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ABSTRACT The absence of the global best component in the update equation of the conventional firefly
algorithm degrades its exploration properties. This research proposes multi-update position criteria to
enhance the exploration properties of the conventional firefly technique while including the effect of the
global best solution on the movement of the fireflies in the search space of the objective function. Moreover,
the dynamic search space squeezing is applied to constrict the movement of the fireflies within the certain
limits to avoid their oscillatory movement as the solution approaches towards the global best by determining
the optimal trajectory for each firefly. The robustness of the suggested firefly algorithm is tested on a hybrid
energy system consisting of thermal, hydroelectric, and Photovoltaic (PV) energy source. The intermittent
nature of the PV energy source is explained using fractional integral polynomial model and Auto Regressive
Integrated Moving Average (ARIMA) model. The main dispatch problem is successfully computed using
both the modified firefly and the simple firefly algorithm by determining the optimal power share of each
energy source for different scheduling intervals. The suggested operational strategy reduces the overall
generation cost of the system while preserving the various system constraints. Due to the stochastic nature
of the meta-heuristic techniques, the two suggested algorithms are compared statistically for different test
cases using the independent t-test results. The statistical comparison suggests that the performance of the
modified firefly is superior to its conventional counterpart as the evaluation parameters of themodified firefly
converge to relatively lower value as compared to the parameters of the simple firefly algorithm.

INDEX TERMS Modified firefly algorithm, auto regressive integrated moving average model, firefly
algorithm, hybrid energy systems, independent t-test results.

I. INTRODUCTION
The distributed generation systems such as photovoltaic
energy source and wind energy systems are now being exten-
sively used with the conventional sources to meet the demand
value over a particular scheduling interval [1]–[3]. The
renewable energy systems do not have emission and environ-
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mental constraints and can be added to the conventional grid
without having an adverse effect on the atmospheric condi-
tions. The fundamental problemwith such a dense power sys-
tem having both conventional and non-conventional energy
sources is to devise an efficient operational strategy to
reduce the overall generation cost while meeting the sys-
tem constraints. This constitutes a highly non-linear and
non-convex optimization problem in the field of optimiza-
tion theory [4]–[7]. The optimization problem dealing with
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the optimal power scheduling of two major conventional
sources, the hydroelectric source and the thermal energy
source is known as the Short Term Hydro-Thermal Schedul-
ing (STHTS) problem in literature. Several deterministic and
heuristic techniques are suggested by the authors over the
years to find the global optimum of the aforementioned prob-
lem [7], [8]. However, the addition of the distributed energy
sources to the conventional grid requires more advanced opti-
mization methods to efficiently solve the economic dispatch
of the hybrid systems. Moreover, to handle the intermittent
nature of the renewable energy sources and their dependence
on the external atmospheric conditions, certain forecasting
techniques are required to accurately predict the share of the
renewable sources towards the economic dispatch.

A. RELEVANT LITERATURE
The work in [9] uses the non-linear programming to solve
the non-convex hydro-thermal scheduling problem and com-
pares its performance with the Cuckoo Search Algorithm
(CSA), Particle Swarm Optimization (PSO) and Artificial
Bee Colony (ABC) algorithm. The suggested non-linear pro-
gramming method outperforms the mentioned algorithms
by giving lower generation cost of the system for two test
cases having different cost characteristics. The work in [10]
proposes a hybrid ABC-BAT algorithm for solving the short
term hydro thermal problem having multiple thermal units
and compares its performance with the hybrid techniques
like ABC-PSO and ABC-Quantum Evolutionary (ABC-QE)
method. The suggested hybrid ABC-BAT algorithm outper-
forms the remaining hybrid techniques by giving lower mean
generation cost. The work in [11] proposes a multi-objective
economic emission dispatch problem having hydro and ther-
mal generation sources and solves the suggested problem
using the Multi-Objective Hybrid Grey Wolf Optimizer
(MOHGWO). The suggested MOHGWO outperforms the
MOHPSO and Nondominated Sorting Genetic Algorithm
III (NSGA-III) by giving lower generation cost of the sys-
tem. The work in [12] solves the hydro-thermal scheduling
problem using the Lightning Attachment Procedure Opti-
mization (LAPO) while considering the transmission losses
and the valve point effect loading. The suggested LAPO
surpasses the methods like Teaching Learning Based Opti-
mization (TLBO) algorithm, PSO and the ABC algorithm.
The work in [13] introduces a novel Crisscross Optimiza-
tion (CSO) algorithm to solve the hydrothermal scheduling
problem having multiple reservoirs connected in a cascade
connection. The suggested CSO outperforms the techniques
like Gravitational Search Algorithm (GSA), Differential Evo-
lutionary (DE) Programming and PSO techniques. Similarly,
the references [14]–[17] discuss the STHTS problem while
using the different optimization techniques.

The references [9]–[17] discuss the optimal dispatch of a
conventional STHTS problem using different meta-heuristic
and deterministic methods. However, the addition of the
renewable energy systems requires the upgradation of the
optimization problem to include the effect of the distributed

generation systems to the conventional grid. The work
in [18] suggests the dispatch of a hybrid energy system
consisting of wind, thermal and PV energy source. The
authors consider the different modes for the dispatch prob-
lem such as the low emission mode, the energy saving
mode and the high efficiency mode of operation for the
suggested hybrid energy system. The work in [19] formulates
a multi-objective economic emission dispatch problem for
a hybrid energy system consisting of wind, PV, and hydro
generation sources. The authors suggest a Multi-Objective
Moth-Flame Optimization (MOMFO) technique to solve
the proposed multi-objective optimization problem while
using the IEEE 39-bus system. The work in [20] suggests
a bi-level model for optimal scheduling of the renewable
energy sources. The authors formulate an optimization prob-
lem while considering the planning and operational layers for
the wind-solar system. The work in [21] suggests dynamic
dispatch problem for system consisting of thermal, solar and
wind energy sources while considering the underestimation
and overestimation cost models for the distributed generation
sources. The authors suggest an improved fireworks algo-
rithm to solve the suggested dispatch problem. The references
[22]–[26] also discuss the economic dispatch of a hybrid
energy system consisting of both conventional and renewable
energy sources.

B. RESEARCH GAP
The references [18]–[25] discuss the economic dispatch of
the hybrid energy systems without providing any mathemati-
cal details for obtaining the used forecast results in their find-
ings for distributed generation sources. The authors in [26]
have suggested an efficient methodology to compute the solar
forecast results, but their findings are limited to a single PV
plant and total scheduling duration of nine hours. The firefly
algorithm introduced in [26] to solve the economic dispatch
of multi generation systems has poor global search mecha-
nism which can result in the convergence of the algorithm
towards local minimum. The firefly techniques introduced in
[27], [28] consider the dynamic variation of the algorithm’s
parameters but the suggested techniques lack the exploration
phase which can result in the premature convergence of the
algorithm towards local optimum. The firefly technique dis-
cussed in [29] again uses the simple update criteria without
considering the effect of the global best solution on the move-
ment of remaining fireflies. The suggested firefly algorithm
in [31] introduces a hybrid firefly-APSO algorithm to solve
the dispatch problem, but the authors have not considered
a balance relation between the exploration and exploitation
phase, rather a simple global best term is introduced in addi-
tion to the local search. To introduce the global search for the
conventional firefly technique, the authors in [34], [35] have
introduced a firefly technique hybridized with the conven-
tional PSO algorithm. Although, it is an efficient technique to
solve the simple benchmark functions, but due to the complex
structure of the two algorithms combined together, it will be
highly inefficient for the large scale optimization problems
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and can result in larger convergence time. Moreover, the
above mentioned references have not considered an efficient
strategy to keep the trajectory of the fireflies towards the
global best value and avoid their oscillatory movement as the
solution approaches towards the final value. Moreover, while
comparing the different techniques suggested by the authors
in [9]–[25], no statistical comparison is provided in order to
statistically prove the significance of the suggested improved
algorithm over the conventional techniques for a particular
optimization problem. The authors in [26] have compared the
suggested algorithms statistically using the independent t-test
results, but their comparison study is limited to particular
sample and population size.

C. MAJOR CONTRIBUTIONS
Based on the mentioned shortcomings of the literature, the
major contributions of the suggested research are as fol-
lows:

1) A novel type of hydro-thermal-solar scheduling prob-
lem is proposed with multiple solar units and consid-
eration of the intermittent nature of the solar energy
source.

2) Introduce multi-update movement criteria for conven-
tional firefly algorithm to balance its exploration and
exploitation properties.

3) Introduce the concept of dynamic search space squeez-
ing for conventional firefly technique to avoid the oscil-
latory movement of the fireflies.

4) A detailed design is proposed for forecasting the power
share of the multiple PV plants of different rated
capacity while considering the effect of the external
atmospheric conditions on the performance of the PV
module.

5) The proposed modified firefly algorithm is statistically
compared with the conventional firefly technique while
considering the effect of the sample size and population
size on the convergence behavior of the algorithms.

The remaining paper is arranged as follows. The
Section 2 provides the overview of the simple and modified
firefly algorithm along with the suggested system config-
uration. The Section 3 discusses the complete design of
the photovoltaic energy source. The Section 4 explains the
methodology of the simple and modified firefly for the sug-
gested dispatch problem along with the results for various test
cases. The Section 5 compares the two algorithm statistically
using the independent t-test results. The Section 6 highlights
the major findings of the proposed research.

II. META-HEURISTIC OPTIMIZATION AND PROPOSED
SYSTEM CONFIGURATION
Meta-heuristic optimization algorithms are gaining popular-
ity in the domain of optimization theory as they are easier
to implement as compared to the deterministic methods for
finding the optimal solution of non-convex, highly non-linear,
multi-modal, and complex objective functions. Moreover, the

convergence of the meta-heuristic techniques towards the
global optimum solution with lesser computational effort
than the conventional methods like Gradient Search, Newton
Raphson (NR) and Lagrange multiplier make them extremely
useful to solve the various complex optimization problems.
This research uses a modified firefly algorithm by suggesting
parametric and structural changes in the conventional firefly
technique. The firefly algorithm is selected over the other
conventional meta-heuristic methods, as it is easier to execute
formajority of the optimization problems and provides a good
approximate of the global optimum solution [27]–[30].

A. CONVENTIONAL FIREFLY ALGORITHM
The flashing phenomenon of the fireflies in nature explains
the basic working of the simple firefly algorithm. The light
intensity/brightness of each firefly which depends upon the
fitness value of the objective function dictates the movement
of a lesser attractive firefly towards a brighter firefly. Each
firefly represents a possible solution vector for the given
optimization problem and the dimensions of each firefly
are determined according to the decision variables of the
objective function. The inverse square law as defined in (1)
explains the dependence of the light intensity L at a distance
r from the source.

Lr =
Ls
r2

(1)

where, Lr represents the light intensity evaluated at a distance
r from the source. Ls shows the intensity of the source.
To consider the effect of the medium on the intensity of the
fireflies, the brightness value of the fireflies in terms of the
medium’s absorption coefficient δ is given by (2).

L = Loe−δr (2)

where, Lo corresponds to the intensity of the fireflies at a
distance r = 0 from the source. There exists a singular
solution for r = 0 in (1), therefore in order to avoid the
singularity, the above two equations can be combined to
define the light intensity of the fireflies as follows:

L(r) = Loe−δr
2

(3)

The attractiveness of the fireflies β is directly proportional
to the light intensity of the fireflies. Therefore, we can define
the attractiveness value by the following relations:

β = βoe−δr
2

(4)

β =
βo

1+ δr2
(5)

To compute the distance between the two fireflies a and b,
following relations are used:

Rab =

((Xa,1 − Xb,1)2 + (Xa,2 − Xb,2)2)
1
2 , if D = 2√∑N

i=1
(Xa,i − Xb,i)2, if D = N

(6)
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where, Xa,i shows the ith component of the firefly a and Xb,i
represents the ith component of the firefly b. D represents
the number of dimensions of each firefly. The following
relation depicts the movement of a firefly a having lesser
attractiveness value towards a brighter firefly b.

Xa = Xa + βoe−δR
2
ab (Xb − Xa)︸ ︷︷ ︸

Influence of Neighbourhood Firefly

+ α(rand −
1
2
)︸ ︷︷ ︸

Random Movement
(7)

where, α represents a number in the range [0,1] and rand
shows the randomly generated numbers within the range
[0,1]. The value of βo can be taken equal to 1 for majority
of the cases. The value of δ for most cases is given in the
range [0.1,10] [32]. The pseudo code for the simple firefly
algorithm is given as follows:

Function Pseudo Code for Simple Firefly Algorithm

Declare objective function f (X );
Declare constants α, δ, βo and T ;
Randomly initialize fireflies F;
Compute fitness value f (Xi), ∀ Xi ∈ F ;
while t < T do

for i← 1 to N by 1 do
for j← 1 to N by 1 do

Find Rij using distance relation;
if (Lj > Li) then

Xi←
Xi + βoe

−δR2ij (Xj − Xi)+ α(rand − 0.5);

Determine f (Xi) at updated Xi, ∀ Xi ∈ F ;
Rank the fireflies according to their light
intensity/fitness value;
t ← t + 1;

Show the final results;

B. IMPROVED FIREFLY ALGORITHM
In conventional firefly algorithm, the parameters like α, βo, δ
are declared as constants, which can degrade the performance
of the algorithm as the solution converges towards the global
optimum. Moreover, the update equation as defined in (7)
takes into account the influence of the brighter neighborhood
firefly only, and the attractiveness of the global best firefly is
not considered while updating the position of the fireflies in
the search space of the objective function. This may result
in the trapping of the solution towards the local optimum
and can result in a larger convergence time. This research
suggests the parametric modifications to make the parameters
α, βo, δ self-adaptive to accelerate the convergence of the
algorithm towards the global optimum. Moreover, certain
structural changes are suggested to include the influence of
the global best firefly while updating the position of each
firefly in order to balance the exploration and exploitation
properties of each firefly. Then, the dynamic search space

squeezing is implemented to preserve the oscillations of the
fireflies in the search space of the objective function in order
to improve the convergence value.

1) IMPROVEMENT 1: MAKING PARAMETRIC
MODIFICATIONS
The randomization factor α, the medium’s absorption coeffi-
cient δ and the attractiveness value at r = 0 (βo) can be taken
as self-adaptive quantities which accelerates the process of
the convergence of the algorithm towards the global optimum
solution. The modified values of the constants α, βo and δ in
accordance with [33] are given as follows:

α = αoθ
t (8)

βo = (βmax − βmin)(
t

tmax
)2 + βmin (9)

δ = (δmax − δmin)(
t

tmax
)2 + δmin (10)

where, θ is in the range (0,1], αo represents the initial random-
ization factor. βmin and βmax represent theminimum andmax-
imum values for βo. δmin and δmax represent the minimum and
maximum values for the medium’s absorption coefficient. t
and tmax represent the current iteration and maximum num-
ber of iterations respectively. Equation (8) ensures that the
random movement of the fireflies is restricted as the solution
approaches towards the final value. Equation (9) ensures the
attraction of the firefly i towards a brighter firefly j is within
the certain controllable limits [βmin βmax]. Equation (10)
controls the medium’s absorption coefficient as the solution
approaches towards the global optimum.

2) IMPROVEMENT 2: MAKING STRUCTURAL
MODIFICATIONS
The simple firefly algorithm compares each firefly with the
remaining fireflies and updates the position of each firefly
having lesser intensity with respect to the brighter firefly.
This results in larger convergence time as each firefly is
compared with the remaining fireflies. It can also result in the
convergence of the solution towards the local optimum and
can increase the final converged fitness value. If the intensity
of the global best firefly is included in (7) while updating
the position of fireflies, then the convergence time can be
reduced by a substantial factor. Moreover, it also ensures a
balance between the exploration and exploitation properties
of each firefly and prevents the convergence of the solution
towards the local optimum [34], [35]. This research proposes
amulti-update criteria for updating the position of each firefly
to avoid their premature convergence and balance out the
exploration and exploitation phases of the conventional fire-
fly algorithm.

1) if the intensity of firefly i is less than j (Li < Lj), then
i will be attracted towards both j and global best firefly
g∗.

Xi = Xi+ c1βoe
−δR2ij (Xj−Xi)︸ ︷︷ ︸

Influence of Neighbourhood Firefly

+ α(rand−
1
2
)︸ ︷︷ ︸

Random Movement
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+ c2βoe
−δR2ig∗ (Xg∗ − Xi)︸ ︷︷ ︸

Influence of Global Best Firefly

(11)

2) if the intensity of the firefly i is greater than j (Li >
Lj), then i will only be attracted towards the global best
firefly g∗.

Xi = Xi + c2βoe
−δR2ig∗ (Xg∗ − Xi)︸ ︷︷ ︸

Influence of Global Best Firefly

+ α(rand −
1
2
)︸ ︷︷ ︸

Random Movement
(12)

where,

Rij =

√√√√ N∑
k=1

(Xi,k − Xj,k )2, Rig∗ =

√√√√ N∑
k=1

(Xi,k − Xg∗,k )2

c1 and c2 given in the range [0,1] control the movement
of firefly i towards the neighborhood firefly and the global
best firefly respectively. Rij and Rig∗ represent the distance
between the firefly i with respect to firefly j and global
best firefly g∗. Fig. (1) shows the vector representation for
different modifications.

3) IMPROVEMENT 3: DYNAMIC SEARCH SPACE SQUEEZING
In conventional firefly technique, the search space is con-
strained by the maximum and minimum limits of the fireflies
which remain same throughout the convergence process of
the algorithm. This can result in the oscillations of the fireflies
and can result in the divergence of the solution from the
global optimum. One efficient method to keep the path of the
fireflies towards the global solution is to dynamically squeeze
the search space of the fireflies based on the global best
firefly. This results in the transformation of the constraints
from previous value to updated value after each iteration and
maintains the trajectory of the fireflies towards the global
optimum [36]. The equations (13)-(17) explain the procedure
for dynamic search space squeezing.

1
(t)
lower,i =

X (t)
g∗ − X

(t)
i,min

X (t)
i,max − X

(t)
i,min

(13)

1
(t)
higher,i =

X (t)
i,max − X

(t)
g∗

X (t)
i,max − X

(t)
i,min

(14)

1
(t)
lower,i +1

(t)
higher,i = 1 (15)

X (t+1)
i,min = X (t)

i,min + (X (t)
g∗ − X

(t)
i,min)(1

(t)
lower,i) (16)

X (t+1)
i,max = X (t)

i,max + (X (t)
i,max − X

(t)
g∗ )(1

(t)
higher,i) (17)

where, X (t)
i,min and X (t)

i,max show the minimum and maximum
limits of fireflies for iteration t . X (t)

g∗ shows the global best
firefly for iteration t .1(t)

lower,i and1
(t)
higher,i show the changing

factor for maximum and minimum limits for iteration t . The
pseudo code for the improved firefly algorithm incorporating
the complete modifications is given as follows:

Function Pseudo Code for Improved Firefly Algorithm

Declare objective function f (X );
Declare constants
αo, θ, βmax , βmin, δmax , δmin, tmax , c1, c2 ;
Randomly initialize fireflies F;
Compute fitness value f (Xi), ∀ Xi ∈ F ;
Rank the fireflies and determine the initial global best
firefly Xg∗ ;
while t < tmax do

α← αoθ
t ;

βo← (βmax − βmin)(
t

tmax
)2 + βmin;

δ← (δmax − δmin)(
t

tmax
)2 + δmin;

for i← 1 to N by 1 do
for j← 1 to N by 1 do

Find Rij using distance relation;
Find Rig∗ using distance relation;
if (Lj > Li) then

Xi← Xi + c1βoe
−δR2ij (Xj − Xi)+

c2βoe
−δR2ig∗ (Xg∗ − Xi)+

α(rand − 0.5);

if (Li > Lj) then

Xi← Xi + c2βoe
−δR2ig∗ (Xg∗−

Xi)+ α(rand − 0.5);

Perform dynamic search space squeezing;
Determine f (Xi) at updated Xi, ∀ Xi ∈ F ;
Rank the fireflies according to their light intensity;
Determine the global best Xg∗ at updated Xi;
t ← t + 1;

Show the final results;

C. SYSTEM MODEL
The proposed system consists of one hydro unit, one equiv-
alent thermal energy source and three PV plants of different
rated capacity. Fig. 2 shows the system configuration and the
breakdown of the intervals for both cases. Two different test
cases are developed in order to determine the robustness of
the suggested firefly algorithm over the conventional tech-
nique. These test cases are developed according to the length
of the scheduling problem and are given as follows:

1) The total scheduling period for case 1 is three con-
secutive days (T = 72 hours). Moreover, the total
scheduling period is divided into six equal intervals
(n = 6). Each interval is further divided into 12 sub
intervals (ns = 12), where each sub-interval is of equal
duration (1 hour). The hydro power, thermal power and
the load demand remain static for each main interval,
whereas the solar power remains constant only for each
sub interval. The product of the main intervals and the
sub-intervals should be equal to the total length of the
scheduling problem (n× ns = T ).
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FIGURE 1. Vector representation for different modifications. (a) Structural modification (1). (b) Structural modification (2). (c) Dynamic search space
squeezing.

FIGURE 2. Model representation. (a) System configuration. (b) Breakdown of scheduling intervals.

2) The total scheduling period for case 2 spans over only
a single day (T = 24 hours). Moreover, the total
scheduling period is divided into six equal intervals
(n = 6). Each interval is further divided into 4 sub
intervals (ns = 4), where each sub-interval is of equal
duration (1 hour). The hydro power, thermal power and
the load demand remain static for each main interval,
whereas the solar power remains constant only for each
sub interval. The product of the main intervals and the
sub-intervals should be equal to the total length of the
scheduling problem (n× ns = T ).

III. DESIGN OF PHOTOVOLTAIC SYSTEM
The first step in solving the suggested dispatch problem
is to forecast the solar power using the available data set.
The work in [26] suggests an efficient method to compute
the solar power results using the irradiance and temperature

forecasts. This research extends the work in [26] to a system
consisting of multiple PV plants and total scheduling problem
of three days. Themain steps to determine the solar power are,
(i). Develop the mathematical model for single PV mod-
ule. (ii). Forecast the irradiance and temperature levels.
(iii). Using the suggested PV mathematical model and
the forecast results, compute the solar power for different
scheduling intervals.

A. MATHEMATICAL MODEL FOR PV MODULE
The two major parameters which determine the character-
istics of the PV module are the irradiance and temperature
levels. The suggested model determines the I-V characteris-
tics and the power curves of the single PV module based on
the temperature and irradiance values for different scheduling
intervals [39]–[41]. The model presented in this research
determines the current of the PV module as the function of
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FIGURE 3. I-V characteristics of PV module at STC. (a) Plant 1. (b) Plant 2. (c) Plant 3.

FIGURE 4. Power curve of PV module at STC. (a) Plant 1. (b) Plant 2. (c) Plant 3.

the module’s voltage given as follows:

I (V ) = I ′s − I
′
s (
V
V ′o

)α+β (18)

where, I ′s and V
′
o represent the short circuit current and open

circuit voltage of the module at arbitrary irradiance and tem-
perature level.V represents themodule’s output voltage given
in the range [0, V ′o]. I represents the module’s output current
given in the range [0, I ′s]. α represents a non-negative integer
whereas, β shows an integer given in the range [0, 1]. The
power of the module P is computed by the product of V and
I and is given as follows:

P(V ) = I (V ).V = (I ′s − I
′
s (
V
V ′o

)α+β ) V (19)

To determine the major parameters involved in (18), fol-
lowing set of equations are used:

V ′o = Si.
G

GSTC
.Tcv.(T − TSTC )+ Vmax

− (Vmax − Vmin).exp(
G

GSTC
.ln(

Vmax − Vo
Vmax − Vmin

))

(20)

I ′s = Pi.
G

GSTC
.(Is + Tci.(T − TSTC )) (21)

α + β =
Is

Is − Iop
(22)

where, Si and Pi represent the number of series connected
and parallel connected modules respectively. GSTC and TSTC
represent the irradiance and temperature values at STC. G
and T are the arbitrary irradiance and temperature levels.
Vmax and Vmin represent the maximum and minimum voltage
levels of PVmodule.Vop and Iop represent the optimal voltage
and current values of PV module. Vo and Is represent the
open circuit voltage and short circuit current at STC. Tcv
and Tci represent the temperature coefficients for Vo and Is
respectively.

1) VALIDATION OF SUGGESTED MODEL
The suggested system configuration consists of three differ-
ent PV plants. The parameters of the single PV module are
considered to be different for each plant in order to make
the dispatch problem more practical. The characteristics of
the PV module for each plant are listed in Table 1. Each
module listed in Table 1 is tested at STC, variable irradiance
conditions while keeping temperature constant and variable
temperature levels while keeping irradiance constant. Fig. 3
shows the I-V characteristics of each module listed in Table 1
at STC. Fig. 4 shows the power curve of the modules at STC.
At standard test conditions, the open circuit voltage, the short
circuit current and the maximum power are equal to the rated
values of Table 1. Fig. 5 and Fig. 6 show the effect of the
variable irradiance levels on the I-V characteristics and the
power curves of the module. The short circuit current and
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FIGURE 5. I-V characteristics at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

TABLE 1. Characteristics of single PV module for different plants in accordance with data provided in [41].

FIGURE 6. Power curves at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

FIGURE 7. I-V characteristics at variable temperature levels while keeping irradiance constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

the maximum power of the module increases at the elevated
irradiance levels while keeping temperature constant. Fig. 7
and Fig. 8 show the effect of the elevated temperature lev-
els on the I-V characteristics and the power curves of the

module while keeping irradiance constant. The open circuit
voltage and the maximum power of the module decreases
at the higher temperature levels while keeping irradiance
constant.
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FIGURE 8. Power curves at variable irradiance levels while keeping temperature constant. (a) Plant 1. (b) Plant 2. (c) Plant 3.

B. FORECASTING OF IRRADIANCE AND TEMPERATURE
LEVELS
The mathematical model described previously depends upon
the two major input parameters, the irradiance, and the tem-
perature levels. Therefore, the next step in the design of the
photovoltaic system is to forecast the desired parameters for
the entire scheduling problem. The first test case spans over
a duration of three days, therefore in order to compute the
solar power share, the forecasted irradiance and temperature
levels are required for three consecutive days. For case 2,
this research uses the forecasted values of temperature and
irradiance computed at day one of the case 1.

1) BOX JENKINS MODEL
An efficient technique described in the literature to compute
the time series forecasts of the non-stationary dataset is the
Box-Jenkins methodology [42]–[44]. Box-Jenkins methodol-
ogy describes the method to compute the optimal parameters
of the auto-regressive integrated moving average model. The
three main parameters of the ARIMA model are the order
of the Auto-Regressive model defined by the variable p,
the order of the Moving Average (MA) model defined by
the variable q, and the differentiating order defined by the
variable d. The mathematical relations for the AR, MA and
ARMA models are defined as follows:

Xt =



α +
∑p

n=1
θn Xt−n + εt , if q = 0, p > 0

εt +
∑q

n=1
δn εt−n, if q > 0, p = 0

α + εt +
∑p

n=1
θn Xt−n if q > 0, p > 0

+
∑q

n=1 δn εt−n

(23)

By including the lag operator (Lk (Xt ) = Xt−k ), the above
set of equations can be written as follows:

εt = (1−
p∑

n=1

θn Ln)Xt = θp(L)Xt (24)

Xt = (1+
q∑

n=1

δn Ln)εt = δq(L)εt (25)

(1−
p∑

n=1

θn Ln)Xt = (1+
q∑

n=1

δn Ln)εt (26)

The ARIMA(p,d,q) model can be defined as follows:

(1−
p∑

n=1

θn Ln)(1− Ld )Xt = (1+
q∑

n=1

δn Ln)εt (27)

where, θ1, θ2, . . . , θn represent the parameters of auto-
regressive model. δ1, δ2, . . . , δn represent the parameters of
moving-average model. εt , εt−1, . . . , εt−n define the white
noise terms.

2) EXAMPLE
The major steps involved in producing the time series fore-
casts using the ARIMA model are the (i). Identification of
the model. (ii). Estimation of the parameters. (iii). Residual
diagnostics. The dataset obtained from the National Renew-
able Energy Laboratory Website (NREL) [45] includes the
daily irradiance and temperature curves for the year 2015.
The irradiance and the temperature data set are plotted in
the Fig. 9. In order to find the optimal parameters p, d and
q of the ARIMA model for the given data set, the readers are
encouraged to go through the detailed steps and the analysis
described in [26]. For the sake of the simplicity of the readers,
the steps of the Box-Jenkins methodology are skipped for the
given data set and the final forecast results for both irraidance
and temperature curves for three consecutive days (December
22, 2015- December 25, 2015) are shown in the Fig. 10.

C. PV POWER COMPUTATION USING DEVELOPED MODEL
AND FORECASTED PARAMETERS
In order to determine the PV power for three consecutive
days, the forecasted irradiance and temperature levels and
mathematical model developed previously are used while
taking into account the following assumptions.

1) The irradiance and temperature values remain constant
for each sub interval (1 hour) and changes at the begin-
ning of the next sub-interval.

2) The power of the module for each sub-interval is com-
puted using the mathematical model and the forecasted
parameters for that interval.
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FIGURE 9. Data set obtained from NREL website for the year 2015. (a) Irradiance data. (b) Temperature data.

FIGURE 10. Forecast results obtained for three consecutive days (December 22, 2015- December 25, 2015). (a) Irradiance forecast.
(b) Temperature forecast.

3) The maximum power point condition is used while
computing the power of each module.

4) The total DC power of the PV plant is given by the sum
of the maximum power of all the modules for the given
sub-interval.

5) The AC power of the plant is computed by the product
of the DC power and the converter’s efficiency.

6) The total number of themodules required are according
to the rated system capacity of each plant.

Table 2 summarizes different parameters for each plant.
Table 3 summarizes the forecast results for day 1. Table 4
summarizes the forecast results for day 2. Table 5 summarizes
the forecast results for day 3. Table 6 summarizes the total
power contribution of each plant for different scheduling
intervals for case 1 (December 22, 2015-December 25, 2015).
Table 7 summarizes the total power contribution of each plant
for different scheduling intervals for case 2 (December 22,
2015). For case 1, the total power for each interval is equal
to the sum of the power contribution of 12 sub-intervals (12
hours). For case 2, the total power for each interval is equal to

the sum of the power contribution of 4 sub-intervals (4 hours).
This completes the forecast results of PV system for different
cases. The next section describes the overall methodology and
the problem formulation for the given optimization problem
along with the results of each case.

IV. METHODOLOGY AND RESULTS
The objective function of the conventional hydrothermal
scheduling problem minimizes the total fuel cost of the ther-
mal generation while preserving the reservoir and thermal
constraints [46]–[48]. This sections describes the updated
hydro-thermal-solar scheduling problem and presents the
optimal power allocation of each energy source for different
test cases while meeting the different system constraints.

A. PROBLEM FORMULATION
The objective function for the considered dispatch problem
which aims to reduce the thermal cost of the system can be
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TABLE 2. System parameters for each PV plant.

TABLE 3. PV power computation for day 1 having cloudy conditions (December 22, 2015).

written as follows:

min(f ) =
NS∑
j=1

njF(PTH ,j) (28)

where, nj represents the total hours of each scheduling inter-
val. F(PTH ,j) represents the cost function of the thermal
generation for particular scheduling interval j. NS represents
the total number of scheduling intervals. The total cost of the
system including the PV cost is given as follows:

FT = F(PT )+ C1,s

NS∑
j=1

PS1,f ,j + C2,s

NS∑
j=1

PS2,f ,j

+C3,s

NS∑
j=1

PS3,f ,j (29)

where, FT represents the total cost of the system. F(PT )
represents the total converged thermal cost of the system.
C1,s,C2,s and C3,s represent the cost coefficients given in
$/kWh for PV plant 1, 2 and 3 respectively. PS1,f ,j ,PS2,f ,j
and PS3,f ,j represent the forecasted solar power for particular
scheduling interval j for PV plant 1, 2 and 3 respectively.
The defined objective function is subjected to following con-
straints.

1) POWER BALANCE CONSTRAINT
The sum of the power contribution from the thermal energy
source, the hydro source and all three PV plants for a partic-
ular scheduling interval must be equal to the demand plus the
transmission losses for that interval.

PH ,j + PTH ,j +
Nsp∑
i=1

PSi,j = PD,j + PL,j (30)
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TABLE 4. PV power computation for day 2 having clear sky conditions (December 23, 2015).

where, PH ,j,PTH ,j,PD,j and PL,j represent the hydro power,
thermal power, the demand value and the transmission losses
for a particular scheduling interval j. Nsp represents the total
number of PV plants. PSi,j represents the contribution of the
ith PV plant for particular scheduling interval j.

2) POWER LIMITS CONSTRAINT
The hydro power and the thermal power must be within the
maximum and minimum power limits. The solar power must
be equal to the forecasted value for particular scheduling
interval j. The following equality and inequality constraints
are defined for different sources.

PS1,j = PS1,f ,j (31)

PS2,j = PS2,f ,j (32)

PS3,j = PS3,f ,j (33)

PH ,min ≤ PH ,j ≤ PH ,max (34)

PTH ,min ≤ PTH ,j ≤ PTH ,max (35)

where, PTH ,min,PTH ,max represents the thermal power limits.
PH ,min,PH ,max represents the hydro power limits.

3) RESERVOIR CONSTRAINTS
The volume of the reservoir for a particular scheduling inter-
val must be within the maximum and minimum values given
as follows:

Vmin ≤ Vj ≤ Vmax (36)

where, Vmin and Vmax are the minimum and maximum limits
of the volume. Vj represents the volume of the reservoir for
a particular scheduling interval j. Moreover, the initial and
final volume of the reservoir must be equal to the desired
parameters given as follows:

Vo = Vinitial (37)

V1 = Vfinal (38)

where, Vinitial and Vfinal represent the desired initial and final
volume of the reservoir. Finally, the discharge rate constraints
are given as follows:

Dismin ≤ Dj ≤ Dismax (39)
NS∑
j=1

njDisj = Dist (40)

where, Dismin and Dismax represent the minimum and max-
imum discharge rate limits. Dj represents the discharge rate
for a particular scheduling interval j.

4) EQUATION OF CONTINUITY
The volume of the reservoir and the discharge rate must be
related by the equation of continuity given as follows:

Vj = Vj−1 + nj(If ,j − Disj − Sp,j) (41)

where, If ,j and Sp,j represent the inflow and the spillage of the
water for the particular scheduling interval j.
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TABLE 5. PV power computation for day 3 having intermediate weather conditions (December 24, 2015).

TABLE 6. Total AC power contribution of each plant for different scheduling intervals for case 1 (December 22, 2015-December 25, 2015). Each scheduling
interval is of equal duration (12 hours).

TABLE 7. Total AC power contribution of each plant for different scheduling intervals for case 2 (December 22, 2015). Each scheduling interval is of equal
duration (4 hours).

B. STEPS OF IMPROVED FIREFLY
In order to solve the suggested dispatch problem, the steps
of only improved firefly algorithm are highlighted for the
sake of the simplicity of the readers. These are given as
follows:

1) Find the irradiance and temperature forecast results for
the desired scheduling period.

2) Using the mathematical model described in Section 3
and the forecast results, compute the PV power share
for each plant for different scheduling intervals.

3) Declare constants like αo, θ , βmax , βmin, δmax ,
δmin,tmax ,c1, c2.

4) Randomly initialize the volume vectors as fireflies
for all scheduling intervals and check the volume
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TABLE 8. Different parameters for each case.

constraints. The volume vector for a particular iteration
t and firefly F is given as follows:

V(t)
F =

[
V (t)
1,F V (t)

2,F V (t)
3,F . . . . . . V (t)

NS ,F

]T
5) Determine the initial global best firefly. The initial

global best firefly corresponds towards the volume vec-
tor which has theminimum thermal cost for the initially
generated volume vectors.

6) Determine the discharge rate vector using the volume
vectors and check the discharge rate constraint. The dis-
charge rate for particular iteration t , scheduling interval
j and firefly F is computed using the equation of con-
tinuity defined in (41) and is given as follows:

=


(Vo − V

(t)
1,F )

n1
if j = 1

(V (t)
j−1,F − V

(t)
j,F )

nj
+ (If ,j − Sp,j) if j 6= 1

∀ j ∈ {1, 2, 3, . . . ,NS}

7) Determine the hydro power using the discharge rate for
each scheduling interval and check the hydro power
limit constraint. The hydro power vector is computed
as the function of the discharge rate and is given as
follows:

P(t)
H (NS×1)

= func(Dis(t)) =



func(Dis(t)1,F )
func(Dis(t)2,F )
func(Dis(t)3,F )

.

.

.

func(Dis(t)NS ,F )


8) Compute the thermal power from the power balance

constraint. The thermal power for particular iteration
t and firefly F is given as follows:

P(t)
TH (NS×1)

= PD(NS×1) + P(t)
L (NS×1)

− (PS1,f (Ns×1)
+PS2,f (Ns×1) + PS3,f (Ns×1)
+P(t)

H (NS×1)
)

where, transmission losses are determined as the func-
tion of the hydro power (PL = func(PH )).

9) Find the thermal cost of the system corresponding to
each firefly and check the thermal power limits. The
total thermal cost of the system for particular firefly F
and iteration t is given as follows:

C (t)
F = γ

NS∑
j=1

njP
2(t)
TH ,j,F + β

NS∑
j=1

njP
(t)
TH ,j,F + α

NS∑
j=1

nj

where, γ , β and α represent the cost coefficients of the
thermal generation.

10) Compare the fireflies with each other based on their
thermal cost and move the firefly having lower light
intensity (higher fuel cost) towards a brighter firefly
(lower fuel cost) using the multi-update criteria defined
in Section 2 for the improved firefly algorithm. If the
intensity of the particular firefly F is less than the fire-
fly F ′, then the update equation is written as follows:

V (t+1)
F = V (t)

F + c1βoe
−δR2

FF ′ (V (t)
F ′ − V

(t)
F )

+α(rand −
1
2
)+ c2βoe

−δR2Fg∗ (V (t)
g∗ − V

(t)
F )

If the intensity of the particular firefly F is greater than
the firefly F ′, then the update equation is written as
follows:

V (t+1)
F = V (t)

F + c2βoe
−δR2Fg∗ (V (t)

g∗ − V
(t)
F )

+α(rand −
1
2
)

11) Dynamically squeeze the maximum and minimum vol-
ume limits for each firefly.

12) Rank the fireflies and compute the updated global best
firefly.

13) Repeat the steps (6)-(12) until the solution converges to
the final value.

14) Find the total cost of the system using (29).

C. SIMULATION PARAMETERS
For simulating the different test cases, this section describes
the essential system parameters of each energy source in
the suggested hybrid system. The test cases are developed
according to the parameters provided in [48].
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TABLE 9. Load demand for different scheduling intervals for case 1.

1) PARAMETERS FOR CASE 1
The cost equation for thermal generation for case 1 is given
as follows:

F(PTH ) = 575+ 9.2PTH + 0.00184P2TH ($/hr) (42)

where,

150 MW ≤ PTH ≤ 1500 MW

In order to find the hydro power from the discharge rate,
following discharge rate characteristics are used:

Dis(PH ) = 330+ 4.97PH (acre− ft/hr) (43)

where,

0 MW ≤ PH ≤ 1000 MW

The loss equation in order to find the transmission losses
of the network is modeled as the function of the hydro power
and is given as follows:

PL = func(PH ) = 0.00008P2H (MW ) (44)

The forecasted solar power for different scheduling inter-
vals for case 1 is listed in Table 6. The different parameters
for case 1 are listed in Table 8. The demand value for different
scheduling intervals is given in Table 9.

2) PARAMETERS FOR CASE 2
For case 2, the cost equation for the thermal generation is
given as follows:

F(PTH ) = 700+ 4, 8PTH + 0.0005P2TH ($/hr) (45)

where,

200 MW ≤ PTH ≤ 1200 MW

In order to find the hydro power from the discharge rate,
following discharge rate characteristics are used:

Dis(PH ) = 260+ 10PH (acre− ft/hr) (46)

where,

0 MW ≤ PH ≤ 350 MW

The loss equation in order to find the transmission losses
of the network is modeled as the function of the hydro power
and is given as follows:

PL = func(PH ) = 0.00008P2H (MW ) (47)

TABLE 10. Load demand for different scheduling intervals for case 2.

The forecasted solar power for different scheduling inter-
vals for case 1 is listed in Table 7. The different parameters
for case 2 are listed in Table 8. The demand value for different
scheduling intervals is given in Table 10.

D. RESULTS
This section covers the results of both cases, which includes
the optimal power contribution of each energy source along
with the analysis of the desired system parameters at the end
of the scheduling problem. The test cases are solved using
both conventional and dynamically search space squeezed
modified firefly techniques while using different population
size.

1) RESULTS OF CASE 1
The convergence characteristics are determined for case 1
using both conventional and modified firefly algorithms.
Fig. 11 shows the convergence of the total fuel cost for
case 1 using both techniques.

From the convergence graph, it is evident that the total
fuel cost converges to a relatively lower value in case of
the modified firefly algorithm as compared to the simple
firefly. Fig. 12 shows the optimal contribution of each energy
source for different scheduling intervals for both techniques.
The optimal power contribution of different PV plants during
various scheduling intervals is equal to the forecasted values
given in Table 6. The cumulative sum of the power contri-
bution of each energy source during a particular scheduling
interval equals the sum of the demand value and the transmis-
sion losses for that interval.

Table 11 summarizes the results of the case 1 using the sim-
ple firefly technique for a population size of 5 fireflies. From
Table 11, it is evident that the transmission losses depend
upon the hydro power share for a particular scheduling inter-
val. The greater the hydro power for a given interval, the more
will be the network losses for that interval.Moreover, the end-
ing volume for case 1 equals the desired value of 6000 acre-ft
which satisfies the ending volume constraint of the reservoir.
The hydro power, the solar power and the thermal power
are within the defined limits as described in the previous
section for each scheduling interval. The discharge rate for
each interval is computed by using the equation of continuity
while taking into account the two consecutive volume values.
For interval 1, the initial volume of the reservoir is used for
computing the discharge rate. Table 12 summarizes the results
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TABLE 11. Complete results of case 1 using simple firefly algorithm for population size of 5 fireflies.

TABLE 12. Complete results of case 1 using modified firefly algorithm for population size of 5 fireflies.

FIGURE 11. Convergence of the total thermal cost for case 1 using
different techniques. (a) Simple firefly algorithm. (b) Modified firefly
algorithm.

of case 1 using modified firefly algorithm for population size
of 5 fireflies. From Table 12, it is clear that the suggested
modified firefly technique converges to a lower thermal cost

for this particular sample. The power limits constraint, the
reservoir constraints and the power balance constraint are all
satisfied for case 1 while using modified firefly technique.

The solar power share for different scheduling intervals
and the total solar cost remain same for both techniques
whereas the thermal cost converges to a lower value in case
of modified firefly algorithm.

2) RESULTS OF CASE 2
Fig. 13 shows the convergence behavior of the simple firefly
algorithm for case 2 using the different number of fireflies.

Fig. 14 shows the convergence behavior of the modified
firefly algorithm for case 2 using the different number of
fireflies. From both Fig. 13 and Fig. 14, it is evident that
the modified firefly algorithm converges to a relatively lower
fuel cost as compared to the simple firefly technique for
different number of fireflies. The convergence behavior of
the simple firefly algorithm in case of the population size
of 5 fireflies is better than the modified firefly technique as
evident from the graphs. Fig. 15 shows the optimal power
contribution of different energy sources for each scheduling
interval. Table 13 summarizes the results of conventional
firefly technique for case 2. The final volume of the reservoir
in this case equals the desired value of 12000 (acre-ft) and
hence the final volume constraint is satisfied. The sum of the
optimal power contribution of each energy source during the
particular interval equals the demand plus the transmission
losses for that interval. The discharge rate for each scheduling
interval is computed by using the equation of continuity
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FIGURE 12. Optimal power contribution of each energy source for
different scheduling intervals using both techniques. (a) Simple firefly
algorithm. (b) Modified firefly algorithm.

FIGURE 13. Convergence of the total thermal cost for case 2 using simple
firefly.

as described previously. For interval 1, the initial volume
of the reservoir is used for determining the discharge rate.
The transmission losses depend upon the hydro power for
particular scheduling interval.

Table 14 shows the complete results for case 2 using the
modified firefly algorithm. The final volume constraint, the
power limits constraint and the power balance constraint are
all satisfied for case 2 while using the modified firefly algo-
rithm. The solar cost remains constant for both techniques

FIGURE 14. Convergence of the total thermal cost for case 2 using
modified firefly.

while the total fuel cost converges to a lower value in case
of the simple firefly algorithm for this particular sample.
This completes the results of both cases using the simple
and modified firefly algorithm. The next section introduces
the statistical comparison of both techniques for each case
in order to compare the performance parameters of the two
algorithms statistically.

V. RESULTS OF STATISTICAL COMPARISON
The meta-heuristic algorithms have certain random part in
their update criteria while shifting the possible solutions in
the search space of the objective function. This results in the
different final convergence results for each trial. Therefore,
in order to compare the performance of a particular algorithm
with the other, certain statistical measures are required to
comprehensively compare both algorithms over a particular
sample size. This research suggests the comparison of the
average of two algorithms for different population sizes and
then uses the independent t-test results to statistically prove
the existence of the significant mean difference between the
two techniques. The final comparison is made by taking into
account both the average mean cost and the results of the
independent t-test results. Moreover, the average generation
cost for different number of fireflies is considered to be the
final solution for the suggested algorithms for each case.
In references [9]–[25], the authors compare the different tech-
niques by comparing their mean cost. However, in majority
references only a slight improvement in the mean cost is
shown by the authors which is not statistically significant to
prove the significance of the suggested technique. Therefore,
while comparing different meta-heuristic methods, certain
statistical methods should be used to statistically prove the
significance of the suggested method. This research uses
the independent t-test results to compare the mean and the
variance of the algorithms statistically. The two major parts
of the independent t-test results are the Levene’s test for
comparing the variance and the t-test for comparing the mean
of the algorithms. For both Levene’s and t-test results, if the
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TABLE 13. Complete results of case 2 using simple firefly algorithm for population size of 5 fireflies.

TABLE 14. Complete results of case 2 using modified firefly algorithm for population size of 5 fireflies.

TABLE 15. Statistical comparison between firefly and modified firefly for case 1 using 30 samples.

TABLE 16. Statistical comparison between firefly and modified firefly for case 2 using 30 samples.

significant value is larger than the critical value of 0.05, the
two algorithms have same variance and mean statistically
for 95 % confidence level. Table 15 shows the comparison
of the algorithms for case 1 using 30 samples. The algo-
rithm is tested for different population sizes to increase the
diversity of the fireflies and to suppress the effect of the
premature convergence on the final converged solution. It is
evident from the Table 15, that the suggested modified firefly
algorithm outperforms the simple firefly by giving the lower

mean generation cost and the execution time. Moreover, the
significant values for both Levene’s and the t-test are less
than the critical value of 0.05 for majority of the cases,
therefore the algorithms are statistically different from each
other for case 1. Only for population size of 50 fireflies,
the significant value for the Levene’s test is greater than
0.05, which suggests that the two algorithms have same vari-
ance statistically for population size of 50 fireflies. Table 16
shows the comparison of the algorithms for case 2 using
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FIGURE 15. Optimal power contribution of each energy source for
different scheduling intervals using both techniques for case 2.
(a) Simple firefly algorithm. (b) Modified firefly algorithm.

30 samples. From Table 16, it is evident that the suggested
firefly algorithm outperforms the simple firefly technique
by giving lower generation cost and execution time. More-
over, the significant values for Levene’s and t-test suggest
that the two algorithms are statistically different from each
other.

VI. COMPARISON WITH OTHER TECHNIQUES
The suggested modified firefly algorithm is compared with
other promising techniques in literature to further validate its
significance. The methods used for the comparison purpose
are PSO, Accelerated PSO (APSO) and Improved Accel-
erated PSO (IAPSO). The mentioned methods are tested
for the same problem under the same conditions and the
results are shown in the Table 17. From Table 17, it is evi-
dent that the suggested firefly algorithm outperforms some
other conventional and promising techniques in literature
for the suggested hybrid system. The performance of sug-
gested modified firefly is comparable with the conventional
PSO, since PSO also depends upon both exploration and
exploitation properties of the particles. The absence of the
local search component in APSO and IAPSO results in
relatively higher mean generation cost for this particular
problem.

TABLE 17. Comparison between suggested firefly and different
techniques for population size of 50 particles/fireflies.

VII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
To summarize, following are the major findings of this
research

1) This research suggests a modified dynamically
search space squeezed firefly algorithm which uses
multi-update criteria to shift the fireflies in the search
space of the objective function by taking into account
the influence of the global best solution for each itera-
tion.

2) The proposed firefly technique is implemented on a
novel dispatch problem which consists of a thermal
unit, a hydroelectric energy source and multiple PV
plants of different rated capacity. To model the inter-
mittent nature of the PV source, combination of frac-
tional integral polynomial method and ARIMA model
is implemented to find the PV power share towards the
dispatch problem.

3) The suggested firefly technique successfully solves a
highly non-linear andmulti-modal dispatch problem by
giving the optimal power share of each energy source
for different scheduling intervals.

4) Moreover, the performance of the two algorithms for
different test cases is compared statistically using the
independent t-test results. Based on the statistical anal-
ysis, the performance of the suggested modified firefly
is enhanced by a substantial factor as compared to the
simple firefly. The suggested technique proves to be
optimal one for the given dispatch problem by giving
lower generation cost and execution time.

Following are some of the practical limitations of the pro-
posed research:

1) For photovoltaic system, the effect of the partial shad-
ing on themaximum power of themodule is not consid-
ered extensively. The suggested system considers that
each module is operating at maximum power point and
there is only single global peak for the power curve.
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2) The duration for which the forecasted parameters of
the photovoltaic system remain constant is considered
to be 1 hour. In practical scenarios, the irradiance and
temperature levels can change with in the considered
time duration.

3) Certain contingencies like removal of the transmission
line, the removal of certain generating unit can affect
the suggested operational strategy.

4) Resilience of the suggested system against the certain
instabilities can improve the efficiency of the suggested
dispatch strategy.

Based on the mentioned limitations, the future work
involves the following major tasks:

1) Test the robustness of the suggested novel firefly tech-
nique on a more complex hybrid energy system while
considering the security and emission constraints.

2) Model the power system to include the resilience
against the disruptions to suggest a more practical oper-
ational strategy.

3) Consider the partial shading effect on the maximum
power of the PV source. Decrease the time duration
for which the forecasted parameters remain constant for
the photovoltaic system.

4) Check the robustness of the suggested firefly algorithm
on different forms of economic dispatch problems.
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