision based prosthesis control but it is also highly
relevant for other applications (e.g., resource-constrained robotic systems).

INDEX TERMS Affordance prediction, CNNs, prosthetics, embedded systems.

I. INTRODUCTION
The invention and spread of deep learning made a profound
impact in many fields of engineering. Computer vision tech-
niques can now almost compete with humans in many recog-
nition and classification tasks [1]. Accordingly, researchers
could approach new or well-known problems in novel ways.
Many important applications use extensively such technolo-
gies; e.g., healthcare, sentiment analysis, robotics, cyberse-
curity and autonomous driving.

Affordance detection is one of the problems that have
been approached satisfactorily only after the development of
deep learning techniques. This problem consists in detecting
functional interactions between objects and humans [2].More
specifically, affordance detection identifies potential interac-
tions that an object can afford and segments the object into
parts according to these functions. It is solved by means of
image segmentation: Fig. 1 presents the input-output rela-
tionship. In particular, Fig. 1(a) represents an input image,

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

while Fig. 1(b) shows the segmentation masks, where each
pixel is colored based on its functional role. The pixels of
the background are black, and the scoop is divided in two
parts, based on the functionality: the light blue individuates
the handle, whereas the dark blue is the functional part that
should not be grasped. Affordance detection is important in
all those applications where an agent should manipulate or
interact with objects. For example, knives should be grasped
with an appropriate predisposition of the hand. Similarly,
when approaching a suitcase, the agent should target the grip
and not the whole suitcase.

Robotics literature presented excellent solutions for affor-
dance detection using RGB cameras, deep learning tools, and
powerful computing units [3]. However, embedded resource-
constrained systems struggle in adopting those techniques.
One of the main reasons is the computational requirements:
in fact, in standard robotics and computer vision applications,
the state-of-the-art solutions employ GPUs for scientific cal-
culations also during the inference phase [3]. In practice,
a hardware with the size of a desktop computer is needed,
without mentioning the energy consumption. One could

123178
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5527-6325
https://orcid.org/0000-0002-5558-3923
https://orcid.org/0000-0003-3035-147X
https://orcid.org/0000-0002-5748-3942

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

argue that cloud based applications are a reliable option.
However, the assumption of a stable, low latency and always-
available connection is unrealistic. Accordingly, there is a
demand for scalable solutions for affordance detection that
are implementable on embedded systems subject to hard
constraints in terms of power consumption and dimension.
Fortunately, the market has recently made available hardware
platforms suitable for the deployment of deep learning solu-
tions in resource-constrained systems [4]. Thus, the compute
node can be placed in the end device in accordance with the
framework of edge computing.

A new generation of smart robotic prosthetic limbs [5]–[7]
is an example of systems that would profit from advanced
computer vision methods if they can be implemented on
a platform with limited computing power. In principle,
advanced prostheses with multiple degrees of freedom enable
dexterous manipulations of daily life objects [8]. The meth-
ods and technologies for human-machine interfacing between
the users and their bionic limbs have been improved signif-
icantly in recent years [9]. Nevertheless, the communication
bandwidth is still insufficient to allow the users to effectively
and intuitively exploit the functionality available in advanced
prostheses with many degrees of freedom, in particular with
non-invasive solutions [10]. In the conventional approach to
prosthesis control, the user needs to command each prosthesis
function explicitly by generating discriminable patterns of
muscle activation, which can be slow and cognitively taxing
especially with complex systems with multiple functions.
Normally, in commercial prostheses, the user can control a
single function at a time and to switch to another degree of
freedom, he/she needs to produce a special switching signal
(e.g., co-contraction). In recent commercial systems with
pattern classification [11], [12] the user can select a degree
of freedom directly, but he/she is still limited to controlling
prosthesis movements sequentially (one movement at a time).
Despite some controversies about embodiment [13], semi-
autonomous control could substantially improve prosthesis
performance. In this approach, the prosthetic limb is equipped
with additional sensors (e.g., touch sensors, electromyogra-
phy sensors, stereo andRGB-D cameras, and gyroscopes) and
cognitive-like processing that enable the system to perform
some tasks autonomously (e.g., preshape into an appropriate
grasp); the overall goal is to reduce the cognitive burden of
control for the user [6], [14]. As explained later in more detail
(Sec. II), a typical semi-autonomous prosthetic limb relies on
a camera to estimate the properties of the target object and,
based on this, automatically assume an appropriate grasp.
If the computer vision system in a prosthesis would imple-
ment the affordance detection, the limb controller could select
the grasp configuration that is adapted to the functionality
afforded by the object.

The present paper is an important step in this direction.
More specifically, we propose a novel approach to affordance
detection that is suitable for the deployment of the infer-
ence phase within a resource constrained embedded device.
This paper therefore bridges the gap between embedded

FIGURE 1. Example of the input (a) output (b) relation in affordance
prediction problem. The input image (spoon) is segmented into
background (black), handle (light blue) and bowl (dark blue). The handle
can be grasped while the bowl can be used to scoop; hence, the object is
segmented according to the affordance classes.

systems and robotics for the problem of affordance detection.
The proposed approach is characterized with the following
features. First, the novel solution is based on hardware-
aware deep neural architectures that reduce the overall hard-
ware requirements of the trained model, i.e., the model that
should be deployed on the embedded device to support
the inference. Second, affordance detection is achieved by
elaborating only RGB images. Therefore, the framework
does not use depth sensors that are more expensive, bulky,
and power demanding compared to RGB cameras. Third,
the hardware-aware affordance model is tested on three exist-
ing embedded devices suitable to host the real time inference
system, namely, NVIDIA Jetson TX2, NVIDIA Jetson Nano,
and smartphones. Finally, tests involve a setup that mimics
the conditions of an envisioned application (i.e., prosthe-
sis grasping control). Experimental outcomes show that the
hardware-aware affordancemodel can achieve the same accu-
racy on standard benchmarks as the state-of-the-art solutions
employed in robotics.

A. CONTRIBUTION
The present paper investigates factors that are important for
the application of affordance models. The overall goal is
to provide the reader with the pipeline for the design and
deployment of these models on portable devices with limited
resources.

The contribution of the paper can be summarized as the
sum of the following points:

• The design of a framework based on hardware-aware
deep learning architectures for affordance detection.

• A design space exploration for the deployment of
affordance models on resource-constrained devices.
The study evaluates three different affordance models
supported by as many hardware-aware deep learning
architectures.

• Real time implementation of the trained models for
affordance detection on small size embedded devices,
namely, NVIDIA Jetson TX2 and NVIDIA Jetson Nano,
and smartphones.

• Characterization of computational performance of the
embedded systems (latency, memory requirements and
power consumption).

VOLUME 9, 2021 123179

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

• An affordance model that can compete with solutions
employed in robotics in terms of accuracy using substan-
tially less computing resources.

• Experimental assessment of the proposed solution in
real-life conditions (stress test) including different
objects, background, illumination conditions and view-
ing angles.

II. RELATED WORKS
The research in robotics produced the best solutions for
object detection, classification and manipulation using com-
puter vision. However, most of these solutions require high–
performance computations. In the following, we focus on
reviewing the state–of–the–art affordance detection solutions
for robotics, as well as the previous developments in the
field of semi-autonomous control of prostheses employing
computer vision.

The problem of understanding affordances at the pixel
level is termed as ‘‘affordance detection’’ in robotics, where
researchers focus on the real-world objects with which the
robot can interact [2]. Conversely, in computer vision com-
munity this problem is also known as ‘‘object part labelling’’,
and is not restricted to objects.

With the rise of deep learning, recent works relied
on feature learning for affordance detection. In [15], two
deep neural networks detected grasp affordances from RGB
images. Later, deep features from CNNs were used for
affordance detection in RGB-D images [16], obtaining sig-
nificant gains with respect to previous works [2]. In [17],
the authors introduced a multi-scale CNN to localize envi-
ronment affordances. A weakly supervised deep learning
approach to segment object affordances was used in [18].
This method avoided costly pixel ground truth labels. In [3],
a deep learning-based object detector improved the affor-
dance detection accuracy on a real-world dataset by automat-
ically selecting objects inside an image.

Most of these studies did not focus on the computational
cost of the proposed solutions. This is reasonable because the
primary goal was to improve accuracy. Next, most of these
solutions used RGB-D sensors, which are less suitable than
simple RGB cameras for small size, low-power systems, with
hard constraints in size and consumption. In addition, the con-
tribution of the D component is mostly on the control strat-
egy, rather than in affordance recognition. The constraints
regarding memory and number of computations per single
inference were not considered in these studies. And indeed,
such approach can lead to high accuracy, however it produces
solutions that cannot be implemented in an embedded system
with limited computational resources.

In general, controlling a smart robotic prosthesis is a
unique challenge compared to controlling fully autonomous
robotic systems. Indeed, prostheses coexist with humans.
Therefore, some parts of the control flow can be relegated
to the user, thereby reducing the overall complexity of
the control pipeline [19]. The semi-autonomous control of
robotic prosthetic limbs is a relatively new research field.

The literature presents several solutions where semi-
autonomous systems employed computer vision. The initial
studies proposing this concept [20], [21] used a web camera
placed on a prosthesis to provide a snapshot of the target
object and an ultrasound sensor to measure distance to the
object. Upon triggering by the user (myoelectric signal),
the prosthesis automatically selected grasp type and aperture
size according to the object width and height. The later ver-
sion of the system relied on a stereo-camera [6], [14] and
depth sensor to obtain a 3D information. The algorithm used
the extracted cloud of points tomodel target objects using pre-
defined geometrical shapes (box, sphere, cylinder and line).
The estimated model was then used to automatically adjust
the prosthesis grasp type, aperture size and wrist orientation.
In [5], instead of explicitly estimating the object properties,
the authors adopted a grasp classification approach imple-
mented using CNNs trained on the Columbia Object Image
Library (COIL) dataset. The detected objects were clustered
in four groups, each associated to a specific grasping strategy.
A similar approachwas followed by Taverne et al. [22] where
deep learning framework was used to predict the action of
grasping. In [23], an object detection and an image seg-
mentation architecture were deployed into a prosthesis hand
equipped with a camera. The two architectures were designed
from scratch. The experiments showed good results in terms
of object segmentation and classification accuracy. Similarly,
in [24] an object detection network classifies different objects
driving the selection of grasping patterns based on the object
kind, without considering the actual grasping surface. The
uncertainty introduced by partial occlusion and movements
was explicitly modeled in [25]. In [26] a resource aware
method was introduced to classify hand-grasping actions.

Therefore, the previous studies on the semi-autonomous
prosthesis control all relied on estimating the global prop-
erties of the target object (e.g., object overall shape and
size). Such global characterization substantially limits the
subsequent reasoning about the preferred grasping strategy.
In many cases, objects of daily life have complex geometry
that cannot be captured with a single geometric primitive
(e.g., a simple cylinder or a box). The affordance detec-
tion, if it can be implemented within a resource-constrained
device, would allow segmenting and modeling the object
component parts that are particularly relevant for grasping
(e.g., a handle). This information is critical for an accurate
selection of prosthesis grasp parameters.

III. MATERIAL AND METHODS
This research proposes a novel solution for affordance detec-
tion that is suitable for deployment of the inference system in
an embedded device (e.g., prosthesis).

The paper divides the design of the system into three parts:
1) Affordance Detection: the first phase tailors state-of-

the-art solution for affordance detection in robotics to
the specific application in a semi-autonomous pros-
thesis. In practice, this phase defines simplifications,
algorithms and algorithmic choices required to deal

123180 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

FIGURE 2. Example of objects with the corresponding affordance maps
extracted from the UMD dataset.

with the affordance detection problem in this context.
The outcome is an hardware-aware affordance model
that -after the training process- can be deployed on edge
devices.

2) Deployment: the second phase addresses the setup of
the embedded device supporting the real-time imple-
mentation of affordance detection. Hence, this phase
deals with the design of the eventual system for affor-
dance detection.

3) Solution Characterization: the aim of the third phase
is to characterize the hardware-aware affordance model
and test it in different conditions.

Here in after, the three phases will be always identified using
the three names proposed in the list.

In the following, Sec. III-A will explain the design
choices. Section III-B will design the organization of the
framework implementing affordance detection on resource-
constrained embedded devices. Then, Sec. III-C will present
the hardware-aware affordance models adopted in this
research. Finally, Sec. III-D will analyze the edge devices
involved in the deployment phase. The experimental proto-
col supporting solution characterization will be discussed in
Sec. IV.

A. REQUIREMENTS FOR AFFORDANCE DETECTION IN
PROSTHETICS
In robotics, most of the computing energy is spent in object
localization because the robot must individuate objects from
scratch, without a good framing. Instead, for prosthesis,
object detection is not relevant since the user selects the
target object for grasping. As described in Sec. II, the system
can rely on the user to target the camera towards the object
of interest. Therefore, in practice, one can assume that the
graspable object is reasonably well-centered in the image
under analysis.

In addition, in robotics affordance techniques encompass
fine-grained classifications, as functional part recognition
drives the whole inference process. For example, the Uni-
versity of Maryland (UMD) dataset [2] involves 7 affor-
dance classes (grasp, cut, scoop, contain, pound, support and
wrap-grasp), meanwhile in [16] the classification includes
9 classes. Figure 2 reports several representative objects with
the corresponding affordance maps extracted from the UMD
dataset. These classes are designed so that a fully autonomous
robotic system receives a complete information about the

FIGURE 3. The proposed solution: (a) block scheme; (b) the embedded
systems employed in the tests. In (b) Jetson TX2 is the device on the left,
Jetson Nano is the device on the right. Red rectangles enclose the
cameras; blue rectangles enclose the embedded devices hidden by the
cooling systems of the development boards.

functions that are afforded by an object (e.g., an inside of
a glass can ‘‘contain’’ water, a head of the hammer can
be used to ‘‘pound’’). However, fine-grained classification
is not relevant in prosthetic applications since most of this
information is known to the user. In practice, the main goal
of the semi-autonomous system in prosthetics is to assist the
user in grasping an object by automatically preshaping the
prosthesis. Therefore, the prosthesis controller should only
recognize which are the ‘‘graspable’’ elements of an object
since this is a critical information for deciding an appropri-
ate grasping strategy. Therefore, in this context, the affor-
dance detection can be substantially simplified by reducing
the number of classes to three: background, graspable and
non-graspable. This simplification can in turn decrease the
required processing resources.

Obviously, the hardware resources should be hosted on
the prosthesis or in a device carried by the human user. For
initial prototyping, such a device can be attached externally
to the prosthesis socket, for instance, or worn in a pocket
or a waist band. In the final solution, the system should be
integrated within the prosthesis socket in the space normally
allocated for electronics and batteries. Accordingly, weights
and dimensions should be minimized. From this perspective,
an RGB camera is preferable since it is smaller, cheaper and
consumes less power with respect to RGB-D sensors. The
battery is a critical component because the system should
balance lifetime and weight. The embedded device should
be fast enough to guarantee real time performance for the
inference system. In the meantime, power consumption and

VOLUME 9, 2021 123181

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

volume should be minimal. In practice, the right embedded
system is a function of the selected algorithm for affordance
detection.

Ideally, despite the limitations in hardware resources,
the accuracy should still be high since wrong classification
will decrease the reliability of the semi-autonomous system.
This can negatively affect the user experience, as he/she
would often need to correct the wrong decisions of the auto-
matic controller. As explained in Sec. II the best solutions for
affordance detection are based on computationally intensive
deep learning. Nevertheless, the problem can be substantially
simplified when considering the applications in prosthetics.
In addition, the training phase can bemanaged offline by rely-
ing on powerful devices that can run computationally inten-
sive procedures to determine the optimal hardware-aware
network, which is then deployed on the embedded system.
This was the driving point for the solution presented in this
work.

B. PROPOSED FRAMEWORK
This paper presents a model for real-time affordance detec-
tion deployed on embedded accelerators. To this aim, the cur-
rent research tackles the major challenges in the design of
an affordance model that is expected to meet real-time con-
straints on resource-constrained devices. Figure 3 (a) shows
the proposed framework. The image of the target object is
acquired by an RGB camera and processed by the embedded
system hosting a hardware-aware deep learning architecture
for affordance detection. The system outputs a pixel map that
associates each pixel in the input image with an affordance
class. The deep learning components (backbone and seg-
mentation) that comprise our solution are described in more
details in Sec. III-C. Figure 3(b) shows the two embedded
systems that hosted the inference engine in our tests. The
components are described in Sec. III-D and the experimental
assessment in section IV.
The scheme in Fig. 3 (a) emphasizes that the inference

engine is hosted on a battery-operated embedded system that
can be carried by a human user (portable solution). Indeed,
the novel element of the proposed design is that the deep
learning inference engine relies solely on hardware-aware
networks, namely two different versions of the MobileNet
architecture. This in turn is an enabling technology for
many applications that involve resource-constrained devices.
In fact, state-of-the-art deep learning frameworks for affor-
dance detection cannot accommodate the constraints imposed
by existing embedded accelerators.

C. AFFORDANCE DETECTION: HARDWARE-AWARE
MODELS
Affordance detection is performed by means of image seg-
mentation. Indeed, image segmentation architectures can
be roughly divided into two main components: backbone
and segmentation. The backbone network is the compo-
nent entitled to perform low-level feature extraction. Then,

a meta-architecture employing deconvolution operations [27]
produces the segmentation masks, as per Fig. 1(b).

The selection of the AI techniques is critical because they
affect the accuracy and the computational costs. VGG [28]
and ResNet [29] are possibly the most famous CNNs for
object classification. VGG employs up-to 138M, while
ResNet involves from 10M to 59M parameters, based on
the version. The number of parameters influence linearly the
memory requirements, as parameters should be stored on the
hardware device. In addition, the number of operations to
be executed in the inference phase grows with the number
of parameters. The strict relation depends on the network
architecture. For this reason, in many applications one should
deal with the trade-off between the accuracy of the eventual
predictor and the computational cost.

The literature, though, provides other interesting mod-
els. For example, [30] demonstrated an excellent trade-off
between accuracy and computational cost for classification,
while BiSeNet architectures [31], [32] are probably the most
appealing solution for real time image segmentation using
high performance hardware.

When the focus moves to real-time inference on resource
constrained devices, the family of MobileNets architec-
tures [33]–[35] represents the state–of–the–art solution for
computer vision, thanks to the use of depthwise convolu-
tions. This family includes three different architectures, and
the present research considered versions V1 and V3 as the
backbone.

Many pre-trained versions of V1 are available; this is
important since training a deep network from scratch is a time
consuming task. Thus, it is reasonable to adopt V1 even if it is
not the best option in terms of accuracy. V3 has been proposed
more recently; hence, only a few pre-trained versions are
available. The version Small of V3 [35] was selected in this
work since it is the least computationally demanding release
of V3. However, it is also expected to be less accurate.

Three meta-architectures for image segmentation were
considered in the present work: SegNet [36], Unet [37]
and LR-ASPP [35]. Notably, SegNet and UNet avoid fully-
connected layers. Consequently, the number of parameters
of the model is relatively small, especially when hardware-
aware networks support the feature extraction process.
LR-ASPP is the image segmentation meta-architecture tai-
lored for V3; it can be considered as the reference for
image segmentation on resource-constrained devices. Impor-
tantly, to the best of our knowledge, the present study is
the first to investigate the application of the aforemen-
tioned backbone and segmentation networks in the context
of affordance detection. More specifically, three alternative
combinations backbone, meta-architecture were proposed
for the hardware-aware affordance model. The following
notation will be adopted to identify the resulting different
architectures:
• V1_Se: MobileNetV1 + SegNet;
• V1_U : MobileNetV1 + UNet;
• V3_LR: MobileNetV3 + LR-ASPP.

123182 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

TABLE 1. Available hardware configurations for Jetson Tx2 and Nano.

The first two architectures are well-established solutions.
Therefore, pre-trained models can be easily retrieved and
fine-tuned for the specific problem. Conversely, V3_LR has
been introduced recently. It is expected to be very effective
in terms of computational cost. However, there are a limited
number of sources for this solution. In particular, pre-trained
configurations for low-resolution images are not yet avail-
able. The reader is referred to the Appendix for further details
about the structure of the three architectures.

In summary, the eventual solutions were selected based
on the trade-off between the two major design constraints:
accuracy for the specific application, and computational cost.

D. DEPLOYMENT: EDGE DEVICES
The market offers several edge devices that can be used
for deep learning. They differ in power constraints, dimen-
sions, memory size, overall architecture, and software sup-
port. In this paper, we explore two classes of commercial
solutions. The first class involves high performance systems
for embedded deep learning. In particular we tested Jetson
TX2 and Jetson Nano. The second class is represented by
smartphone devices.

Jetson TX2 is a System On Module (SOM) composed of
two processors, namely a dual-core NVIDIA Denver2 and
a quad-core ARM Cortex-A57; it provides a 8GB 128-bit
LPDDR4 and integrated 256-core Pascal GPU. The device
hosts a custom operative system derived from Ubuntu 16 that
enables a high level of control of hardware resources. The
entire Jetson TX2 module measures 5 cm × 9 cm.
Jetson Nano can be considered a constrained version of

the Jetson TX2 SOM. It contains an ARM A57 quad-core,
a 1.43 GHz CPU, and a Maxwell 128 core GPU equipped
with 4 GB of RAM memory. This device also hosts a custom
operative system derived from Ubuntu 16 that enables a high
level of control of hardware resources. The entire JetsonNano
module measures 7 cm × 4.5 cm.

Table 1 summarizes the configurations for both devices.
The columns specify the device name (Dev.), the configu-
ration (Mode), the number of operative cores and the clock
frequency for theDenvermicroprocessor, the number of oper-
ative cores and the clock frequency for the Cortex micropro-
cessor, and the clock frequency of the GPU. The upper part
of the table reports the five configurations of TX2, while the
bottom two rows describe the configurations for Nano.

Nvidia proposes five optimized configurations of the hard-
ware resources of Jetson TX2 that can be selected from a
software interface. The five configurations are very different.
The impact of the GPU clock frequency alone is likely to be
more substantial than all the other configuration parameters
together because most of the computationally intensive oper-
ations are carried by the GPU. The microprocessors mostly
perform data fetching and host the operating system kernel.
Accordingly, configuration 1 is expected to yield the lowest
power consumption. Meanwhile, configuration 0 should lead
to better throughput. Configurations 2, 3, and 4 should pro-
vide a trade-off between the two extremes. Nvidia proposes
two optimized configurations of the hardware resources of
Jetson Nano that can be selected from a software interface.

For both the devices, Nvidia provides a dedicated SDK
and TensorRT for the optimization and quantization of stan-
dard neural network layers. It is important to note that the
software engine uses native TensorFlow. Accordingly, almost
all the layers are supported on these devices. This aspect
allows deploying recent solutions that are not supported by
most of the embedded systems relying on custom inference
engines.

Both these devices provide valid solutions for the problem
under analysis because they offer high computing power
with small form factor. Power consumption might represent
a critical issue in Jetson TX2. However, hardware measures
will confirm that the battery supply is still an option for
these devices, especially if inference rate is suitably man-
aged. Similar observations hold for the heating. In fact,
both devices reach high temperature values during infer-
ence. Therefore, when integrating these devices in portable
systems care should be taken to avoid contact with user
skins (e.g, encasing it within a hollow area of a prosthetic
socket).

The second class of devices are the smartphone processors.
Those computing units are less efficient than Nvidia devices
for deep learning. However, they can represent a reliable solu-
tion due to the excellent ecosystems, composed of dedicated
libraries, and high-level of integration with standard deep
learning tools. In this paper we consider only smartphone
processors, avoiding the use of dedicated GPUs and NPUs
that are efficient but non-standard. Three different solutions
have been tested, namely, Honor 10, Samsung Galaxy S8,
and Samsung Galaxy A40, to demonstrate that the proposed
architectures can be deployed to the systems with different
processing capabilities.

The deployment on the devices was performed by the
TF-lite library that supports the vast majority of the standard
layers for deep learning. In addition, the suit allows adjusting
the settings for post training quantization of the deployed
model.

IV. EXPERIMENTAL SETUP
The individual components of the proposed solution as
well as the overall system were experimentally evaluated as
described in the sections below.

VOLUME 9, 2021 123183

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

A. AFFORDANCE DETECTION TEST
The proposed hardware-aware approach to affordance detec-
tion was compared to the state-of-the-art methods adopted in
robotics. Robotics applications served as the benchmark since
in this context real-time affordance detection runs on embed-
ded systems (which are however not necessarily wearable/
portable). In addition, this paper used as the baseline for
the segmentation architectures two of the latest approaches
proposed in the literature.

More specifically, the experiments presented in [3] have
been used as the benchmark. The experiments involved data
from UMDDataset [2], which contains around 30000 images
and a total of 17 object categories (e.g., workshops objects,
gardens objects, and daily kitchen objects). The images were
captured by the authors using a Kinect camera on a table in a
clutter-free setup.

As anticipated in Sec. III-A, the UMD dataset contains
7 affordance classes: grasp, cut, scoop, contain, pound, sup-
port and wrap-grasp. Such fine-grained classification is use-
ful in robotics. In prosthetics, though, one may focus on a
simplified problem, as the goal is to detect the graspable parts
of an object. Therefore, the proposed affordance models were
tested on two different setups. In the robotics setup, the origi-
nal 7 affordance classes were utilized. In the prosthetics setup,
all the classes apart from ‘‘grasp’’ and ‘‘wrap-grasp’’ were
merged into a single class.

The affordance models V1_Se and V1_U relied on avail-
able pre-trained checkpoints [38]. The checkpoints refer to
networks trained on the ADE20K dataset [39]. As no pre-
trained checkpoints are available for the V3_LR affordance
model, the architecture has been trained onADE20K for 100k
steps using Adam optimizer with learning rate of 0.0001 and
batch size equal to 32.

All three architectures were fine-tuned by exploiting the
UMD training set for 10K steps using Adam optimizer
with learning rate of 0.0001 and batch size equal to 32.
As per [3], the patches containing the objects were isolated
from the images using the affordancemasks. The experiments
involved only the RGB images of this dataset and followed
the original train and test split proposed in [2].

In this research, the solution that obtained the best results
in [3] (namely AffordanceNet) was used as the refer-
ence. AffordanceNet achieved state-of-the-art performance
in terms of accuracy and compared favorably with respect
to the previous works [2], [16], [40]. The performance was
measured using FWβ [41], which is a well-established met-
ric for pixel-wise classification tasks with the values in the
range [0,1]. When FWβ = 1, the prediction map is identical
to the ground-truth, while FWβ = 0 means that there is not
a single match between the pixels of the prediction map and
the ground-truth. This metric is commonly adopted in papers
dealing with affordance detection in robotics [3].

The baseline solution representing the latest neural
network architecture for segmentation were EfficientNet
B0 [30] and BiSeNet [31]. EfficientNet was combined
with Unet, hereafter named Eff_U. The pretrained version

was downloaded from [42]. The pretrained version of
BiSeNet (BiSe) was retrieved from [43]. Both models
were fine-tuned following the same procedure described
previously.

B. HARDWARE DEPLOYMENT TEST
Dedicated tests were designed to measure the performance
of the affordance detection system, i.e., the embedded device
supporting the real-time implementation of affordance detec-
tion (as per Sec. III-C). The setup focused on prediction,
i.e., all the tests refer to trained affordance models that
are deployed on the embedded platform. The tests covered
two aspects separately: 1) characterization of the hardware
deployment in terms of latency, memory consumption, and
power consumption; 2) assessment of the effect of quantiza-
tion on generalization performance.

1) DEPLOYMENT ON DEVICES
The first deployment pipeline involved the Jetson devices.
The pipeline started from the trained model described using
Keras API. The affordance model was converted in Tensor-
Flow and frozen. A deployment ready version of the net-
work architecture was built, thus removing all the software
structures supporting the training phase. The frozen model
was then optimized for Jetson TX2 and Jetson Nano using
TensorRT tool [44]. This tool provides optimized implemen-
tation of common deep learning layers for Jetson devices.
The output is again a TensorFlow frozen graph where the
computed layers are replaced with optimized versions.

TensorRT can adopt different data sizes when deploying a
network: standard floating-point representation (FP32), half-
precision floating point (FP16) and 8-bit integer represen-
tation (INT8). The experiments were conducted with the
FP16 format since this provides a good trade-off between
accuracy and power consumption [45]. In addition, the results
proved that FP16 is indeed sufficient to reach high frame rates
in these high-end devices.

The Jetson TX2 development kit provided the hardware
prototype for the experiments. The built-in Jetson Camera
5MP CSI module (with Omnivision OV5693) was used to
capture the input images. The JetsonNano toolkit was utilized
for the second set of experiments; in this case, the toolkit was
connected to a Raspicam module.

The code was developed in Python using CV2 module and
TensorFlow utilities to measure memory usage and power
consumption in combination with latency. The latency did not
consider any batching strategy. Each frame was elaborated in
real time when acquired.

Hardware measures were averaged over 20000 frames.
Memory usage and power consumption were assessed using
the Tegrastats utility [46]. In particular, power consumption
was measured using the built-in sensors interfaced via I2C
to monitor the input current to the SOC and to the GPU,
respectively. The optimal clock configuration was set using
Jetson_clock utility. Video and WiFi interfaces were always

123184 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

disabled during the experiments. The tests were executed by
running scripts through an SSH connection.

The test involving Jetson TX2 encompassed the three
models (V1_Se, V1_U, and V3_LR) and the five available
hardware configurations (as per Table 1). The test involving
Jetson Nano focused on the V3_LR model; both available
hardware configurations were analyzed (as per Table 1).
The second set of experiments considered the deployment

on smartphones. The pipeline started from the Keras model
converted into TFLite graph using Keras API. Similarly to
TensorRT, TFLite supports different setups in terms of quan-
tization. In this paper, INT8 quantization was considered. The
host devices were an Honor10, a Samsung S8, and Samsung
Galaxy A40. The model was deployed by using an Android
application written in Java with a set of 20 images saved on
the disk. The TFLite interpreter was set to run the inference
on the processor core, avoiding dedicated units like GPUs or
NPUs. The inference was performed on images stored into
the device memory. The inference time only was measured in
these experiments. In fact, quantities like memory usage and
power consumption are heavily dependent from the operative
system scheduling. As in the case of Jetson Nano, the V3_LR
model was deployed.

2) EFFECTS OF QUANTIZATION
Post-training quantization performance depends heavily on
the quantization approach. In fact, the same level of quan-
tization can lead to different levels of accuracy depending
on the operations performed by the inference engine. In this
paper, the tests involved TFlite because it represents one of
the mainstream solutions for post training quantization. The
test followed the same experimental protocol used on the
UMD dataset.

Quantization test considered 3 levels of quantization,
namely, INT8, FP16 and FP32. The first two models were
executed by using the TFLite interpreter. The FP32 version
corresponded to the native Keras layer. According to TFLite
documentation, the intermediate layers are anyway cast to
floating point at runtime to avoid truncation errors. Accord-
ingly, the major advantage is in storage size.

C. ASSESSMENT IN REALISTIC CONDITIONS
The third test was designed to characterize the performance of
the affordance detector when the conditions mimicked those
of prosthesis control, i.e., the envisioned application of the
system. In this context, the camera will be mounted on a pros-
thesis moved by the user to target objects that he/she would
like to grasp. Therefore, the affordance detection needs to
accommodate different objects, illumination settings, back-
ground and viewing angle as well as the distortions caused
by user movements. To simulate as much as possible such
scenario, the assessment involved an experimenter holding
the camera in his hand. The following subsections explain
how the impact of illumination, background, objects, and
viewing angle was evaluated.

1) IMPACT OF ILLUMINATION, BACKGROUND AND OBJECTS
The objects were placed on a flat surface. An experimenter
held the camera and positioned it to the minimum distance
at which the entire target object was contained in the image;
to this aim, the user adjusted the distance based on the
video streamed on a monitor. The camera was always placed
directly above the objects during the experiments. Proce-
dure 1 summarizes the procedure.

Procedure 1 Evaluation Protocol
Initialization
1. Select background and illumination settings.
2. Place the object under analysis on the background.
Evaluation
3. The user moves the camera on top of the object and
adjust the framing to contain almost only the object under
analysis using the video streaming on a monitor.
4. The affordance mask and the video stream are displayed.
5. Human annotators output the score based on the
proposed rules.

The performance of the affordance detector was assessed
by the experimenters (step 5 in Procedure 1). Since this was
a dynamic test with a new set of objects, the information on
the ground truth (i.e., annotated affordance masks) was not
available. Hence, two annotators evaluated the classification
quality by looking at the image and the corresponding mask
in real-time. They eventually provided a score ranging from
0 to 3 by adopting the following rules:

0 ⇒ the detector does not separate the object from the
background. The prediction does not convey any useful
information.

1⇒ The object is segmented from the background, but the
affordance information is not satisfactory.

2⇒The network segments the object from the background
and identifies the majority of the affordance information,
however the prediction is influenced by camera movements.

3⇒ The network always segments satisfactorily the object
from the background and the affordance information is con-
sistent for all the frames analyzed during the test.

The tests were performed in an indoor environment. Two
illumination settings were considered. The light environment
was illuminated by 14 neons and the approximated light
intensity was 75 lux. In the dark one, all the neons were
switched off and the approximated light intensity was 3 lux.

Four different settings were adopted for the background:
red fabric with light reflection close to 0; blue fabric with
light reflection close to 0; black, reflective piece of plastic;
reflective wooden table.

Only the V1_U model was employed for this test, as it
proved to be the most reliable option given the outcomes of
all the experimental sessions. In this case, the model was
fine-tuned by using the IIT dataset [16] for 10K steps. The
IIT dataset includes multiple backgrounds and illumination
settings; thus this dataset was selected to enhance the overall
robustness of the model.

VOLUME 9, 2021 123185

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

FIGURE 4. Framing positions schema employed during experiments
(a) and an example containing the captured frames (b).

2) IMPACT OF VIEWING ANGLE
The object under test was placed on a table; illumination
conditions were set to light. An experimenter moved the
camera to frame the object from six different viewpoints.
Figure 4(a) shows the framing positions using red dots.
Figure 4(b) depicts an example of the six frames captured
from the different positions. To minimize variability in cap-
turing across trials, the experimenter always placed the feet in
the same position to adjust the camera. Then by holding the
camera in the hand, he positioned it to consistently achieve
the desired viewing angle. Despite careful placement, this
procedure does not guarantee exactly the same position across
recordings. Nonetheless, this is not necessarily a drawback
since the same effect is to be expected in the future functional
applications, when the camera is embedded in a prosthesis
moved by the user. A total of six objects were used in this
test.

For each position, two human annotators assigned a score
for the affordance mask, following the procedure detailed
above. Again, only the V1_U model was employed as affor-
dance detector. As a side effect, this test also stressed the
role of background and light direction. In fact, the six frames
included in 4(b) prove that light direction and the correspond-
ing reflection phenomena changed significantly when vary-
ing the framing position. In addition, the overall structure of
the background changed as the framing position was varied.

V. RESULTS
A. AFFORDANCE DETECTION
Table 2 shows the summary results of the experiments
described in Sec. IV-A for the robotics setup (i.e., 7 classes);
see Fig. 2 for examples. The table compares the perfor-
mance of the benchmark (AffordanceNet) to that of the three
hardware-aware models (V1_Se, V1_U and V3_LR). For
each affordance class, the quantityFWβ is reported. As amajor

TABLE 2. Results for comparison with benchmark. All results refer to F W
β

.

advantage, it has been employed in the previous papers with
the same experimental setup, and it therefore allows a fair
comparison with previous works. Moreover, under each class
name the table gives the total percentage of pixels originally
labeled with that class.

The experiments proved that the V1-based architectures
led to excellent results in the classification of grasp, cut,
contain and wrap-grasp classes; both V1_Se and V1_U were
able to outperform the benchmark. However, a substantially
lower FWβ compared to the benchmark was achieved for
scoop, pound and support. Also solutions based on Eff_U
and BiSe show a similar trend, although the drop is less
evident due to the better feature extraction capabilities. Such
outcome is not surprising if one considers that those three
classes are less represented in the dataset. In fact, only 3.7%
of the pixels were marked as pound. Therefore, the proposed
solutions might be less suitable for unbalanced distribution
of the data across classes. The performance drop for less
represented classes is even more evident in V3_LR. Many
solutions to tackle this problem exist, starting from the use of
class weighted cost function, moving to Online Hard Nega-
tive Mining [47]. However, addressing this problem is out of
the scope of the present paper.

The outstanding generalization performance obtained by
AffordanceNet over the seven classes are also due to the
multi-task training. The network was trained simultaneously
both for affordance detection and object detection. Accord-
ingly, the feature set is less subject to over-fitting. However,
this advantage comes with a prohibitive computational cost
when considering the constraints related to the use in wear-
able embedded systems.

Table 3 gives the summary results of the experiments
for the prosthetics setup, where the number of classes was
decreased to 3. The table compares the performance of the
three hardware-aware models (V1_Se, V1_U and V3_LR)
with Eff_U and BiSe. Again, for each affordance class the
quantity FWβ is reported. The results confirmed that the
proposed models are reliable candidates for the simplified
problem, where the aim is to distinguish graspable parts of
the image from those that are non-graspable. It is worth
stressing that the worst Fwβ score was 85 for ‘‘grasp’’ class
using V3_LR architecture. However, even this result is better
than the state-of-the-art results for grasping, as per Table 2.
In addition, the better feature extraction capabilities of Eff_U
and BiSe did not yield better performance in this simplified
problem.

123186 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

TABLE 3. Experimental results for prosthetic problem. All results refer
to F W

β
.

Indeed, the memory requirements and the number of
floating point operations (flops) for a forward phase of the
hardware-aware models are significantly lower compared to
those characterizing AffordanceNet. In this regard, the sec-
ond column in Table 4 reports the number of parameters for
the three proposed solutions, two recent baseline solutions
(Eff_U and BiSe), an architecture using the Vgg network
as backbone and SegNet as meta-architecture (Vgg_Seg),
an architecture using the Vgg network as backbone and
UNet as meta-architecture (Vgg_U), and the AffordanceNet
model implemented on the WalkMan robot [3]. Since Affor-
danceNet solves multiple tasks simultaneously, the model
is inevitably more demanding in terms of memory require-
ments. The results confirm that the recent solutions Eff_U
and BiSe were more efficient than the solution based on Vgg.
However, V1_Se and V1_U architectures have two times less
parameters. In fact, by using MobileNets as backbone one
can further reduce the number of parameters while achiev-
ing satisfactory performance in terms of classification (see
Table 2 and Table 3). Finally, the V3_LR architecture uses
less than 200k parameters. Even considering the differences
in the application, one can easily appreciate that, in terms of
memory, V1_Se requires 24 times less parameters than Affor-
danceNet. In the case of V3_LR, the decrease is 750 times.
Accordingly, these architectures are more suitable for embed-
ded implementations. The third column of Table 4 reports the
number of flops required for one inference phase. This value
is omitted for AffordanceNet because the number of flops for
a prediction depends on input images. In fact, one image with
multiple regions of interest requires a larger number of com-
putations. The other tested models, however, use a fixed num-
ber of computations. The results highlight that Eff_U uses a
small number of flops with respect to models with a similar
number of parameters. The two hardware-aware affordance
models based on MobilenetV1 use a slightly larger number
of flops compared to Eff_U. However, when considering the
combination of the number of parameters and flops, the pro-
posed hardware-aware affordance models remain favorable.
In addition, the architecture based on MobileNetV3 is the
most appealing solution also in terms of flops count.

B. HARDWARE DEPLOYMENT
1) JETSON DEVICES
Experimental results for Jetson TX2 are presented using
four figures. Figure 5 reports the average latency (in ms)
introduced by the CNN for a single inference. Figure 6

TABLE 4. Number of parameters and flops for one inference phase of the
deployed networks.

FIGURE 5. Average latency measured for a single inference.

FIGURE 6. Average memory consumption measured for a single inference.

reports the averagememory consumption (inMB) for a single
inference. Figures 7 and 8, respectively, report the average
power consumption of the SOM and GPU, respectively. The
SOM consumption takes into account the GPU consumption.
In each figure, the x-axis gives the five hardware configura-
tions of Jetson TX2, as per Table 1. For each configuration,
the measures obtained with the three proposed solutions are
shown. As described in Sec. IV-B, the average results over
20000 frames are reported. The standard deviation was neg-
ligible and therefore it is not shown.

Figure 5 shows that V3_LR introduces an important advan-
tage in terms of speed. Regardless of the configuration, it is
always the fastest solution. In configuration 0, the average
inference time for V3_LR is 21 ms, which roughly corre-
sponds to 48 FPS. The other two models also achieve small
latency in configuration 0, with the worst results of 26 ms
(38 FPS) for V1_Se. Importantly, the overall worst result
of 38 ms was scored by V1_U.

The results in Fig. 6 demonstrate that V3_LR is also
the best model in terms of memory consumption. V1_Se
always allocates more memory than the other two models,
even if this model has less parameters than V1_U. Actually,

VOLUME 9, 2021 123187

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

FIGURE 7. Average power consumption of the SOM for a single inference.

FIGURE 8. Average power consumption of the GPU for a single inference.

TABLE 5. Measured hardware performance for Jetson Nano.

run-time memory consumption is not only a function of the
number of parameters, but of the overall network architecture.
In any case, all the models are compliant with the hardware
resources available in Jetson TX2. It is worth noting that the
measure reported in this plot is the difference between the
memory usage before the start of the script and the average
memory usage during the inference. In this way, the offset
due to sub-tasks run by the operative system is removed.

Figures 7 shows that the overall power consumption ranges
from 5 to 11 Watts, while 7W are consumed by the GPU.
As expected, power consumption in Jetson TX2 is higher.
Considering 2 LiOn batteries with 3.6V output and 2900mAh
capacity, used in series, the continuous prediction span-time
ranges from 2 to 4 hours. A single prediction stands for 21ms,
and therefore, more than 680K predictions are possible within
the span-time?

Table 5 shows the experimental outcomes for the test
involving the Jetson Nano. The first column of the table
gives the hardware configurations (see Table 1). Columns
from two to five give, respectively, the average latency,
the average memory usage, the average power consumption
of the SOM, and the average power consumption of the GPU.
As above, all the values are for single inference averaged over
20,000 frames; standard deviation was negligible.

The latency, even in the case of 5W-configuration,
is 104 ms. This corresponds to a frame rate of 10 FPS.

TABLE 6. Measured latency on smartphones.

Memory consumption is bounded by 2 GB for both configu-
rations, and the power consumption goes to up-to 3.6 Watts
in the best case. Considering again the same set of batteries,
the continuous prediction time increases to 5.8 hours. It is
important to note that continuous prediction is not required
for real-time applications. Accordingly, the effective lifetime
could be much longer.

2) SMARTPHONES
Table 6 reports the inference time scored by the V3_LR
model when deployed on the three smartphones. The first and
the second rows show the name of the smartphone and the
average time in ms, respectively.

The inference time is higher than that achieved on ded-
icated GPUs like Jetson devices. In practice, these proces-
sors cannot guarantee continuous prediction; the affordance
surfaces can be estimated up to three times per second.
Nevertheless, 3 FPS are still sufficient for many applica-
tions, as explained in Sec. 6 (e.g., prosthesis grasping). The
average measured power consumption was in the order of
mWatts [48]. As a consequence, the heating problems are
highly reduced while the battery life time is improved.

3) QUANTIZATION EFFECTS
Table 7 shows the effect of quantization on UMD benchmark.
The first column identifies the quantization type. The follow-
ing columns report the FWβ values for the classes under analy-
sis. The latest column shows the size inKBof themodel saved
on disk. Experimental results showed that the difference in
terms of FWβ is negligible. A possible explanation is that the
network performs a relatively small number of multiply and
accumulate operations, reducing significantly the propaga-
tion error. In addition, the activation functions employed have
been designed to limit the truncation error with small number
of bits representations. Therefore, the quantization can reduce
the model size without significant decrease in performance.

C. ASSESSMENT IN REALISTIC CONDITIONS
1) IMPACT OF ILLUMINATION, BACKGROUND AND OBJECTS
Table 8 reports the scores registered in this test. The first col-
umn shows the objects involved in the experiment. Columns
from two to nine refer to the different backgrounds. For each
background, the scores are reported for the two illumination

TABLE 7. Experimental results for quantization.

123188 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

TABLE 8. Outcomes of experiments assessing the impact of illumination,
background and objects.

settings. The last two rows refer, respectively, to the average
score over the objects per {background, illumination} and the
corresponding standard deviation.

The average scores are close to 2 in all the conditions
except for the setup {black background, dark illumination},
which was expected to be the most critical scenario. There-
fore, in general the network successfully distinguished the
objects and associated affordances, even if a component of
noise and some distortion existed in the segmentation mask.
The table surface in combination with light illumination was
also a challenging condition, because the table surface was
textured and reflective.

Figure 9 reports a set of representative examples across
conditions. Each panel shows a test image and the cor-
responding affordance map (3 classes). The images cap-
tured under dark illumination are characterized by significant
noise. The sub captions report the background and lighting
conditions, associated with the score assigned to the corre-
sponding stream between the brackets. It is important to recall
that the score was not assigned using the single snapshot but
a continuous stream.

Several insights about the network behavior can be
obtained from these representative examples. In most cases,
the network successfully segments the object and separates
the graspable (blue) from the non-graspable part (green), even
in some rather challenging conditions. However, the knife is
an example where the network could segment the object from
the background, but the functional parts were not retrieved
correctly. The system did not separate the handle from the
blade; instead, the entire object was labeled as graspable.
A possible explanation is that the blade of the knife is a small
metallic rectangle, which is therefore similar to a handle of
metallic spoons and forks. Note that this is still appropriate
for the application in prosthetics since the graspable surface
is in fact the relevant part of the object. Further encouraging
results are demonstrated by the cup and the pan example.
In the former, the networks were able to retrieve the handle
despite only a fraction of it is seen in the image. In the latter,
the functional (non-graspable) part of the object was affected

FIGURE 9. Examples of the real time performance with different
configurations of illumination and background. Each one of the sub
images reports a test and the corresponding affordance map (black -
background, blue - graspable and green - non-graspable segments).

TABLE 9. Outcomes of experiments for angle. Sc. indicates the framing
positions. Sc.A the average result.

by substantial noise, but the handle was still extracted almost
completely.

2) IMPACT OF VIEWING ANGLE
The results are reported in Table 9. The objects are in the
rows. The column reports the scores for different framing as
well as the average results. The only object with an average
score lower than 2 is the racket. Importantly, this object has a
pronounced texture and it does not belong to the set of daily
life objects (hence it is less relevant).

VI. DISCUSSION
We have developed, deployed and tested a novel solution
for affordance detection based on deep learning that is con-
venient for applications in embedded systems with lim-
ited resources. The experimental results confirmed that the
proposed hardware-aware models provide high accuracy,
good online performance on embedded devices, and reli-
able detection under realistic conditions (objects, background
and illumination, and viewing angles). The deployment was

VOLUME 9, 2021 123189

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

performed on several hardware solutions and pros and cons
were analyzed. This study paves the way to the setup of
deployment strategies where given a set of constraints it
is possible to retrieve the best solution by performing an
optimization procedure [49]. In fact, such strategies may rep-
resent a critical step when focusing on specific applications
of the proposed system.

One of the envisioned applications for the developed sys-
tems is in the semi-autonomous prosthesis control. The affor-
dance detection enables extracting the graspable part of an
object, thereby identifying the part that should be further ana-
lyzed to decide about an appropriate grasping strategy. Such
information would substantially improve the capabilities of a
smart robotic limb. For instance, it would allow a prosthesis
to preshape and grasp an object for the handle, whenever a
handle is available (Fig. 9). The systems presented in litera-
ture [6], [14] estimate the object properties (size and shape)
from the point cloud. With affordance detection, the object
point cloud could be reduced to only those points that corre-
spond to a graspable surface, thereby improving the estimate.
The input source of the system proposed in the present study
was an RGB camera. A possible alternative solution could
be based on a LIDAR depth sensor. Combining the two input
sensors to improve the estimation of affordance classes and/or
grasp parameters would be a relevant future task in this line
of work.

The proposed hardware-aware models for affordance
detection perform worse than the benchmark in the case of
fine-grained classification of objects parts (9 classes). How-
ever, all three models achieved satisfactory results when the
number of classes was reduced to that relevant for pros-
thetic applications (graspable versus non graspable object
parts). Accordingly, these models establish a better trade-off
between computing cost and accuracy compared to previ-
ous approaches when the system is customized to a specific
context (prosthetics versus robotics). Extensive experiments
on the real time embedded system with different objects
and changes in background, lighting and viewing angle were
performed to remove eventual biases about the performance
measured using offline benchmarks. The test confirmed that
the system could correctly detect the graspable parts in most
cases, even under challenging conditions.

Semi-autonomous control using computer vision can allow
simple control of advanced bionic limbs, thereby improving
user experience and potentially decreasing rejection rates.
In addition, recent studies in conventional human-machine
interfacing also propose to equip a prosthesis with advanced
sensors that might require complex data processing; e.g., iner-
tial measurement units [50], electronic skins [51], muscu-
loskeletal modeling [52], high-density EMG [53]. To support
these developments as well as general user demands for better
control and functionality [54], modern prostheses will need to
integrate improved processing capabilities (see [5]). The plat-
forms considered in the present study (and similar solutions)
can be regarded as the potential candidates for such a high-
end prosthesis controller. Hardware deployment on high-end

embedded systems confirmed that these devices can perform
the inference phase in real time with power consumption, and
dimension acceptable for wearable applications. If integrated
into a prosthesis, these systems could implement the com-
plete semi-autonomous pipeline including all other computer
vision and signal processing functions (in addition to affor-
dance detection). Using a smartphone as an extra process-
ing module can be especially attractive. Several state of the
art prostheses (Michelangelo from Otto Bock, i-Limb from
Ossur) are equipped with a wireless interface (e.g., Bluetooth
link) which allows connecting to a smartphone to offload data
intensive processing. Accordingly, in the proposed scenario,
the embedded system hosted in the prosthesis can indeed
work locally but it could also connect from time to time
to the mobile network to use additional resources, as in
the paradigm of cloud computing. Such setup would enable
online training, for example.

A promising future direction is to deploy the pro-
posed hardware-aware models to more constrained devices,
e.g. GAP-8 and STM32. The preliminary experiments
revealed two major bottlenecks. First, the inference engine
of these devices requires a low-level implementation of each
layer of the model. During our tests, we discovered that
four of the key operations of V3_LR were not supported
by the SDKs of both STM32 and GAP-8. Secondly, even
when using the smallest model among the proposed ones,
i.e. V3_LR, and changing all the unsupported operations to
the closest supported ones, leading to an important decrease
in generalization performance, the computational cost was
still too high for STM32. In the case of GAP-8, we did not
succeed in updating the model in order to make it compliant
with the SDK.

If a suitable control strategy that evaluates only limited
number of frames is implemented then the battery lifetime
would be sufficient for an entire day of usage. To this aim,
we can follow the approach of ‘‘traded autonomy’’ that was
already used in literature for semi-autonomous prosthesis
control. In this scheme, to grasp an object, the subject aligns
the prosthesis camera towards the object and ‘‘triggers’’ the
automatic control by generating a specific myoelectric signal
(e.g., hand opening command). The computer vision module
makes one or more snapshots, analyses the images (e.g., esti-
mates the affordance class), selects the desired grasp param-
eters and preshapes the hand. After that, the control switches
back tomanual operation so that the user can close the hand to
generate the desired grasping force andmanipulate the object,
as desired. This would substantially improve the control and
user’s experience.

The next step in this work is to integrate the computer
vision systemwith a prosthesis, and assess the performance in
functional tasks. To this aim, the camera will be placed on the
prosthesis (as in [5], [21]), e.g., on the top of the palm of the
prosthetic hand or on the socket, to have an unobstructed view
in front of the hand. The user will be instructed to approach
the target object and then trigger the system. In present tests,
the experimenter performed the aiming with the assistance

123190 VOLUME 9, 2021

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

of visual feedback (camera stream on the monitor). Simi-
lar information could be delivered to a prosthesis user via
wearable glasses [7]. Otherwise, with some practice the user
could be trained to properly aim even without any feedback,
as demonstrated in a recent work [5]. Nevertheless, in future
functional tests with the camera on the prosthesis, the system
performance might depend on the exact placement of the
camera as well as on the skills of an individual user regard-
ing the accuracy and steadiness in ‘‘aiming’’ at the target
object.

VII. CONCLUSION
This paper proposes a hardware-aware affordance detection
framework for embedded devices with limited computational
resources. This work starts by selecting a state-of-the-art
solution from robotics and then simplifies the overall frame-
work to cope with constrains and requirements of a specific
application (prosthesis control). Three hardware-aware deep
learning architectures were proposed. Experimental results
confirmed that these models tackle the affordance problem
with high accuracy. In addition, the inference system was
implemented on a Jetson TX2 and Nano, achieving real time
performance with a power consumption manageable from a
smartphone-like battery. Two experimental assessments con-
firmed that the proposed hardware-aware models are reliable
and robust across many combinations of background, illumi-
nation, framing conditions and objects. The main outcomes
of the paper are the following:
• The development of hardware-aware deep learning
architectures yielding compact models for affordance
detection that can be deployed to edge devices for real-
time applications. To the best of the authors’ knowledge,
the literature does not provide approaches leading to the
same result.

• The characterization of the affordance detection models
on different classes of embedded devices that could be
integrated in novel smart prostheses equipped with deep
learning.

• A comprehensive experimental assessment of the
deployment pipeline in realistic conditions to evaluate
the performance of the affordance detection when the
conditions mimic those that will be encountered in semi-
automatic prosthesis control.

APPENDIX A
BACKBONE: MobileNets
MobileNets architectures represent the state-of-the-art solu-
tion for deployment of CNNs on embedded devices.
In the original paper presenting the first version of
MobileNets [33], V1, the authors introduced the concept
of depth-wise convolution. In practice, standard convolu-
tion was replaced by a set of channel-wise convolutions
and a 1–D convolution; such arrangement significantly
lowered the computational cost. Given M inputs of size
H × W × C and a convolutional layer characterized
by N kernels of size Dk × Dk × C , the computational

FIGURE 10. Example of SegNet meta architecture.

cost Csc of standard convolution is:

Csc = H ×W ×M × N × Dk × Dk . (1)

Conversely, when using depth-wise convolution the cost
CDSC becomes

CDSC = H ×W ×M × (D2
k + N) (2)

which is markedly smaller than (1). The second version
of MobileNets, V2 [34], introduced the linear bottleneck
and the inverted residual structure to enhance data repre-
sentation while maintaining low dimensional spaces. Finally,
the third version, V3 [35], enriched data representation capa-
bility introducing also lightweight attention modules based
on squeeze and excitation into the bottleneck structure [55].
In addition, the architecture adopted new hardware-aware
non-linearity functions.

APPENDIX B
META-ARCHITECTURES FOR IMAGE SEGMENTATION
In this paper three meta-architecture for image segmentation
are considered: SegNet [36], Unet [37] and Lite Reduced
design of the Atrous Spatial Pyramid Pooling module
(LR-ASPP) [35]. SegNet is an encoder–decoder architecture;
its structure is schematized in Fig. 10 using a simple example
with 3 layers. The encoder, marked in green in the scheme,
computes features using a deep network, i.e., a sequence
of convolution layers. The decoder, marked in blue in the
scheme, localises patterns in the image. In the decoder,
deconvolutions progressively reduce the number of feature
maps. The feature maps become larger and wider, until the
last up-convolution produces the segmented image, i.e., the
image where each pixel corresponds to a class. In general,
the encoder relies on a given architecture as backbone to
extract features. In the original paper of SegNet [36] authors
employed VGG as backbone.

UNet [37] is also an encoder–decoder architecture; its
structure is schematized in Figure 11. Again, the encoder
exploits a backbone to extract features. However, the feature
maps generated by both the low levels and the intermedi-
ate levels of the deep architecture are also forwarded to
the decoder to avoid loss of information. A complementary
approach is adopted in the design of the decoder. Finally,
the architecture uses a 1×1 convolution to process the feature
maps, generating a segmentation map and thus categorising
each pixel of the input image. Notably, both SegNet and

VOLUME 9, 2021 123191

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

FIGURE 11. Example of UNet architecture.

TABLE 10. Summary of the computational cost of MobileNet V3 LR_ASPP.

UNet avoid fully-connected layers. Hence, the number of
parameters involved in these models is relatively small.

Finally, LR_ASPP is a meta-architecture proposed in the
original paper of MobileNet V3 [35]. It consists of three main
branches that elaborate features from two different levels of
the backbone architecture. In particular, two branches pro-
cess the highest level of the backbone architecture; a third
branch elaborates low-level features. This custom architec-
ture proved effective in finding a trade-off between computa-
tion cost and generalization performance.

Table 10 summarizes the characteristics of MobileNet
V3 LR_ASPP architecture. The three columns show, respec-
tively, the layer name, the output shape, and the number of

network parameters for the layer. It is worth noting that the
table does not provide a complete topological description of
the architecture.

ACKNOWLEDGMENT
Code available on the authors’ web site: https://github.com/
SEAlab-unige.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

no. 7553, pp. 436–444, May 2015.
[2] A. Myers, C. L. Teo, C. Fermüller, and Y. Aloimonos, ‘‘Affordance detec-

tion of tool parts from geometric features,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2015, pp. 1374–1381.

[3] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, ‘‘Object-
based affordances detection with convolutional neural networks and dense
conditional random fields,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 5908–5915.

[4] J. Chen andX. Ran, ‘‘Deep learningwith edge computing: A review,’’Proc.
IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[5] G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour,
‘‘Deep learning-based artificial vision for grasp classification in myoelec-
tric hands,’’ J. Neural Eng., vol. 14, no. 3, Jun. 2017, Art. no. 036025.

[6] M. Markovic, S. Dosen, C. Cipriani, D. Popovic, and D. Farina, ‘‘Stereo-
vision and augmented reality for closed-loop control of grasping in hand
prostheses,’’ J. Neural Eng., vol. 11, no. 4, Aug. 2014, Art. no. 046001.

[7] M. Markovic, H. Karnal, B. Graimann, D. Farina, and S. Dosen,
‘‘GLIMPSE: Google glass interface for sensory feedback in myoelectric
hand prostheses,’’ J. Neural Eng., vol. 14, no. 3, Jun. 2017, Art. no. 036007.

[8] I. Vujaklija, D. Farina, and O. C. Aszmann, ‘‘New developments in pros-
thetic arm systems,’’ Orthopedic Res. Rev., vol. 8, p. 31, Jul. 2016, doi:
10.2147/ORR.S71468.

[9] N. Parajuli, N. Sreenivasan, P. Bifulco, M. Cesarelli, S. Savino,
V. Niola, D. Esposito, T. J. Hamilton, G. R. Naik, U. Gunawardana, and
G. D. Gargiulo, ‘‘Real-time EMG based pattern recognition control for
hand prostheses: A review on existing methods, challenges and future
implementation,’’ Sensors, vol. 19, no. 20, p. 4596, 2019.

[10] D. Yang, Y. Gu, N. V. Thakor, and H. Liu, ‘‘Improving the functionality,
robustness, and adaptability of myoelectric control for dexterous motion
restoration,’’ Exp. Brain Res., vol. 237, no. 2, pp. 291–311, Feb. 2019.

[11] Ottobockus. Accessed: Sep. 3, 2021. [Online]. Available:
https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-
overview/myo-plus/myo-plus.html

[12] Coaptengineering. Accessed: Sep. 3, 2021. [Online]. Available:
https://coaptengineering.com/

[13] J. W. Sensinger and S. Dosen, ‘‘A review of sensory feedback in upper-
limb prostheses from the perspective of human motor control,’’ Frontiers
Neurosci., vol. 14, p. 345, Jun. 2020.

[14] M. Markovic, S. Dosen, D. Popovic, B. Graimann, and D. Farina, ‘‘Sen-
sor fusion and computer vision for context-aware control of a multi
degree-of-freedom prosthesis,’’ J. Neural Eng., vol. 12, no. 6, Dec. 2015,
Art. no. 066022.

[15] I. Lenz, H. Lee, and A. Saxena, ‘‘Deep learning for detecting robotic
grasps,’’ Int. J. Robot. Res., vol. 34, nos. 4–5, pp. 705–724, 2015.

[16] A.Nguyen, D. Kanoulas, D. G. Caldwell, andN.G. Tsagarakis, ‘‘Detecting
object affordanceswith convolutional neural networks,’’ inProc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 2765–2770.

[17] A. Roy and S. Todorovic, ‘‘Amulti-scale CNN for affordance segmentation
in RGD images,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 186–201.

[18] J. Sawatzky, A. Srikantha, and J. Gall, ‘‘Weakly supervised affordance
detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2795–2804.

[19] L. Seminara, P. Gastaldo, S. J. Watt, K. F. Valyear, F. Zuher, and
F. Mastrogiovanni, ‘‘Active haptic perception in robots: A review,’’ Fron-
tiers Neurorobotics, vol. 13, p. 53, Jul. 2019.

[20] S. Došen and D. B. Popović, ‘‘Transradial prosthesis: Artificial vision for
control of prehension,’’ Artif. Organs, vol. 35, no. 1, pp. 37–48, Jan. 2011.

[21] S. Došen, C. Cipriani, M. Kostić, M. Controzzi, M. C. Carrozza, and
D. B. Popović, ‘‘Cognitive vision system for control of dexterous prosthetic
hands: Experimental evaluation,’’ J. Neuroeng. Rehabil., vol. 7, no. 1, p. 42,
2010.

123192 VOLUME 9, 2021

http://dx.doi.org/10.2147/ORR.S71468

E. Ragusa et al.: Hardware-Aware Affordance Detection for Application in Portable Embedded Systems

[22] L. T. Taverne, M. Cognolato, T. Bützer, R. Gassert, and O. Hilliges,
‘‘Video-based prediction of hand-grasp preshaping with application to
prosthesis control,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 4975–4982.

[23] W. Rawat and Z. Wang, ‘‘Deep convolutional neural networks for image
classification: A comprehensive review,’’ Neural Comput., vol. 29, no. 9,
pp. 2352–2449, Sep. 2017.

[24] Y. He, R. Kubozono, O. Fukuda, N. Yamaguchi, and H. Okumura, ‘‘Vision-
based assistance for myoelectric hand control,’’ IEEE Access, vol. 8,
pp. 201956–201965, 2020.

[25] B. Zhong, H. Huang, and E. Lobaton, ‘‘Reliable vision-based grasping
target recognition for upper limb prostheses,’’ IEEE Trans. Cybern., early
access, Jun. 10, 2020, doi: 10.1109/TCYB.2020.2996960.

[26] E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo, ‘‘Data-driven video
grasping classification for low-power embedded system,’’ in Proc. 26th
IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Nov. 2019, pp. 871–874.

[27] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[28] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[30] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946. [Online]. Available:
http://arxiv.org/abs/1905.11946

[31] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, ‘‘BiSeNet: Bilateral
segmentation network for real-time semantic segmentation,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 325–341.

[32] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, ‘‘BiSeNet V2:
Bilateral network with guided aggregation for real-time semantic seg-
mentation,’’ 2020, arXiv:2004.02147. [Online]. Available: http://arxiv.
org/abs/2004.02147

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[34] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[35] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, ‘‘Searching for
MobileNetV3,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 1314–1324.

[36] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[37] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[38] Divamgupta. Accessed: Sep. 3, 2021. [Online]. Available:
https://github.com/divamgupta/image-segmentation-keras

[39] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, ‘‘Scene
parsing through ADE20K dataset,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 633–641.

[40] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[41] R. Margolin, L. Zelnik-Manor, and A. Tal, ‘‘How to evaluate foreground
maps,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 248–255.

[42] Qubvel. Accessed: Sep. 3, 2021. [Online]. Available:
https://github.com/qubvel/segmentation_models

[43] Kirilcvetkov92. Accessed: Sep. 3, 2021. [Online]. Available: https://
github.com/kirilcvetkov92/Semantic-Segmentation-BiSeNet

[44] Tensorrt. Accessed: Sep. 3, 2021. [Online]. Available:
https://developer.nvidia.com/tensorrt

[45] E. Ragusa, C. Gianoglio, R. Zunino, and P. Gastaldo, ‘‘Image polarity
detection on resource-constrained devices,’’ IEEE Intell. Syst., vol. 35,
no. 6, pp. 50–57, Nov. 2020.

[46] Jetson. Accessed: Sep. 3, 2021. [Online]. Available:
https://docs.nvidia.com/jetson/archives/l4t-archived/

[47] A. Shrivastava, A. Gupta, and R. Girshick, ‘‘Training region-based object
detectors with online hard example mining,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 761–769.

[48] A. Carroll and G. Heiser, ‘‘An analysis of power consumption in a smart-
phone,’’ in Proc. Annu. Tech. Conf. (USENIX), Boston, MA, USA, vol. 14,
Jun. 2010, p. 21.

[49] S.-I. Mirzadeh and H. Ghasemzadeh, ‘‘Optimal policy for deployment of
machine learning models on energy-bounded systems,’’ in Proc. IJCAI,
2020, pp. 3422–3429.

[50] G. K. Patel, J. M. Hahne, C. Castellini, D. Farina, and S. Dosen,
‘‘Context-dependent adaptation improves robustness of myoelectric con-
trol for upper-limb prostheses,’’ J. Neural Eng., vol. 14, no. 5, Oct. 2017,
Art. no. 056016.

[51] M. Franceschi, L. Seminara, S. Dosen, M. Strbac, M. Valle, and D. Farina,
‘‘A system for electrotactile feedback using electronic skin and flexible
matrix electrodes: Experimental evaluation,’’ IEEE Trans. Haptics, vol. 10,
no. 2, pp. 162–172, Apr. 2016.

[52] M. Sartori, G. Durandau, S. Došen, and D. Farina, ‘‘Robust simultaneous
myoelectric control of multiple degrees of freedom in wrist-hand prosthe-
ses by real-time neuromusculoskeletal modeling,’’ J. Neural Eng., vol. 15,
no. 6, Dec. 2018, Art. no. 066026.

[53] M. Barsotti, S. Dupan, I. Vujaklija, S. Došen, A. Frisoli, and D. Farina,
‘‘Online finger control using high-density EMG and minimal training
data for robotic applications,’’ IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 217–223, Apr. 2018.

[54] F. Cordella, A. L. Ciancio, R. Sacchetti, A. Davalli, A. G. Cutti,
E. Guglielmelli, and L. Zollo, ‘‘Literature review on needs of upper limb
prosthesis users,’’ Frontiers Neurosci., vol. 10, p. 209, May 2016.

[55] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2820–2828.

EDOARDO RAGUSA is currently an Assis-
tant Professor with the University of Genoa.
His research interests include machine learning
in resource constrained devices, convolutional
neural networks, and applications of artificial
intelligence.

CHRISTIAN GIANOGLIO is currently a Postdoc-
toral Researcher with the University of Genoa.
His research interests include embedded systems,
machine learning, and advanced signal processing.

STRAHINJA DOSEN (Member, IEEE) is cur-
rently an Associate Professor with the Center for
Sensory-Motor Interaction, Department of Health
Science and Technology, Aalborg University. His
research interests include movement restoration
and control, rehabilitation robotics, sensory feed-
back, and human–machine interfacing for sensory-
motor integration.

PAOLO GASTALDO is currently an Asso-
ciate Professor with the University of Genoa.
His research interests include machine learning,
embedded computing systems, and artificial tactile
sensing.

VOLUME 9, 2021 123193

http://dx.doi.org/10.1109/TCYB.2020.2996960

