

Aalborg Universitet

Offloading Computations to Mobile Devices and Cloudlets via an Upgraded NFC
Communication Protocol

Chatzopoulos, Dimitris; Fernandez, C. Bermejo; Kosta, S.; Hui, Pan

Published in:
IEEE Transactions on Mobile Computing

DOI (link to publication from Publisher):
10.1109/TMC.2019.2899093

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Chatzopoulos, D., Fernandez, C. B., Kosta, S., & Hui, P. (2020). Offloading Computations to Mobile Devices and
Cloudlets via an Upgraded NFC Communication Protocol. IEEE Transactions on Mobile Computing, 19(3), 640-
653. Article 8640093. https://doi.org/10.1109/TMC.2019.2899093

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TMC.2019.2899093
https://vbn.aau.dk/en/publications/83b8d8b4-1b7b-4bf0-aee9-3c1007bac4e0
https://doi.org/10.1109/TMC.2019.2899093

1

Offloading Computations to Mobile Devices and
Cloudlets via an Upgraded NFC Communication

Protocol
Dimitris Chatzopoulos, Carlos Bermejo, Sokol Kosta, and Pan Hui, Fellow, IEEE

Abstract—The increasing complexity of smartphone applications and services yields high battery consumption, while the growth of
battery capacity in smartphones is not keeping up with these increasing power demands. To overcome this problem, researchers
introduced the Mobile Cloud Computing (MCC) research area. In this paper, we advance on previous ideas, proposing and
implementing a Near Field Communication (NFC)-based computation offloading framework. This research is motivated by the
advantages of NFC’s short distance communication, its better security, and its low battery consumption characteristics. We design a
new NFC communication protocol that overcomes the limitations of the default protocol, such as the need for constant user interaction,
the one–way communication restraint, and the limit on low data size transfer. Then, on top of the proposed solution, we implement a
framework that can be used for offloading mobile applications to other mobile devices or to cloudlets equipped with NFC readers. We
present experimental results of the energy consumption and the time duration of computationally and data intensive representative
applications, such as (i) RSA key generation and encryption, (ii) gaming/puzzles, (iii) face detection, (iv) media download from the
Internet, and (v) data transferring between the mobile and the cloudlet. We show that when the helper device is more powerful than the
device offloading the computations, the execution time of the tasks is reduced. Finally, we show that devices that offload application
parts reduce their energy consumption considerably, thanks to the low–power NFC interface and the benefits of offloading.

Index Terms—Computation Offloading, Near Field Communications, Mobile Cloud Computing, Cloudlets, Mobile Computing

F

1 INTRODUCTION

Mobile users today are increasingly demanding complex
functionalities and sophisticated services to be supported by
their devices. Unfortunately, the more complex a function-
ality or a service becomes, the more energy it typically con-
sumes. As a consequence, it has become quite challenging
for developers to keep their applications energy–efficient,
making them struggle to carefully implement the heavy
tasks of an application so as not to drain the battery very
quickly, while still offering the desired services to the users.
Even though there has been much interest in enhancing the
lithium-ion battery capacity in smartphones, any significant
improvement would take a significant amount of time to
occur [1]. Eventually, a new generation of rapid-charging
smartphone batteries, like nanodot-based batteries [2], will
be developed, but at the time of writing of this paper these
batteries are not yet available [3].

Recently, with the advent of cloud computing, one pop-
ular adopted solution is computation offloading [4]; a method

• Dimitris Chatzopoulos (dcab@cse.ust.hk) is with the Department of Com-
puter Science and Engineering, The Hong Kong University of Science and
Technology, Hong Kong.

• Carlos Bermejo (cbf@connect.ust.hk) is with the Department of Computer
Science and Engineering, The Hong Kong University of Science and
Technology, Hong Kong.

• Sokol Kosta (sok@cmi.aau.dk) is with the CMI, Aalborg University
Copenhagen, Denmark and Sapienza University of Rome, Italy.

• Pan Hui (panhui@cse.ust.hk) is with with the Department of Computer
Science and Engineering, The Hong Kong University of Science and
Technology, Hong Kong and with the Department of Computer Science
at the University of Helsinki, Finland.

Manuscript received: date; revised: date

where resource-intensive computations are executed re-
motely in one or more powerful machines known as offload-
ees or surrogates. Researchers have shown that this execution
paradigm helps in reducing the energy consumption, mean-
while improving the execution time of the applications [5],
[6], [7], [8]. Computation offloading frameworks make use
of Wi-Fi, 3G, 4G, or Bluetooth to transmit the offloaded
tasks on the remote side. This way, they can benefit from
the reasonably high bandwidth or data rate. However,
they face several limitations, inherent to the communication
technologies, such as: interference with other WiFi or Blue-
tooth devices, the Internet connection requirement when
offloading occurs towards the cloud (which implies higher
energy needs and higher delay [5]) and the difficulty in de-
tecting available nearby devices for computation offloading
through WiFi-direct or Bluetooth [8], [9].

In this paper, we advance on the previous ideas and
implement a mobile offloading framework over NFC, a pro-
tocol based on Radio Frequency Identification (RFID) [10].
NFC enables devices with a distance of less than 10 cm
to exchange small amounts of data [11]. The majority of
recent Android devices already implement this function-
ality. Although the bandwidth of NFC is typically about
50-340 times smaller than Bluetooth and Wi-Fi [12], NFC’s
short range and operational characteristics provide several
advantages compared to Bluetooth and Wi-Fi, such as low
interference and lower energy consumption [13], [14].

Many researchers believe that NFC has promising po-
tential for future applications; with many research groups
working to enhance its security and apply this technol-
ogy [11], [15]. For example, Haselsteiner and Breitfu [16]

2

discuss a list of attacks based on the signal transmission
of NFC devices and potential solutions. Moreover, Fun et
al. [17] improve the privacy of NFC by preventing users’
information leakage on e-payment methods. Also, Dang et
al. [18], [19] design attacks on an automated fare collection
system by designing an NFC-enabled application that takes
advantage of the plaintext-based transmission of messages.

Several advantages of NFC, especially its low–energy
demands, its intrinsic security that comes from the short-
range communication, and its active development, make
this technology highly suitable for computation offloading.

Potential Applications: We envision a not–so–distant
future reality where the Internet of Things (IoT) will surround
us in every aspect of our life, with objects interacting with
each–other in a myriad of ways. We believe that smart tables
or smart desks, like the Microsoft Surface Tabletop [20],
e.g., will be available in homes, offices, and even bars.
Combining the computational capabilities of smart surfaces
with the potential of NFC communication, we can easily
see the benefits that this technology enables when people
put their NFC–capable smartphones on the surface, as they
usually do today. By using the NFC offloading framework,
a mobile device can transfer all the heavy computations to
the smart surface, reducing its energy consumption and also
improving the execution time of such heavy operations. Ex-
tending our previous work, which enabled computation of-
floading between mobile devices via NFC [21], the enhanced
framework presented in this work enables offloading tasks
via NFC also to cloudlets, an architectural element in edge
computing, which can be represented as a datacenter in a
box [22], [23], [24]. The idea is similar to edge computing:
bringing the cloud closer. The main features of a cloudlet are:
it builds on standard cloud technology; it is powerful, well
connected, and safe; and is close to the users, removing
the need for Internet connection between end-device (e.g.,
smartphone) and the cloudlet (i.e., one-hop wireless connec-
tion). Cloudlets enable low latency constrained applications
and services to run seamlessly, by offloading the demanding
tasks to the edge.

Our Contributions: In this paper, we investigate and
bypass the current limitations of the NFC protocol in order
to design and build a fully functional offloading framework
and potential applications of NFC-based computation of-
floading. A detailed explanation of our contributions is as
follows:

(1) We modify the default NFC communication pro-
tocol to make it work without user intervention and to
be able to exchange data bidirectionally; (2) We measure
several characteristics of our new NFC protocol, such as
bandwidth and latency, showing that bidirectional trans-
mission of small data is feasible; (3) Following the same
techniques as previous MCC frameworks, such as remote
method invocation, we implement an NFC-based computa-
tion offloading framework, which is made possible thanks
to our new NFC communication protocol; (4) We identify
typical smartphone applications that can benefit from NFC
computation offloading; (5) We evaluate the performance
of our framework using five representative applications,
showing that not only is offloading possible, but it is also
convenient with regards to device energy consumption and
tasks’ execution performance.

Technology Coverage
(meters)

Bandwidth
(bps)

Latency
(ms)

Power
(mA)

W
LA

N Wi-Fi ∼90 11M∼54M low 219
MIMO ∼100 300M medium unknown

W
PA

N UWB 10 - 100 20M∼1G low 500∼1000
Bluetooth ∼10 1M∼3M medium <30
BLE 10 ∼200K medium <15
ZigBee 75 20K∼250K low 30

NFC <0.1 424K low <15

TABLE 1: A comparison between the types of wireless net-
works in terms of coverage, bandwidth, latency, and energy
consumption. NFC underperforms in coverage and band-
width but it presents low latency and energy consumption.

Given that there are already more than two billion NFC-
enabled devices in the world and analysts estimate that
the NFC market will continue to grow by 17.9% over the
next decade, reaching nearly $50 billion by 2025 [25], we
expect more sophisticated applications will be developed
on top of NFC. We believe that the framework proposed
in this work will aid in accelerating this development. Our
results show that computation offloading via NFC is feasible
and can be used by mobile devices that want to conserve
battery or want to ask for help from trusted devices and
avoid non-secure channels where data can be intercepted.
Moreover, we show how the existing limitations of the NFC
API can be bypassed using the Host-based Card Emulation
(HCE) API. It is worth mentioning that our contributions
are all at a software level and can be quickly adopted by
any smartphone, smart table, or smart desk manufacturer.
Furthermore, but even existing smart devices that support
the HCE functionality can support the proposed framework
with a simple update.

Due to the transmission speeds and bandwidth limita-
tions of NFC, as shown in Table 1, there is always a trade-off
between offloading and transmitted method/task size [26].
From the table, we can see that also Bluetooth Low Energy
(BLE) presents similar power characteristics to NFC. For
example, BLE has been used in power-constrained scenar-
ios such as beacon-advertisement. However, BLE provides
lower bandwidth than NFC at the same power consump-
tion. In addition, due to the limited coverage range of NFC,
imposed by the physical chips, we can neglect complex data
encryption, as the low distance limits the possibilities for an
attack such as man-in-the-middle or rely attacks [27], [28].
Removing the encryption requirement translates in lower
tasks overhead and smaller data size to be transferred.

2 RELATED WORK

Much work has been done on exploring the concept of com-
putation offloading and applying it to mobile computing de-
vices. MAUI [5] supports code offloading from smartphones
to nearby servers to minimize energy consumption. While
the results show significant energy savings when Wi-Fi is
used, the results are not satisfactory when using 3G. The
dependency on Wi-Fi restricts the usage of the framework,
since smartphones do not have access to a Wi-Fi network

3

all the time. CloneCloud [6] aims to benefit directly from
the cloud, transforming a mobile application by migrating
parts of its execution to a virtual machine (surrogate) on
the cloud. ThinkAir [7] combines the advantages of these
frameworks and works with Wi-Fi and 3G, offloading to
nearby or remote surrogates. Furthermore, ThinkAir allows
for the computational power to be dynamically scaled up
or down on the cloud, enabling high levels of flexibility for
the developers. As a result, computation time and power
consumption can be reduced significantly. Unlike MAUI,
CloneCloud and ThinkAir can perform well with both Wi-
Fi and 3G. Unfortunately, relying on long-range wireless
communication increases the number of security issues and
the level of wireless interference. None of the previously
mentioned works have conducted any experiment using
Bluetooth or any other wireless protocol.

More recently, Serendipity [8] introduces the concept of
mobile–to–mobile offloading in an environment with inter-
mittent connectivity. This system is capable of conserving
energy and increasing the computation speed of low–power
devices when these offload the heavy computations to
more powerful ones. Nevertheless, similar to other previous
frameworks, Serendipity relies only on Wi-Fi, and Lakafosis
et al. do not specify how to search for and how to detect the
available devices that are willing to help. OPENRP advances
in this direction by collecting data from interactions between
mobile users and building reputation scores per mobile user
and application type [29], while Chatzopoulos et al. [9]
and [30] employ a hidden market design approach to allow
mobile users to place personalized sharing bounds on their
resources. Honeybee [31] is an offloading framework for
mobile computing on Bluetooth channels. Without having
to rely on Wi-Fi, it guarantees connectivity assuming other
mobile devices equipped with Bluetooth are also available.
In Enabling Android-Based Devices to High-End GPGPUs [32],
the authors advance the ideas of traditional computation
offloading, introducing the possibility for code written for
General-Purpose Graphics Processing Units (GPGPU) using
NVIDIA’s CUDA language to be offloaded from Android
devices to high-end GPGPU servers. Using GPGPU virtu-
alisation and offloading techniques, this work enables the
execution of CUDA kernels on Android devices, which
otherwise it is impossible as of today, paving the way for
advanced scientific applications on low-power devices.

Seeing as mobile code offloading has already become
well accepted and its advantages have been widely ac-
knowledged, researchers have recently been focusing on
building more solid frameworks that consider so long
neglected aspects, such as security, fault–tolerance, and
caching, among others. Zhang et al. [33] propose Sapphire, a
programming framework that handles fault-tolerance, code-
offloading, and caching. Gordon et al. [34] replicate mobile
applications, which are split into execution phases in mobile
servers, efficiently selecting the proper replica to proceed in
the next phase, in order to improve the end users’ quality of
experience. Bouzefrane et al. [35] propose a security protocol
for authentication between NFC applications and proximal
cloudlets motivated by the fact that NFC applications can be
computationally demanding. Using the idea of offloading
computations to cloudlets [36], the research shows some
possible scenarios of applications where resource-intensive

computations are offloaded via NFC, for instance, text trans-
lation and extracting text from an image using an optical
character recognition application on the cloudlet.

However, the design is quite limited, since it requires
the user to constantly tap on the device: one tap when
offloading the security computation and another tap when
receiving the result. Conversely, in this work, we have
redesigned the NFC communication protocol to eliminate
the need for user intervention, which enables a convenient
and automated offloading process.

NFC-based computation offloading does not need to
consider most of the problems that traditional offloading
frameworks face. For example, the low–range communica-
tion of NFC eliminates the need for data encryption, which
of course is an overhead that current frameworks have to
deal with [37]. Moreover, our architecture allows the mobile
devices to connect with the powerful offloadee entities
automatically, since they will be in close NFC proximity,
eliminating this way the need for long registration process
as presented by Kosta et al. [7] and neglected in other works.

3 DESIGN AND IMPLEMENTATION

In this section, we describe the requirements and the steps
followed to implement a functional computation offloading
framework between smartphones and from smartphones
to a cloudlet over the NFC communication channel. First,
we list the limitations of the current NFC hardware and
software interfaces, which make it difficult to build a fully
functional NFC offloading framework. Then, we describe
the steps we undertake to overcome such limitations and
build the framework. In the rest of the paper, we will
refer to the device asking for computation offloading as
the main device or the offloading device, while we will refer
to the device executing the offloaded computation as the
offloadee device or simply the offloadee. In Table 2 we show
the specifications of the devices we use for the experiments.
As the table shows, they do not have any special features,
and the developed protocol can function in any smartphone
that supports NFC. These devices are typical examples of
the available smartphones in the market that support NFC.

In the rest of the sections, we present four different
implementations with increasing degrees of complexity that
incrementally build the final version of our framework.

3.1 Implementation Based on the Default NFC Protocol
To facilitate the comprehension of our technical solution,
in this section we present a brief description of the NFC
technology and its limitations on Android devices.

The underlying implementation of the NFC in Android
is based on Nfc Data Exchange Format (NDEF), which is
a lightweight, binary format that is mainly used for data
transmission and storage. As of today, the data transmission
can only be unidirectional. This, of course, does not allow
for a successful computation offloading, given that the result
of the offloaded task cannot be sent back to the offloading
device. Moreover, to trigger the transmission of an NDEF
message (NdefMessage) the Android operating system re-
quires the user to tap on the smartphone’s screen.

To start testing the feasibility of NFC offloading, we first
implemented a functional prototype that requires the user

4

Name CPU Memory OS

Xiaomi Mi 3
Quad-core
2.3 GHz
Krait 400

2 GB Android 4.4.4

Samsung
Galaxy Note 3

Quad-core
2.3 GHz
Krait 400

3 GB Android 4.4

Samsung
Galaxy Note 2

Quad-core
1.6 GHz
Cortex-A9

2 GB Android 4.4.2

LG G Pro 2
Quad-core
2.26 GHz
Krait 400

3 GB Android 4.4.2

Cloudlet: Dell
Latitude E7270

Intel Core
i5-6300U
CPU@2.40GHz
2.50GHz

8 GB Windows 7
Professional

Cloudlet Interface Interface Power (mA)

ACR122U USB USB 200

TABLE 2: Characteristics of the devices used in our exper-
iments. We employed 4 mobile devices, one cloudlet, and
a NFC reader that allows the cloudlet to establish NFC
connections with the smartphones.

intervention in several steps, as depicted in Figure 1. Specif-
ically, the user must tap once on the main device’s screen
to send the task for remote computation to the offloadee de-
vice. Once the remote computation is finished, the user must
tap on the offloadee’s screen to send back the result to the
main device. The need for constant user intervention makes
this strategy unusable in practice. In particular, even if the
requirement of taping the main device—which usually will
be the user’s device—could be tolerated, the requirement of
the second tap on the offloadee device is not realistic. The
user would need to continually monitor the execution on
the offloadee device until it is finished before tapping for
the second time to send the result back to the main device.
For this reason, we investigate other solutions that allow
more flexibility and more transparent implementation.

On our path towards the final solution, we investigated
the connection between the Android API framework and
the NFC driver. We wanted to find a relationship and a
way to access and edit the responsible source code, in order
to be able to bypass the second tap and to enable one-tap
offloading. From our observations, we concluded that the
Android NFC stack is composed of five main components:

Android core framework. It provides an API to the func-
tionalities of the NFC system service.

Android NFC system service. It implements the high-level
functionality based on the low-level interface library,
which will be explained later. The first two components
are written in Java.

Java Native Interface library. It bridges the high-level Java
code and the low-level interface library that is written
in the C language.

Low-level interface library (libnfc-nci). It provides a set of
high-level functions to interact with the NFC controller.

NFC interface device driver. It pushes down the NFC
frames to the NFC controller.

Smart Desk

Sm
art Desk

Offloadee is in range

Tap on Screen

CreateNDEFMessage()

onNdefPushComplete()

NDEF push is complete
onNewIntent()

Computation data(NDEF message)

Remote Execution

Tap on Screen

CreateNDEFMessage()
onNewIntent()

Computation result
(NDEF message)

Next computation

Main Device Offloadee Device

Fig. 1: Two-tap Protocol. For every NDEF message ex-
changed a tap in the screen of the sending device is required.

We discovered that the implementation of tapping before
sending a NdefMessage object is located in the Android
NFC system service. Unfortunately, we could only find the
header file of the code and are still not able to access and
edit its C file. Hence, we had to look for another alternative.
Moreover, we also wanted to find a solution that would
not require modifications to the Android operating system,
which of course would make the adoption of our solution
extremely difficult.

3.2 Utilising Host-based Card Emulation

We improve the previous implementation by removing the
need for the second tap on the offloadee device. Tapping
only once at the beginning and allowing the offloadee device
to send back the result without the requirement of a second
tap automatically creates a much more convenient user
experience. To implement such functionality, we use the
Android NFC Host-based Card Emulation (HCE) service,
which allows any NFC-enabled smartphone to emulate an
NFC card so that it can be read directly by an NFC card
reader. In our case, the offloadee device emulates the NFC
card, while the main device emulates the NFC card reader.
The card reader communicates with the emulated card
by exchanging application-level packets called Application
Protocol Data Units (APDUs) and through Application ID
(AID), which are used as application selectors. In some
cases, more than one AID is required per application.

When the environment is set up, the card reader
application creates a class that implements the Nf-
cAdapter.ReaderCallback interface and initializes a CardRead-
erCallback object in the designated Activity class. This Ac-
tivity class enables the reader mode by using an NfcAdapter
object method called enableReaderMode(). The emulated card
application, on the other hand, creates a service class that
extends HostApduService. Once the service is extended, the
emulated card mode is enabled automatically. When the
card reader discovers a tag or the emulated card, the on-
TagDiscovered() function in the CardReaderCallback class is
automatically called, which creates an APDU command
to be sent to the emulated card to read the desired data.
The command consists of a header and an AID and it is
sent using the IsoDep object method called transceive(). Once

5

Smart Desk

Sm
art D

esk

Offloadee Device
Main Device

Tap on Screen

Send data

Enable Card Reader

Computation data(NDEF message)

Remote Execution

Return Computation
Result

Receive the Result
Response APDU

Next computation

Emulated Card
automatically enabled

Connected

Request the Result Command APDU

Fig. 2: HCE Protocol. Using Host Card Emulation we can
bypass the need for tapping in the offloadee and send the
result of the offloaded task as soon as it is ready.

the emulated card receives the command, it executes the
processCommandApdu() function in the CardEmulationService
class. If the AID specified in the command is the same as the
AID of the application, the function can immediately return
the desired data concatenated with a few bytes designating
the status word, which specifies that it is the message in
response to the initial APDU command. Upon receiving the
response, the card reader checks the status word bytes to
ensure that it is the desired message. The packet is corrupt
if the status word is not the default OK status. If it is not
corrupt, the application may continue the next computation.
The HCE Implementation is depicted in Figure 2.

The most significant advantage of using the HCE im-
plementation compared to the basic NdefMessage version
is that it allows the main device and the offloadee device
to communicate without tapping. However, it is difficult
to implement it for an offloading framework, since the
current Android NFC API allows only one role for each
device, either as an NFC reader or as an emulated card. The
solution we adopt in this implementation is first to utilise
the basic NdefMessage transfer method to send computation
data before utilising the HCE service. When the user taps
on the screen, the main device sends the computation data
in NDEF format. Once the transfer is complete, the main
device is transformed into a card reader. The offloadee, on
the other hand, is transformed in an emulated card , once
receives and executes the computation. The main device
will then receive the computation result(s) automatically
by reading the emulated card on the offloadee device. The
limitations of this implementation are twofold: (i) the user
still needs to tap the screen on the main device, and (ii) the
offloading process can be realised only once, since the main
device becomes a card reader and is not able to send NDEF
messages anymore. In order to send a second message, the
main device has to deactivate the card reader in order to
send a second NDEF message, which requires a new tap
on the screen. Thus, if the user wants to offload another
computation, or if a single message is not enough to send
the required data to the offloadee, she needs to tap once
again, which again raises the problem of the low automation
and high user involvement.

3.3 Towards No-tap, Multiple Transfer Offloading

In this section we describe how we achieved multiple data
exchange between the two devices by enabling both the card
reader function and the card emulation function alternately
on each smartphone. This approach requires both devices to
constantly switch roles until all the computation offloading
is completed, meaning that the implementation is quite chal-
lenging. We explore and implement two different strategies,
namely: (i) the reader mode disabling-enabling method,
and (ii) the reader mode enabling-disabling method. Com-
pared to the previous solution, these methods present the
following advantages:
No tapping is required. Both methods only utilise the HCE

service, and therefore, data reading works automati-
cally without any tapping.

No modifications of Android OS are required. User inter-
vention can be avoided (no tapping) without the need
to modify any source file on the Android OS.

Multiple data transfers are possible. Data can be
exchanged between the two devices in a bidirectional
manner, so the communication does not stop after just
one single offloaded task.

Only one identical application is required. While other
methods require different applications to be installed
on the main and the offloadee devices—i.e. client-
server components, this method only requires that the
same application to be installed on both devices.

3.3.1 The Reader Mode Disabling-Enabling
As summarised in Figure 3, the main idea of this method is
to disable the reader mode on one device before enabling
the reader mode on the other device (as shown in the
grey dash-rounded-rectangle). The implementation relies on
the emulated card service method, namely onDeactivated(),
which will be called only when the connection to the card
reader is lost. As mentioned before, the CardEmulationService
allows the emulated card mode to be automatically enabled.
In order to switch the role to the card reader mode, we found
that the device only needs to call the enableReaderMode()
function. Similarly, calling disableReaderMode() would switch
the role back to the emulated card mode.

In the beginning, the main device acts as an emulated
card, while the offloadee device acts as a card reader. When
the offloadee device finishes executing the offloadable task,
it immediately switches roles and becomes an emulated card
by disabling the card reader mode. Once the card reader
mode is disabled, the connection link to the emulated card
on the main device breaks down. This triggers the onDeac-
tivated() to be called, which then alerts the main device to
switch role and become a card reader so that it can read the
computation result from the offloadee device. There are two
challenges in the implementation of this strategy: enabling
role switching and solving the hardware delay problem.

The first one is the trickiest. Even though we only need to
call enableReaderMode() and disableReaderMode(), those func-
tions can only be called from an Activity or a Fragmen-
tActivity class. The solution we adopt is to create a central
Activity class, namely CentralActivity. Concerning the role
switching from the card reader to the emulated card, we
apply the same procedure utilised by Android’s CardReader

6

Smart Desk

Sm
art D

esk

Offloadee DeviceMain Device

Send data
Computation data Remote Execution

Return Computation
Result

Receive the Result Result

Next computation

Emulated Card
automatically enabled

Request the Result Command APDU

Emulated Card
automatically enabled

Enable Card Reader
Connected

Request dataCommand APDU

Main Device

Enable Card Reader

Disable Card Reader

Emulated Card:
onDeactivated()

Connected

Connection break

t ms delay

Fig. 3: The Reader Mode Disabling-Enabling Protocol.

sample application1. Using this procedure, the lines of code
listed below are added into the card reader class.

p r i v a t e WeakReference<MessageCallback> messageCallBack ;

publ ic i n t e r f a c e MessageCallback (){
publ ic void onMessageReceived () ;

}

publ ic CardReader (MessageCallback msg){
t h i s . messageCallBack=new WeakReference<MessageCallback>(msg) ;
}

Then, the CentralActivity class is modified to implement
CardReader.MessageCallback and a new override method on-
MessageReceived() is added. We finally put disableReader-
Mode() within the overridden method. By applying this
procedure, every time the card reader finishes interpreting
the received message, it only needs to call messageCall-
back.get().onMessageReceived() to disable the reader mode. In
order to switch role from the emulated card to the card
reader, once onDeactivated() is called, a new intent is created
to start CentralActivity. When started, this activity executes
enableReaderMode() within the onNewIntent() method.

Regarding the second challenge, during the testing
phase, we noticed that if we directly enable the reader mode
once the onDeactivated() is called, the new connection will
not be created, and the card reader will not be able to read
the emulated card. We then discovered that the hardware
needs some small amount of time before it can be ready to
enable the reader mode. The process of selecting the proper
amount of required delay is described in Section 4.1, where
we discuss the fact that this delay causes an overall decrease
in the bandwidth of the NFC data transmission.

3.3.2 The Reader Mode Enabling-Disabling

This implementation only differs from the previous imple-
mentation in the order we disable and enable the reader
mode on each device. By making such a change in the
implementation protocol, we discovered that if we manage
to enable the reader mode on one device before disabling

1. https://github.com/googlesamples/android-CardReader

Smart Desk

Sm
art D

esk

Offloadee Device

Main Device

Send data
Computation data Remote Execution

Return Computation
Result

Receive the Result Result

Next computation

Emulated Card
automatically enabled

Request the Result Command APDU

Emulated Card
automatically enabled

Enable Card Reader
Connected

Request dataCommand APDU

Enable Card Reader

Disable Card Reader
Connected

Connection break

t1 ms delay

t2 ms delay

Fig. 4: The Reader Mode Enabling-Disabling Protocol.

the reader mode on the other, no delay is required; the con-
nection immediately starts once the disabling reader mode
occurs. The summary of this implementation is presented in
Figure 4.

We need to enable the card reader on the main device
while the connection is running. One solution is to create a
new thread that initialises a new intent for starting the cen-
tral activity. One important note, however, is to ensure that
the intent starts after processCommandApdu() has returned
the APDU response. Therefore, we set a delay on this new
thread to start after t1 ms. On the offloadee device, we have
to ensure that the reader mode is disabled after the card
reader on the main device has been enabled. Again, we set
a delay on the disabling card reader of t2 ms. We perform
extensive experiments to find the appropriate values for t1
and t2. These findings are discussed in Section 4.2.

4 MEASUREMENTS

In this section, we present the experiments we performed
to measure the performances of the reader mode disabling-
enabling and enabling-disabling protocols regarding latency
and bandwidth. We evaluated the proposed protocols on
two Xiaomi Mi 3 phones, whose specifications are shown in
Table 2. The basic experiment setup is composed of these
two devices, where one is used as the main device and the
other as the offloadee.

4.1 The Reader Mode Disabling–Enabling Protocol
As shown in Figure 3, the most important parameter

t (ms) Success Rate

680 5%
690 40%
700 82%
710 82%

TABLE 3: The success rate of
the disabling-enabling proto-
col for variable values of t.

of the disabling–enabling
protocol is the delay
t. Small values of t
could enable low la-
tency and high band-
width but could increase
the chances of transmis-
sion failure, since the
hardware may not be
able to switch modes in
such a short amount of

https://github.com/googlesamples/android-CardReader

7

 0
 40
 80

 120
 160
 200

2 4 10 20 50 100

T
im

e
(s

)

Data Size (KB)

Disabling-Enabling
Enabling-Disabling

(a) Latency

 0
 5

 10
 15
 20
 25
 30

2 4 10 20 50 100

B
an

d
w

id
th

 (
K

b
p

s)

Data Size (KB)

Disabling-Enabling
Enabling-Disabling

(b) Bandwidth

 0

 0.4

 0.8

 1.2

 1.6

2 4 10 20 50 100

T
im

e
(s

)

Data Size (KB)

Disabling-Enabling
Enabling-Disabling

(c) Role Switching Delay

Fig. 5: Latency, Bandwidth, and Role Switching delay when sending data of different size using the Disabling-Enabling
protocol with delay t = 700 ms and the Enabling-Disabling protocol with delays t1 = 310 ms and t2 = 100 ms.

time. We experiment using different values of t while send-
ing and receiving messages of 2 KB 50 times (round–trips).
Notice that we perform this round–trip experiment of small
data, instead of single transmission of more extensive data,
due to the limitations of the NFC packets, which should
be smaller than 1 KB, according to Android guidelines.
However, our experiments show that these packets can
contain up to 2 KB of data. So, if an application wants to
transmit more than 2 KB it should perform more than one
round–trip. This process is handled automatically by our
offloading framework, as we explain in detail in Section 5.1.
We consider the experiment successful if and only if all 50
round trips were correctly performed. We repeat the exper-
iment 20 times for each value of t and count the number of
successful experiments, which divided by 20 gives the suc-
cess rate: percentage of experiments that accomplished 50
round–trips. The results of these experiments are presented
in Table 3, from which we select the smallest value of t such
that the success rate is at least 80%, corresponding to t = 700
ms.

4.2 The Reader Mode Enabling–Disabling Protocol
Figure 4 shows that the enabling–disabling protocol is char-
acterized by two delays: t1, which is needed to enable
the card reader, and t2, which is needed to disable the
card reader mode. One indicator for finding t1 is to look
for the lowest possible time delay which ensures the role
switching to occur after the device has sent an APDU
response. In searching for the optimal t2, on the other
hand, it is necessary that the reader mode is disabled
after the reader mode on the other device is enabled.

t1 (ms) Success Rate

250 0%
260 0%
270 30%
280 55%
290 60%
300 65%
310 95%

TABLE 4: The success rate of the
enabling-disabling protocol for
delay values t2 = 1000 ms and
variable t1.

When at least one of
these values is too
small, the round–trip
data transmission will
stop with the error
message: “Error com-
municating with card:
android. nfc. TagLostEx-
ception: Tag was lost”.
The value of t1 is ini-
tially foung by setting
t2 equal to 1000 ms so
that it will not hinder
the round–trip trans-
mission. Once t1 is se-

lected, t2 can be determined similarly. We follow the same

process as in the previous section, sending round–trip mes-
sages of 2 KB 50 times, to measure the success rate of the
experiments.

The results are presented in Table 4 and Table 5.
From the first experiment we fixed t1 = 310 ms
and from the second we fixed t2 = 100 ms. Fig-
ures 5a and 5b show the latency and the bandwidth results
of the two protocols when sending data of different sizes.

t2 (ms) Success Rate

50 0%
70 0%
90 0%
100 85%

TABLE 5: The success rate of the
enabling-disabling protocol for
t1 = 310 ms and variable t2.

The delay values used
are t = 700 ms for
the disabling–enabling
and t1 = 310 ms,
t2 = 100 ms for the
enabling–disabling.
The enabling–disabling
protocol presents a
better performance,
with latency being
around 50% smaller
and bandwidth being

about 1.6 times higher compared to the disabling–enabling.

4.3 Comparison

Given that the only difference between these two meth-
ods is the role switching process, we hypothesize that the
reader mode enabling–disabling role switching is faster than
the reader mode disabling–enabling. Each method requires
introducing some time delays: the reader mode disabling-
enabling method introduced a time delay t, while the reader
mode enabling-disabling method introduced time delays t1
and t2. To better understand and calculate the duration of
the role–switching process, we show in Figure 6 our NFC
protocol of sending the data in a round–trip. We define
TAPDU as the time needed to send an APDU command from
the card reader to the emulated card and sending the APDU
response back to the card reader. We define Tswitching as
the time needed for both devices to switch roles. Finally, we
define Tround−trip as the total time it takes for one device
to send the request, for devices to switch roles, and for the
device to get the response back. As we can see, the formula
to calculate the time for one round–trip can be expressed by
the following equation:

T
(1)
round−trip = 2 · TAPDU + Tswitching.

8

The Card Reader The Emulated Card

Command APDU

Response APDU

TA
PD

U
Role Switching Tswitching

The Card ReaderThe Emulated Card

Response APDU

Command APDU TA
PD

U

Tr
ou

nd
-tr

ip

Fig. 6: Definition of TAPDU , Tswitching , and Tround−trip.

The formula for two round–trip transmissions, assuming
TswitchingAvg is the average of all Tswitching , is:

T
(2)
round−trip = 2 · T (1)

round−trip + TswitchingAvg

= 4 · TAPDU + 3 · TswitchingAvg.

Iterating the formula by incrementing the number of round–
trips n, we obtain:

T
(n)
round−trip = 2n · TAPDU + (2n− 1) · TswitchingAvg

Therefore: TswitchingAvg =
T

(n)
round−trip − 2n · TAPDU

2n− 1
.

Given that the TAPDU for a message of 2 KB is 329 ms,
according to experimental results, we can use the previous
formula to calculate the average value of the switching time
for both protocols. In Figure 5c we show the calculated
values of TswitchingAvg when sending data of a different
size. Based on these results, it is apparent that the average
switching time of the reader mode enabling–disabling pro-
tocol is less than half that of the reader mode disabling–
enabling protocol. This finding explains the time duration
difference between the two methods. As a result, we chose
the reader mode enabling-disabling method in our HCE-
based offloading framework implementation.

5 FINAL OFFLOADING FRAMEWORK

After extensive testing and evaluation, presented in Sec-
tion 4, we conclude that the enabling-disabling strategy
presents the lowest data transmission delay and highest band-
width of all the proposed protocols. Hence, we build the
offloading framework library on top of this communication
protocol. In Section 5.1 we provide a generic API to be used
by application developers willing to offload parts of their
applications. Next, in Section 5.2 we analyse the perfor-
mance of the proposed NFC offloading framework, while
in Section 5.3 we list the advantages and its limitations,
followed by a description of applications that can benefit
from such a framework in Section 5.4.

5.1 Supported API

To enable bidirectional transmission of a large quantity of
data, we design a MessageStorage class which stores two
two-dimensional byte arrays, namely messageToSend — the
message to be sent by the emulated card as an APDU
response, and messageReceived — the message received by
the card reader from the emulated card. As mentioned in
the previous sections, this class implements a data trans-
mission protocol based on the enable–disable protocol, which
allows developers to transparently send and receive a large
quantity of data that would be conversely impossible to
achieve with the default NFC protocol. The class exposes
the following methods:

setMessageToSend(byte[] message, int index) sets the
messageToSend[index] to the message value. It is
called by the emulated card to prepare the APDU
response.

getMessageToSend(int index) returns the value of
messageToSend[index]. The emulated card calls
it upon receiving an APDU command. The emulated
card then sets it as the APDU response and sends it to
the reader.

setMessageReceived(byte[] message, int index) sets the
messageReceived[index] to the message parameter
value. Once the card reader receives an APDU response
from the emulated card, it immediately stores the value
by calling this method.

getMessageReceived(int index) returns the value of
messageReceived[index]. It is called by the card
reader to retrieve the result received by the emulated
card.

On the emulated card, the APDU response is constructed
by storing the desired message into the message byte array
and calling the setMessageToSend(message, 0) method. If the
message is bigger than 2 KB, we divide it into n arrays of
size 2 KB or smaller. Then, each of these arrays is stored
sequentially inside the class object. In order to read those
messages, we manually add more application ids (AIDs)
in the aid list.xml. When the emulated card receives the
command APDU containing the AID, it reads the last two
digits to get the index and returns getMessageToSend(index).
Once the card reader receives the message, it immediately
calls setMessageReceived(received message, index). For further
processing, it can get the received message easily by calling
getMessageReceived(index). Note that the main device and
the offloadee device have their own MessageStorage class, so
each of them has its own messageToSend and messageReceived
attributes.

The cloudlet (e.g. PC) uses a similar HCE mode to enable
the sending and receiving capabilities; it uses the API class
IsoDepTamaCommunicator to create the API to communicate
with the mobile device via the NFC protocol. In more detail,
in card emulation with a secure element, the NFC emulated
card is usually provided by the wireless carrier SIMs, and
the data is routed through the secure element, as shown
in Figure 7. In this work, we exploit the HCE, where the
NFC card is emulated by the Android device, and there is
no secure element. The transmitted data are routed to the
host CPU where Android applications are running directly,
as opposed to the secure element mode. The NFC reader

9

Smart Desk

Cloudlet

NFC Offloading
Framework

Main Device Offloadee Device

NFC Offloading
Framework

NFC
Controller

NFC
Controller

Host CPU (SoC)

Secure Element

Fig. 7: Interacting components on the cloudlet setting.

ACR122 shown in Table 2 offers an API that we exploit to
implement the following methods:
createConnection() establishes a connection between the

card emulated in the Android device and the NFC
ACR122;

sendData(byte[] b) sends data from computer to the An-
droid device via NFC;

receiveByte() receives data sent from the Android device to
the computer (NFC ACR122);

divideAndSendData(byte[] sentByte) splits the data into
smaller chunks (i.e., byte array) to send via the NFC
interface.

However, the SDK provided by the production company has
a limitation on the size of byte array for sending at a time.
For each transfer, the available byte array size for sending
the data is only 260 B. Due to this limitation, we could only
split the whole byte array into smaller groups of byte array
with a size of 250 B.

5.2 Performance Analysis

The goal of computation offloading frameworks is to min-
imize the energy consumption and/or the execution time
of demanding applications. Considering an application a
that consumes EL

a joules in TL
a seconds if it is executed

locally and ER
a (o) joules and TR

a (o) seconds if it is executed
remotely based on the offloading decisions o ∈ O, an
optimal action is required to solve the following problem:

minimizeo λ(EL
a − ER

a (o)) + (1− λ)(TL
a − TR

a (o)) (1)
subject to: o ∈ O, λ ∈ (0, 1) (2)

In case the of offloading via NFC, O contains all the
sets of methods that can be executed on the helping device.
These offloadable methods are determined by the applica-
tion developers, and the offloading decisions can be made
either statically or dynamically by solving the problem
above. The tuning parameter λ determines whether the
offloading should be focused on minimizing the energy
or minimizing the execution time. ER

a (o) depends on the
energy consumption of the offloadee during the remote ex-
ecution and the transmitted data between the offloader and
the offloadee. TR

a (o) depends on the processing capabilities
of the offloadee and the bandwidth between the two de-
vices. It is worth mentioning that existing mechanisms that
have been developed for existing computation offloading

frameworks, such as ThinkAir [7], can be easily applied to
this work.

5.3 Advantages and Limitations

The advantages of our proposal can be categorised in the
following four main points:
Fully automatic: Our framework removes the requirement

of tapping. We implement the new NFC protocol using
the NFC/HCE service, removing the need for user
intervention and making it possible to run applications
without affecting the user experience.

Portability: Application developers do not need to imple-
ment specific application versions for different device
roles, i.e. offloader and offloadee. They only need to install
the same application on both devices and specify the
role of each device through the framework’s settings.
When installed on a cloudlet device, the framework will
always be set to serve as offloadee.

Application execution time improvement: When a device
offloads the heavy tasks of an application to a more
powerful offloadee, the overall execution time of the
application is reduced.

Device energy reduction: The energy consumption of the
device that offloads the heavy tasks is reduced, since it
is the offloadee that takes care of the computation and
because the NFC data transmission consumes very little
energy.

However, we are aware that our framework also presents
some limitations, which are inherited by the existing un-
derlying technologies: (1) limited bandwidth and (2) small
APDU packet size. The main drawback that comes from
these limitations is that the current implementation of the
framework is not suitable for data-intensive applications,
which need to transfer a large quantity of data during
the offloading process. The APDU packet size is limited to
only 2488 bytes. The limited bandwidth, combined with the
relatively good channel conditions of the NFC, motivate the
decision for not implementing a transmission control mech-
anism to handle packet losses. However, such a mechanism
is easily implementable using the supported API.

Computation offloading frameworks that use other net-
work interfaces, such as Wi-Fi, Wi-Fi direct, cellular, and
Bluetooth incorporate a module that is responsible for de-
tecting available offloadees and select the most suitable one
every time there exists a task that needs to be offloaded. The
selection of the most suitable offloadee is complex, depends
on various parameters, and can differ per task offloading.
Although the low coverage of NFC deters the need for such
a module, the modular design of our framework allows its
integration.

5.4 Characteristics of Suitable Applications

Considering the positive and negative aspects of our NFC
protocol and our NFC offloading framework, the best appli-
cation candidates suitable for NFC offloading should have
the following characteristics: i) small input size, ii) small
output size, and iii) high computational needs. Based on
these characteristics, the proposed framework is appropri-
ate for computationally intensive applications that do not

10

require high data transfers, such as i) encryption, ii) mo-
bile payments, iii) cryptocurrencies, and iv) mathematical
computations, among others.

6 EXPERIMENTS

To evaluate the performance of our proposal we utilised
two of the three puzzles that are proposed by Google in its
Google Optimization Tools2. Specifically, we implemented
the N Queens mathematical puzzle [38] and the Rivest-
Shamir-Adleman (RSA) encryption algorithm [39]. Also, we
implemented a face detection application, a file transfer
application, and a link download application. In the rest
of this section, we initially introduce the set up of the ex-
periments. Then, we present a more detailed description of
the applications and discuss their performance results with
regards to i) execution duration and ii) energy needs. In
Figure 8, we show a screenshot of the Android application
that we used for running all the testing scenarios. The
results are obtained by repeating each experiment 50 times
and averaging. In the plots presented below we show the
average and the standard deviation of the results.

Set Up: For the experiments of this section, we used a
Xiaomi Mi-3 device as an offloader and a Samsung Galaxy
Note 3 as an offloadee for the set of the experiments where
we offloaded tasks between mobile devices. We selected
the Xiaomi Mi-3 as an offloader because of its inferior
specifications. For the experiments where we offloaded tasks
from mobile devices to the cloudlet device, we used a
Samsung Galaxy Note 2 and an LG G Pro 2. The details
of the employed devices are presented in Table 2.

6.1 Examined Applications
1) N Queens: is a classic puzzle, which requires placing

N queens on an N × N chess board so that no queen
can attack another one. This is a typical application that
is generally adopted for benchmarking, because of its high
computational requirements. In our implementation, we
find all possible solutions of the puzzle for a given N by
using a backtracking algorithm, which has O(N !) complex-
ity. During the execution of the N Queens problem, the
main device, which is initially the emulated card, stores
the inputted value N in the messageToSend two-dimensional
byte array in [application number | N] format. When the
offloadee device, which is initially the card reader, is within
range, the main device sends the value of messageToSend as
the response APDU. Once the offloadee device receives the
details of the sample application, it immediately executes
the computation based on the received N and stores the
result in its messageToSend variable. After both devices have
switched roles, the main device reads the result from the
offloadee device.

2) RSA: is an asymmetric cryptographic algorithm
comprised of three main parts: 1) Key generation: the key
generation process aims to generate public and private keys
from two large prime numbers. Each prime number is at
least 2048 digits, which is considered to be secure [39]; 2)
Encryption: a given plaintext is encrypted using the gener-
ated public key from the previous process, and 3) Decryption:

2. https://developers.google.com/optimization/puzzles

Fig. 8: Screenshot of the NFC offloading testing application.

the private key is used to decrypt the encrypted text. In our
application, we offload the key generation and encryption
processes. The decryption is performed on the main device
after the offloading is finished, to ensure that the transferred
data are not corrupted. We use the java.security API3 with
2048 bits as the key length in the key generation process.
Given a plain text as the input, shorter than 2048 bits, the
computation produces a set of private and public keys and
the encrypted message. On the main device, the application
prompts the user for a plain text file. Once the user presses
the Start button, the application reads the file and gets the
plain text in bytes. The plain text is then stored in message-
ToSend. When the offloadee device is within range, the main
device sends the message stored in messageToSend. Upon
receiving the message, the offloadee immediately starts the
RSA process by generating the keys and encrypting the
text. It then stores the public key, the private key, and the
decrypted text in messageToSend. Since the total size of the
result is bigger than 2 KB, it is divided in two separate
byte arrays. The first byte array stores the concatenated
decrypted text and the public key, because the decrypted
text is always 512 B (based on the key length), while the
public key is always less than 1500 B. The second byte array
stores the private key. After both devices switch roles, the
main device reads the whole result by sending two separate
APDU commands and stores all the received responses in
messageReceived.

3) Face Detection: is a computationally demanding task
that is also associated with the transmission of a picture
between the offloading device and the offloadee. First, we
run the face detection algorithm on the mobile device only.

3. https://developer.android.com/reference/java/security/
package-summary.html

https://developer.android.com/reference/java/security/package-summary.html
https://developer.android.com/reference/java/security/package-summary.html

11

 1
 10

 100
 1000

 10000
 100000

 1x106

9 10 11 12 13 14 15

Ti
m

e
 D

ur
at

io
n

(m
s)

N

Local Mi 3
Offload From Mi 3 to Note 3

Local Note 3

(a) The N Queens puzzle execution time.

 5

 10

 15

 20

 25

Mi 3
 (Local)

Note 3
 (Local)

From Mi3 to Note 3
 (Offloaded)

T
im

e
d

u
ra

ti
o

n
 (

s)

Computation Method

The RSA Computation
 Time Duration

(b) The RSA execution time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

15.3KB
(4 faces)

16KB
 (8 faces)

18KB
 (10 faces)

21KB
 (16 faces)

T
im

e
D

u
ra

ti
o
n
 (

se
co

n
d
s)

File Size (Number of faces)

Samsung Note 2 to Dell
LG Pro 2 to Dell

Local Execution on Samsung Note 2
Local Execution on LG Pro 2

(c) Face detection execution time

Fig. 9: The execution time of the N Queens puzzle, the RSA encryption algorithm and face detection.

Then, we offload the photos to the cloudlet and run the
identical face detection algorithm on the computer. We per-
form several experiments, by varying the number of photos,
the number of faces in each photo, and the size of each file.
Precisely, in our experiments we use five photos, where two
photoes have the same number of faces but different file
size, and the other photoes have a different number of faces.

4) Data transfer: Mobile device specifications (i.e., RAM
and CPU) are still the main bottleneck of computer vision
tasks such as object detection and object classification [40].
Computers perform up to 1000 times faster than mobile
devices for the feature extraction method in scenarios where
the computer includes a GPU, and around 100 times faster
for scenarios where the computer runs the tasks using only
the CPU [40]. Many commercial computer vision Virtual
Reality (VR) and Augmented Reality (AR) applications rely
on the cloud to provide real-time experience to the users.
The images transferred from the device to the cloud in
these commercial applications are usually around 10 KB,
otherwise they would suffer from high latency, which would
obstruct the real-time experience latency requirements of
20 ms to 7 ms4. This requirement fits perfectly with the low
bandwidth limitations of NFC, meaning that task offloading
for real-time applications can be considered feasible.

As such, we have designed two experiments that deal
with measuring the feasibility of data transfer in the context
of computer vision applications:
Link Download is a network demanding task that down-
loads a file in the cloudlet and forwards it to the offloading
device. In our experiments, we downloaded files with a size
of 100 KB, 1 MB, and 10 MB.
Data Transfer is a task for sending data from the offloading
device to the cloudlet. In our experiments we use three
videos of 174 KB, 451 KB, and 870 KB.

Our framework can assist more sophisticated applica-
tions and we hope that it will help with the implementation
of future killer applications in the highly active area of NFC.

6.2 Execution Time
In the case of N Queens, we measure the execution time
of the task when varying the number of queens N =
{9, 10, 11, 12, 13, 14, 15} on the Xiaomi Mi 3 and the Sam-
sung Galaxy Note 3 devices. First, we measure the time for

4. http://blogs.valvesoftware.com/abrash/
latency-the-sine-qua-non-of-ar-and-vr/

the case of the local execution in both devices. Then, for the
remote execution we use the Xiaomi Mi 3 as the main device
and the Samsung Galaxy Note 3 as the offloadee device,
since based on the results of the local execution, presented in
Figure 9a, the Samsung Galaxy Note 3 performs better. The
measurements of the offload cases include the transmission
time, the processing time, and the time to receive the result.
The results of all experiments are shown in Figure 9a, where
we present the average of 50 repetitions with the error
bars depicting the standard deviation. For small values of
N , the offloaded application has worse performance than
the local ones regardless of the device. This is due to the
communication overhead. However, for high values of N
the execution on the Xiaomi Mi 3 is much slower than when
offloading it.

For the case of the RSA application, we measure the time
duration of the local execution (on both devices), and the
offloaded execution where, again, the Xiaomi Mi 3 is the
main device and the Samsung Galaxy Note 3 is the offloadee
device. The results, shown in Figure 9b, present the average
of 50 repetitions with the error bars depicting the standard
deviation. As the results show, the Xiaomi Mi 3 is almost 2.5
times slower than the Samsung Galaxy Note 3. However,
if the application is offloaded, the execution time becomes
much smaller on both devices.

Finally, Figure 9c presents the results of the face detection
application when executed on two smartphones locally and
when offloaded from these smartphones to a cloudlet PC.
The cloudlet executes the offloaded tasks using only the
CPU. We vary the picture size from 12 KB (4 faces in the
picture) to 21 KB (16 faces in the picture). In these results,
we do not consider the latency introduced by the data trans-
mission, as we want to show the difference in processing
capabilities between the mobile device and the cloudlet.
As the results show, the difference is quite impressive. We
can see that face detection in the cloudlet is not influenced
significantly by the number of faces and remains almost
constant at around 100 ms. Meanwhile the face detection
increases almost linearly on the mobile devices. When the
number of faces to detect in the picture is small, i.e. 4
or 8 faces, offloading yields 5 to 10 times faster execution
time than the local execution on the phones, while when
the number of faces increases further, i.e. 10 or 16 faces,
offloading results in 10 to 16 times faster execution.

http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/

12

 1

 10

 100

100KB 1MB 10MB

T
im

e
 D

u
ra

ti
o

n
 (

se
co

n
d

s)

File Size

Samsung Note 2 to Dell
LG Pro 2 to Dell

Local Execution on Samsung Note 2
Local Execution on LG Pro 2

(a) Download link scenario.

 0

 100

 200

 300

 400

 500

 600

 700

 800

174KB 451KB 870KB

T
im

e
D

u
ra

ti
o
n

 (
se

co
n

d
s)

File Size

Samsung Note 2 to Dell
LG Pro 2 to Dell

(b) Data transferring for different sizes.

Fig. 10: Transmission time between mobile devices and the
cloudlet.

6.3 Transmission Time

In Figure 10a, we show the time needed for downloading
a large amount of data in the mobile devices versus down-
loading the data through the cloudlet (the PC in this exper-
iment). For this experiment, we stored files of 100KB, 1MB,
and 10MB on Dropbox and used the “create link” function-
ality to download them. Although wireless protocols will
reach speeds close to 1 Gbps shortly, currently there is a big
difference when we compare the transmission differences
between the PC (Ethernet connection) and the mobile device
(WiFi). As the results show, downloading large files is faster
when performed via offloading on the cloudlet. This can
be motivated by the faster Ethernet connection on the PC
compared to the mobile device’s WiFi. Notice that after
downloading of the files in the cloudlet (PC), we do not
send them to the smartphone.

Figure 10b presents the delay overhead caused by the
limited bandwidth of NFC. As in other offloading frame-
works, also in our NFC-based system, the amount of data
to transmit is a crucial factor because it can degrade the
whole performance of an application if the time to send the
data is significantly higher than the time needed to process
them. The previous experiments show the benefits of NFC
offloading to cloudlets for constrained devices. The process-
ing capabilities of edge computing significantly overpass the
specifications of current and near future mobile devices.

 0.1

 1

 10

 100

 1000

9 10 11 12 13 14 15E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

N

Local Offload

(a) Energy consumption of the N Queens puzzle solver when
executed locally and remotely.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

9 10 11 12 13 14 15

R
at

io

N

Remote vs Local
 execution energy needs

(b) Energy consumption when the N Queens puzzle solver
is offloaded divided by the energy consumption when it is
executed locally.

 0

 5

 10

 15

 20

Local Offloaded

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

Computation Method

The RSA Computation
 Energy Consumption

(c) The RSA energy consumption.

Fig. 11: Energy consumption of the N Queens puzzle and
the RSA encryption algorithm.

6.4 Energy Consumption
To accurately measure the energy consumption on the de-
vices during the experiments, we used the highly adopted
Monsoon Power Monitor5, which samples the power util-
isation of the device with 5 KHz frequency. We use the
Samsung Galaxy Note 3 for the power measurement since
we need to remove the battery of the device in order to
make it compatible with the Monsoon Power Monitor. Un-
fortunately, the battery of the Xiaomi Mi 3 is not removable,
which physically limits the feasibility of the experiment on
this device.

For the N Queens application, we measure the energy
consumption for N = {9, 10, 11, 12, 13, 14, 15} when run-
ning the task locally on the phone and when offloading it.
For the latter setup, we use the Samsung Galaxy Note 3
as the main device and the Xiaomi Mi 3 as the offloadee
device, since we are interested in the energy consumption
of the main device. The results are shown in Figure 11a in
a logarithmic scale. As expected, the energy consumption
increases with the increase of N , but it increases slower
when the computation is offloaded. Both curves depict the

5. https://www.msoon.com/LabEquipment/PowerMonitor/

13

average of 50 repetitions of each execution and the error-
bars show the standard deviation. For small values ofN (i.e.
N < 12) the offloading is not very beneficial concerning the
energy, but for N ≥ 12 the benefit increases, and for the case
of N = 15, the main device consumes 15 times less energy
thanks to offloading. The gain on energy consumption is
shown in Figure 11b, where we present the ratio of the
energy needs when offloading over the energy needs when
running the task locally.

We perform the same experiments for the RSA applica-
tion, measuring the energy consumption on the Samsung
Galaxy Note 3 of both the local computation and offloaded
computation. Similar to the N Queens experiment, we use
the Samsung Galaxy Note 3 as the main device and the
Xiaomi Mi 3 as the offloadee device. We present the results
of 50 measurements in Figure 11c, showing the average and
the standard deviation. When the task is offloaded the main
device consumes around 5 times less energy than when
running the task locally. By looking at the results of these
experiments, we argue that there is a significant benefit of
using our framework to offload heavy computations via
NFC.

7 CONCLUSIONS

In this paper, we proposed, designed, and implemented
the first NFC offloading framework for Android devices.
First, we proposed a new NFC communication protocol
that circumvents the limitations of the default Android NFC
protocol. Our protocol eliminates the requirement of user in-
tervention, working automatically without requiring users
to tap on the device’s screen for data transfer. Furthermore,
our protocol enables bidirectional communication between
two devices, which paved the way towards building the
NFC offloading framework.

We initially proposed delving into the Android NFC
Stack and planned to modify and compile the Android
source code directly. However, we wanted to find a solution
that could be easily adopted by existing users without
the need to modify the operating system of the device.
Utilising the HCE service, although it is not designed for
such interactions between mobile devices (it is mainly used
in mobile payments and not for continuous peer-to-peer
communications), we managed to remove the tapping re-
quirement. With this service, not only could we provide a
no-tapping offloading method, but we could also provide
multiple data transmissions between two smartphones. Fi-
nally, we implemented the first known, to the best of our
knowledge, NFC-based computation offloading framework
between two smart devices.

Building on top of the newly designed NFC protocol,
we presented the HCE-based computation offloading frame-
work that requires no tapping and enables task offloading
thanks to the multiple transfers between two NFC devices.
We implemented four applications that use the framework
to offload heavy computations from one main device to an
offloadee device. We showed that when the offloadee device
is more powerful, the execution time of the offloaded task
is improved. The experiments show that the latency of the
offloaded computation is almost equal to the latency of
running the task locally on the offloadee device. Finally,

we showed that the main device could reduce its energy
consumption when offloading the computations, thanks to
the low–energy consumption of the NFC interface.

8 FUTURE WORK

We observed several limitations in our framework, mostly
due to the underlying technologies that NFC is built upon.
The main problem we faced was the low bandwidth of
the data transmission, with values around 15 − 25 Kbps,
which is caused by the existing hardware that allows only
one message per connection to be transmitted. These limi-
tations make the framework unsuitable for several types of
applications, in particular, those that need to transfer some
data during the offloading process. However, we believe
that new NFC chips that can support multiple messages
per connection will increase the bandwidth significantly and
will broaden the applicability of NFC.

We investigated different techniques to increase the
bandwidth and enable support a broader range of applica-
tions. Our next steps on this direction are to find techniques
to increase the bandwidth and support a broader range of
applications by complementing the NFC framework with
parallel connections between the devices by using Bluetooth
and/or WiFi–direct. Furthermore, we plan to extend our
framework and make it more heterogeneous by supporting
other operating systems and devices, such as tablets, lap-
tops, and desktops with external NFC readers. Finally, we
will enrich the current API to expose more functionalities
to the developers and we will continue to implement more
applications that make use of the framework.

REFERENCES

[1] J. Newman, “Peak Battery: Why Smartphone Battery Life
Still Stinks, and Will for Years,” techland.time.com/2013/04/01/
peak-battery-why-smartphone-battery-life-still-stinks-and-will-for-years/.

[2] S. D. Ltd, “FlashBattery for smartphones,” http://www.store-dot.
com/#!smartphones/zoom/c1w5t/c1u51, 2015.

[3] D. Borghino, “Nanodot-based smartphone battery that
recharges in 30 seconds,” http://www.gizmag.com/
nanodot-smartphone-battery-30-second-recharge/31467/, 2014.

[4] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-
I. Yang, “The case for cyber foraging,” in Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop, ser. EW 10, 2002,
pp. 87–92.

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer
with code offload,” ser. MobiSys, 2010, pp. 49–62.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution between mobile device and cloud,”
in Proceedings of the Sixth Conference on Computer Systems, ser.
EuroSys ’11, 2011, pp. 301–314.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. of IEEE INFOCOM, 2012.

[8] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendip-
ity: Enabling remote computing among intermittently connected
mobile devices,” ser. MobiHoc, 2012, pp. 145–154.

[9] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Have you
asked your neighbors? a hidden market approach for device-to-
device offloading,” in IEEE WoWMoM, June 2016, pp. 1–9.

[10] R. Want, “An introduction to RFID technology,” Pervasive Comput-
ing, IEEE, vol. 5, no. 1, pp. 25–33, 2006.

[11] V. Coskun, K. Ok, and B. Ozdenizci, Professional NFC application
development for android. John Wiley & Sons, 2013.

[12] B. Hopkins, “Faster Data Transfer With Bluetooth and Con-
tactless Communication,” http://www.oracle.com/technetwork/
articles/javame/nfc-bluetooth-142337.html, 2009.

techland.time.com/2013/04/01/peak-battery-why-smartphone-battery-life-still-stinks-and-will-for-years/
techland.time.com/2013/04/01/peak-battery-why-smartphone-battery-life-still-stinks-and-will-for-years/
http://www.store-dot.com/#!smartphones/zoom/c1w5t/c1u51
http://www.store-dot.com/#!smartphones/zoom/c1w5t/c1u51
http://www.gizmag.com/nanodot-smartphone-battery-30-second-recharge/31467/
http://www.gizmag.com/nanodot-smartphone-battery-30-second-recharge/31467/
http://www.oracle.com/technetwork/articles/javame/nfc-bluetooth-142337.html
http://www.oracle.com/technetwork/articles/javame/nfc-bluetooth-142337.html

14

[13] Y.-S. Chang, C.-L. Chang, Y.-S. Hung, and C.-T. Tsai, “NCASH:
NFC phone-enabled personalized context awareness smart-home
environment,” Cybern. Syst., vol. 41, no. 2, pp. 123–145, Feb. 2010.

[14] P. Smith, “Comparing Low-Power Wireless Technologies,”
http://www.digikey.com/en/articles/techzone/2011/aug/
comparing-low-power-wireless-technologies, 2011.

[15] B. Ozdenizci, M. Aydin, V. Coskun, and K. Ok, “NFC research
framework: a literature review and future research directions,” in
The 14th International Business Information Management Association
(IBIMA) Conference. Istanbul, Turkey, 2010.

[16] E. Haselsteiner and K. Breitfuß, “Security in near field communi-
cation (NFC),” in Workshop on RFID security, 2006, pp. 12–14.

[17] H. Eun, H. Lee, and H. Oh, “Conditional privacy preserving secu-
rity protocol for NFC applications,” IEEE Transactions on Consumer
Electronics, vol. 59, no. 1, pp. 153–160, February 2013.

[18] F. Dang, P. Zhou, Z. Li, E. Zhai, A. Mohaisen, Q. Wen, and M. Li,
“Large-scale invisible attack on AFC systems with NFC-equipped
smartphones,” in IEEE INFOCOM, May 2017, pp. 1–9.

[19] F. Dang, P. Zhou, Z. Li, and Y. Liu, “NFC-enabled attack on cyber
physical systems: A practical case study,” in IEEE INFOCOM
WKSHPS, May 2017, pp. 289–294.

[20] S. CRAWFORD, “How Microsoft Surface Tabletop Works,” http:
//computer.howstuffworks.com/microsoft-surface2.htm, 2011.

[21] K. Sucipto, D. Chatzopoulos, S. Kosta, and P. Hui, “Keep your nice
friends close, but your rich friends closer - computation offloading
using NFC,” in IEEE INFOCOM, May 2017, pp. 1836–1844.

[22] S. Bouzefrane, A. F. B. Mostefa, F. Houacine, and H. Cagnon,
“Cloudlets authentication in nfc-based mobile computing,” in
MobileCloud. IEEE, 2014, pp. 267–272.

[23] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the third
ACM workshop on Mobile cloud computing and services. ACM, 2012,
pp. 29–36.

[24] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pil-
lai, “Cloudlets: at the leading edge of mobile-cloud convergence,”
in MobiCASE. IEEE, 2014, pp. 1–9.

[25] D. SUTIJA, “NFC is the underdog tech set to explode in
the next five years,” thenextweb.com/contributors/2018/04/07/
nfc-underdog-tech-set-explode-next-five-years/, 2018.

[26] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[27] A. Alzahrani, A. Alqhtani, H. Elmiligi, F. Gebali, and M. Yasein,
“NFC security analysis and vulnerabilities in healthcare applica-
tions,” in IEEE PACRIM, vol. 302, 2013, pp. 27–29.

[28] E. Haselsteiner and K. Breitfuß, “Security in near field communi-
cation (NFC),” in Workshop on RFID security, 2006, pp. 12–14.

[29] D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Openrp: a
reputation middleware for opportunistic crowd computing,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 115–121, July 2016.

[30] ——, “Flopcoin: A cryptocurrency for computation offloading,”
IEEE Transactions on Mobile Computing, vol. 17, no. 5, pp. 1062–
1075, May 2018.

[31] N. Fernando, S. W. Loke, and W. Rahayu, “Honeybee: A pro-
gramming framework for mobile crowd computing,” in Mobile and
Ubiquitous Systems: Computing, Networking, and Services. Springer
Berlin Heidelberg, 2012, pp. 224–236.

[32] R. Montella, C. Ferraro, S. Kosta, V. Pelliccia, and G. Giunta,
Enabling Android-Based Devices to High-End GPGPUs. Cham:
Springer International Publishing, 2016, pp. 118–125. [Online].
Available: https://doi.org/10.1007/978-3-319-49583-5 9

[33] I. Zhang, A. Szekeres, D. Van Aken, I. Ackerman, S. D. Gribble,
A. Krishnamurthy, and H. M. Levy, “Customizable and extensible
deployment for mobile/cloud applications,” in USENIX OSDI,
2014, pp. 97–112.

[34] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and
Z. M. Mao, “Accelerating mobile applications through flip-flop
replication,” ser. MobiSys, 2015, pp. 137–150.

[35] S. Bouzefrane, A. F. B. Mostefa, F. Houacine, and H. Cagnon,
“Cloudlets authentication in NFC-based mobile computing,” in
IEEE MobileCloud, April 2014, pp. 267–272.

[36] S. Simanta, G. A. Lewis, E. Morris, K. Ha, and M. Satyanarayanan,
“A reference architecture for mobile code offload in hostile envi-
ronments,” in Software Architecture (WICSA) and European Confer-
ence on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, Aug 2012, pp. 282–286.

[37] A. Reiter and T. Zefferer, “Paving the way for security in cloud-
based mobile augmentation systems,” in IEEE MobileCloud, March
2015, pp. 89–98.

[38] J. Somers, “The N Queens Problem: A Study in Optimization,” ,
2015.

[39] M. Rouse, “RSA algorithm (Rivest-Shamir-Adleman),” http://
searchsecurity.techtarget.com/definition/RSA, Nov. 2014.

[40] P. Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical
mobile augmented reality,” in ACM Mobisys, 2015, pp. 331–344.

Dimitris Chatzopoulos received his PhD in
Computer Science and Engineering from The
Hong Kong University of Science and Technol-
ogy and his Diploma and Msc in Computer En-
gineering and Communications from the Depart-
ment of Electrical and Computer Engineering of
University of Thessaly, Volos, Greece. His main
research interests are in the areas of mobile
computing, device–to–device ecosystems and
cryptocurrencies.

Carlos Bermejo received his MSc. degree in
Telecommunication Engineering in 2012 from
Oviedo university, Spain. He is currently a PhD
student at Hong Kong University of Science
and Technology working at the Symlab research
group. His main research interest are Internet-
of-Things, mobile augmented reality, network se-
curity, human-computer-interaction, social net-
works, and device-to-device communication.

Sokol Kosta received his Bachelor’s, Mas-
ter’s, and Ph.D. degrees in Computer Science
(summa cum Laude) from Sapienza University
of Rome, Italy, in 2006, 2009, and 2013, re-
spectively. In 2013–2014 he was a postdoctoral
researcher at Sapienza University and a visit-
ing researcher at HKUST in 2015. He is cur-
rently Assistant Professor at Aalborg University
Copenhagen. He has published in several top
international conferences and journals includ-
ing IEEE Infocom, IEEE Communications Mag-

azine, IEEE Transactions on Mobile Computing. His research interests
include networking, distributed systems, and mobile cloud computing.

Pan Hui (IEEE Fellow and ACM Distinguished
Scientist) received his Ph.D degree from Com-
puter Laboratory, University of Cambridge, and
earned his MPhil and BEng both from the De-
partment of Electrical and Electronic Engineer-
ing, University of Hong Kong. He is currently a
faculty member of the Department of Computer
Science and Engineering at the Hong Kong Uni-
versity of Science and Technology where he
directs the HKUST-DT System and Media Lab.
He also serves as a Distinguished Scientist of

Telekom Innovation Laboratories (T-labs) Germany and an adjunct Pro-
fessor of social computing and networking at Aalto University Finland.He
is an associate editor for IEEE Transactions on Mobile Computing and
IEEE Transactions on Cloud Computing.

http://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
http://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
http://computer.howstuffworks.com/microsoft-surface2.htm
http://computer.howstuffworks.com/microsoft-surface2.htm
thenextweb.com/contributors/2018/04/07/nfc-underdog-tech-set-explode-next-five-years/
thenextweb.com/contributors/2018/04/07/nfc-underdog-tech-set-explode-next-five-years/
https://doi.org/10.1007/978-3-319-49583-5_9
http://searchsecurity.techtarget.com/definition/RSA
http://searchsecurity.techtarget.com/definition/RSA

	Introduction
	Related Work
	Design and Implementation
	Implementation Based on the Default NFC Protocol
	Utilising Host-based Card Emulation
	Towards No-tap, Multiple Transfer Offloading
	The Reader Mode Disabling-Enabling
	The Reader Mode Enabling-Disabling

	Measurements
	The Reader Mode Disabling–Enabling Protocol
	The Reader Mode Enabling–Disabling Protocol
	Comparison

	Final Offloading Framework
	Supported API
	Performance Analysis
	Advantages and Limitations
	Characteristics of Suitable Applications

	Experiments
	Examined Applications
	Execution Time
	Transmission Time
	Energy Consumption

	Conclusions
	Future Work
	References
	Biographies
	Dimitris Chatzopoulos
	Carlos Bermejo
	Sokol Kosta
	Pan Hui

