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The proliferation of grid-connected converter interfaced energy sources in Smart Grids,
enhance sustainability and efficiency as well as minimizing power losses and costs.
However, concerns arise regarding the stability and reliability of future smart grids due
to this wide integration of power electronic devices, which are recognized to affect the
dynamic response of the system, especially during disturbances. For instance, apart from
the lower damping of existing electromechanical modes, new low-frequency oscillations
begin to appear. Yet, the ability of grid-connected converters to provide grid support
functionalities can alleviate the aforementioned challenges. Relevant studies show that
these functionalities can be enhanced even further, if information regarding the oscillation
characteristics are available. Traditional methods for extracting modal information are very
well suited for monitoring purposes, however, they pose certain limitations when
considered for control applications. Therefore, this paper proposes a multi-band
intelligent power oscillation damper (MiPOD) that exploits 1) the inherent characteristics
of grid-connected converters to damp multiple power oscillations and 2) the modeling
capabilities of Artificial Intelligence (AI) for predicting the frequency of electromechanical
oscillations in the system, as operating conditions change. Essentially, the MiPOD
integrates the AI model in the control loop of the converter to attenuate multiple
modes of oscillation. The proposed controller is validated for different disturbances
and randomly generated operating points in the two area system. Specifically, in this
case the AI model is a Random Forest ensemble regressor that is developed for tracking
two electromechanical modes. As it is shown, the MiPOD can improve the overall
performance of the system under various contingency scenarios with only 6% of the
corresponding total nominal capacity of synchronous generators. In addition, the
monitoring and damping abilities of the MiPOD are demonstrated for a vast range of
operating points just by tuning two parameters; the predicted oscillation frequencies of the
local and inter-area mode.
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1 INTRODUCTION

The modernization of power systems into Smart Grids (SG) aims
to integrate information and communications technologies with
the electricity network, thus forming a cyber-physical system
(Aleem et al., 2020). In contrast to the conventional operation
scheme, SG reinforce the integration of grid-connected converter
(GCC), which are usually based on (but not limited to) Renewable
Energy Systems (RES) and Energy Storage Systems (ESS)
(Kempener et al., 2013). This paradigm shift i.e., from a
centralized to a decentralized structure can increase the
sustainability and efficiency of power systems while reducing
costs and power losses (Howell et al., 2017; Aleem et al., 2020).
Although GCC possess financial and environmental benefits, they
can also affect the stability of a system. For instance, the RES
generation variability caused by the changing weather conditions
creates power imbalances, which give rise to frequency
fluctuations (Bessa et al., 2014). A popular solution is the
coupling of RES with Battery ESS, which mitigates generation
variability by injecting or absorbing power accordingly (Beaudin
et al., 2010). However, these resources depend on GCCs to
convert DC to AC (Masters, 2013), therefore, it is expected
that given the current trends power electronics will eventually
dominate future SG.

GCC is the main technology to interface RES and ESS with the
grid due to its high level of flexibility and efficiency (Lai and Kim,
2016). The hardware of GCCs usually consists of an IGBT-based
power module, an output filter to mitigate switching harmonics,
and a microprocessor-based controller for implementing control
algorithms. To achieve a fast and robust operation of GCCs, the
cascaded control structure is often employed (Rocabert et al.,
2012). For grid-following GCCs, the main control loops include a
current controller, a phase-locked loop (PLL), and a power
controller. Whereas, grid-forming GCC, especially those based
on virtual synchronous machine concept, usually replaces the
PLL by a power balance based synchronization controller which
has been proven to be more grid friendly (Rodríguez et al., 2018).

Besides the generation variability of GCC based RES, the
increasing penetration of power electronics is associated with
certain challenges that have a deeper impact on the reliability of
power systems. For instance, unlike conventional synchronous
generator power plants such as coal and hydro, power electronic
devices do not have mechanical parts and/or rotating masses.
Therefore, the inertia of such systems is much lower (if not zero).
This implies that the overall inertia weakens as more and more
electronic devices connect with the system, altering its dynamic
behavior (Kroposki et al., 2017) by responding much faster to
contingencies (Fang et al., 2019). Reasonably, concerns arise
regarding the rotor angle stability1 of the system.

Recent studies suggest that higher penetration of power
electronics is linked with 1) the appearance of additional low
frequency electromechanical oscillations and 2) the reduced
damping of the existing ones (ENTSO-E, 2019). Even though,

these type of oscillations exist in power systems since the first
interconnection of multiple generation units, the size and
complexity of today’s power systems makes them more
frequent. Sustained or power swings with increasing
amplitudes can lead to instability, therefore, damping such
oscillations is imperative to ensure a stable and reliable
operation. For instance, during 2003 low frequency oscillations
that led to widespread blackouts were recorded in Italy (Berizzi,
2004), United States (Andersson et al., 2005) and China
(Prasertwong et al., 2010). More recently, in 2017 a particular
sequence of events excited an under-damped mode giving rise to
a low frequency oscillation between southern Italy and Germany
(ENTSO-E, 2018), which through proper coordination and fast
response by system operators was quickly put under control.

Traditionally, the power system stabilizer (PSS) is used for
improving the damping of low frequency electromechanical
oscillations, which typically lie within the range of 0.1 − 1.0Hz
(inter-area modes) and 1.0 − 2.0Hz (local area modes). The
general structure of a PSS is based upon the following main
blocks: low-pass filter, washout filter, gain and lead-lag phase
compensator(s) (IEEE, 2016). Other types of PSS include the dual
input type PSS2C, which exploits combinations of electric power
and speed signals to integrate the accelerating power for
improving the sensitivity to mechanical power variations and
the multi-band type PSS4C used for attacking oscillations at
different frequencies (IEEE, 2016). Even though PSS is a cost-
efficient approach in attenuating electromechanical low
frequency oscillations, the sporadic tuning of their parameters
hinder their performance due to the inability to adapt in the ever-
changing operating conditions. Depending on the PSS type and
tuning strategy the number of tunable parameters may vary. For
instance, a typical PSS consists by 6 (i.e., the gain and five time
constants), yet, by strategically selecting certain time constants to
be fixed, the parameters to be optimized can be halved [Shin et al.
(2010); Farah et al. (2012); Hu et al. (2018)]. Regardless, the high
number of parameters makes the task of online tuning highly
complex and difficult. Furthermore, as the number of fossil fueled
synchronous generation plants will slowly decrease (Fang et al.,
2019) it is safe to say that the number of PSS devices installed in
the system will follow the same trend.

Fortunately, the fast response of power electronics can aid in
ensuring stability of the system by means of a proper control
algorithm. It has been shown that PSS-like control laws can be
implemented in grid-tied power converter to damp sub-
synchronous resonance (Wang et al., 2015; Varma and Salehi,
2017). For instance, in (Varma and Salehi, 2017), a damping
controller based on grid frequency measurements is proposed for
photovoltaic (PV) solar farms. In this work, the PV power plant is
utilized as a STATCOM2 whose output power corresponds to the
variation in the frequency measured at the point of common
coupling (PCC). However, the main drawback of PSS-based
control methods is that they rely on frequency measurements,
which in reality are noisy. Recently, a new control concept called
grid-forming power converter appears as an ideal candidate to

1The ability of a system to remain in synchronism after a disturbance (Kundur
et al., 1994) 2Static Synchronous Compensator
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enhance power grid stability (ENTSO-E, 2019; Tarrasó et al.,
2019). By emulating the dynamics of a synchronous generator,
grid-forming converters can provide, in addition to grid
supporting services, the ability of online tuning for complying
with system operator’s requirements as the conditions change.
Though the damping provided by grid-forming power converter
is considerable, it mainly comes from the virtual inertia that is
usually constrained by system requirements. In an attempt to
adjust damping gain without altering virtual inertia, a selective
power oscillation damper for virtual synchronous machine is
presented in (Rodriguez Cortes et al., 2014). In this study, the
damping ratio is set individually for each modes by means of
using band-pass filters. This approach has been proved to be very
effective provided that the information on the oscillation
frequency is available. However, in practice, due to the
dynamic nature of power systems, obtaining such information
is not trivial.

The advancement of computer science and computational
power permits AI to be used for deriving models that can
provide information, which otherwise would be either difficult
or impossible to obtain. The cyber-physical structure of SG
facilitates the faster exchange of information through state of
the art communication networks, thus paving the way for the
applications of AI in power systems. Considering as well the vast
deployment of Phasor Measurement Units (PMU) with a
sampling rate around 20 ms (De La Ree et al., 2010),
monitoring such system dynamics becomes more efficient.
Naturally, the high resolution measuring of system variables
leads to a rapid growth in the amount of available data. These
data have been shown to contain invaluable information, which
can be exploited by artificial intelligence (AI) and machine
learning techniques to provide fast and accurate estimations
about the stability status of the system. For instance, an
ensemble of Support Vector Machines is developed in (Zhou
et al., 2017) for predicting transient stability after a severe
disturbance. Moreover, (Liu et al., 2018) adopts a bagging
ensemble called Random Forests (RF) to detect instability in
the Danish power system considering forecasting errors of RES
generation. Similarly, (Sulla et al., 2014) trains a Neural Network
to classify operating points into over or under damped based on a
fixed damping ratio.

Driven from the above, in this paper a multi-band intelligent
power oscillation damper (MiPOD) is developed to provide
additional damping for two low frequency electromechanical
oscillation modes. As opposed to the various studies presented
above, theMiPOD is trained to track the frequency characteristics
of the two modes (i.e., mode frequency) using the RF ensemble
when the active and reactive power of the loads in the system are
randomly modified. The proposed controller is evaluated under
several contingency scenarios and operating points using the two
area system (Kundur et al., 1994). The contributions of the
present work is to:

• Demonstrate that AI can be used to provide information to
controllers that previously were unable to obtain.

• Show that non-synchronous distributed power plants can
support the system by providing PSS-like damping.

• Prove that by tuning only two parameters of the MiPOD the
overall stability of the system can be enhanced for a wider
range of operating points.

• Develop a variation of the iPOD controller presented in
Baltas et al. (2020) to attenuate multiple oscillatory modes
rather than just one. Special care has been put on decoupling
the two frequency bands to ensure damping efficiency.

The rest of the paper is structured as follows. In Section 2, a
review of the participation of GCC in power oscillation damping
is presented. In Section 3 the structure of theMiPOD is explained
in detail including the AI predictor. In Section 4 the
characteristics of the case study are discussed. Finally, in
Sections 5, 6 the results and conclusions are presented
respectively.

2 GRID-CONNECTED CONVERTER IN
MECHANICAL OSCILLATION DAMPING

During this last decade, the installation of large-scale GCC based
plants, such as wind and PV power plants, has been steadily
increasing (Aleem et al., 2020). As a result, research efforts focus
on the attenuation of mechanical oscillations in the system. Even
though small scale GCC based plants cannot influence too much
power oscillations, large-scale GCC based systems can provide
substantial support to the grid for a wider range of contingencies.

Generally, frequency deviations in the system typically come
together with power oscillations in large power systems. In
(Varma and Akbari, 2020), a power oscillation damping
technique is presented based on reactive power modulation
considering the large-scale PV plant as a STATCOM device.
The authors highlight the effects of reactive power oscillation
damping in conjunction with the fast frequency regulation
controller. The control signal for oscillation damping is based
on frequency measurements of the system. Regardless, the voltage
deviation required to attenuate the oscillation is determined by a
washout filter and a phase compensator.

Similarly, in (Knüppel et al., 2013) power oscillation damping
is provided by a type 4 wind power plant. The wind power plant
consists of 150 individual wind turbines, which are scattered over
a wide geographical area to minimize generation variability. The
paper proposes the modulation of both active and reactive power
for attenuating system oscillations. The efficiency of active power
modulation w.r.t. oscillation damping is related to the distance
between the wind turbine and the PCC. Furthermore, it is noted
that the active power modulation in wind power plants is feasible
only when oscillations at the mechanical resonance frequency of
the wind turbine are not excited. Regarding reactive power
modulation, the location and the operation condition of the
plant highly affects the sensitivity of the system.

The general structure for the POD controller, which is based
on the PSS implementation for synchronous generators, is
depicted in Figure 1. The controller is based on grid
frequency measurements and with the main blocks being the
gain, the washout filter and phase compensation filters, the plant
can generate the desired amount of compensation power.
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References Varma and Akbari (2020) and Zhou et al. (2017) use
the washout filter in addition to the phase compensation device to
provide the reactive power modulation. In contrast, in (Knüppel
et al., 2013), a simple low-pass filter is used to compensate on the
phase displacement.

Although the above implementations appear in many papers
due to its similarity with the PSS, this structure is depending
largely on the phase compensation block and on the frequency
measurement of the system. In addition, the reactive power
modulation may give rise to voltage stability issues, as
generally large-scale distributed power plants are located
geographically far away from load centers, meaning that they
are normally connected to weak transmission systems.

An alternative approach for GCC to provide power oscillation
damping is presented in this paper based on active power
modulation, which relies on AI to determine the frequency of
the inter-area and local modes in the system as operating
conditions vary.

3 PROPOSED MIPOD FOR SPC-BASED
GRID-FORMING POWER CONVERTER

Figure 2 shows the overall control structure of the MiPOD for
grid-forming power converters based on synchronous power
controller (SPC). The distributed power plant consists of two

FIGURE 1 | Conventional POD controller for grid-connected converter.

FIGURE 2 | Overall Structure of the proposed MiPOD for SPC-based grid forming power converter.
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central power converters connected to an under-damped
electrical network. The power plant is controlled by the power
plant controller using 1) measurements at the PCC and 2) phasor
measurements from a WAMS. The SPC is mainly responsible for
the grid-forming capabilities of the power plant controller. In
addition, to enable the GCC to behave as synchronous machine
both the power loop controller (PLC) and the MiPOD are used.
Specifically, the transfer function for the PLC is given as:

GPLC(s) � 1
Hs + D

(1)

where H is the inertia and D is the damping of the emulated
synchronous machine. The MiPOD, which will be discussed in
the following, is implemented in parallel with the PLC.

It is noted that the output of the PLC is an angular frequency,
which is equivalent to the rotor frequency of a synchronous
machine. However, for the SPC to emulate the angle of the
induced voltage, the angular frequency (ω) has to be
integrated as:

θ(s) � ω
1
s
. (2)

The power reference generator block (PRG) generates the
power reference (Pref ) by using the internal angle θ, the measured
grid angle θpcc and voltage magnitude Vpcc. It is worth mentioning
that these feedback signals (θpcc,Vpcc, Ppcc) are measured at the
PCC by using a PMU. This reference dictates the amount of active
power that needs to be produced by the GCC. The PRG is
designed considering the following well-known equation:

Ppc
ref �

Vref

R2 + X2
[R (Vref − Vpcc cos(θ − θpcc)) + XVpcc sin(θ − θpcc)]

(3)

where R and X are the virtual resistance and impedance, Vpcc is
the RMS value of grid voltage, and Vref is the rated grid voltage.
For a transmission system where the resistance is much lower

than inductance, the term R can be omitted. Therefore, Eq. 3 can
be rewritten as:

Ppc
ref �

Vref Vpcc

X
sin(θ − θpcc) (4)

The reference power is divided among the two power
converters in the plant by using weighting factors as:

Ppc,j
ref � kjP

pc
ref , j ∈ {1, 2} (5)

3.1 Multi-Band Power Oscillation Damper
The block diagram of the multi-band power oscillation damper is
illustrated in Figure 3. It consists of a frequency-selective power
oscillation damper and an AI predictor. The frequency-selective
power oscillation damper has two band-pass filters and two blocks
implementing the swing equation. The band-pass filter is defined as:

Gbpf ,m(s) � 2ζmωc,ms
s2 + 2ζmωc,ms + ω2

c,m

(6)

wherem can be either l for local mode or i for inter-area mode, ζ i
is the damping ratio and ωc is the center frequency of the filter.
The emulated swing equation for each frequency is given by:

Gd,m(s) � 1
2Hms + Dm

. (7)

The advantage of the MiPOD is that it allows controlling the
participation of the power plant to damp mechanical oscillations
by adjusting the virtual inertia. The decoupling network is used to
enhance the filtering response of the band-pass filter. To
investigate further the dynamics of the decoupling network,
Eqs. 6, 7 can be rearranged as follows:

Ginput,l(s) � (1 − Gbpf ,i)Gbpf ,l (8)

Ginput,i(s) � (1 − Gbpf ,l)Gbpf ,i (9)

FIGURE 3 | Control block diagram of the MiPOD.
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The frequency response of the above transfer functions is
plotted in Figure 4. Observing the figure it can be seen that the
magnitude gains of the two modes are quite similar, when the
decoupling network is not used. This indicates that the two loops
are highly coupled, which can affect the responses of the dampers.
In addition, the tuning of each damper cannot be done separately
introducing additional difficulties. On the other hand, with the
decoupling network the input signals for the local and inter-area
dampers are well decoupled. For instance, feeding back the output
of Gbpf ,i to the input of Gbpf ,l a band-stop filter is formed for the
local mode damper at ωc,i. Thereby, both dampers act only at the
tuned frequency. Moreover, parameter selection for each damper
can be carried out separately.

3.2 AI-Based Oscillation Frequency
Predictor
Predictions regarding the frequency of the targeted oscillations is
vital for the MiPOD to provide the necessary damping to
attenuate them. Obtaining such information online is
especially difficult. For instance, modal analysis can calculate
the eigenvalues of the system by linearizing the system models
around an equilibrium (steady state) point. Although it is very
accurate, this approach is time consuming and unsuitable for
online applications, because linearized models need to be updated
according to the changing operating conditions for the results to
reflect reality (Kontis et al., 2018). Measurement based methods,
such as Prony and Fast Fourier Transform to name a few, extract
the modal characteristics of the system through signal processing
techniques, which are fast enough for online applications.
However, to minimize the effect of noise, these approaches
typically employ high order models that generate artificial
modes, which are difficult to identify and discard (Kontis
et al., 2018). In addition, the performance of such methods in
a power electronics dominated SG have not yet been fully studied
(Kontis et al., 2018).

Apart from the aforementioned issues, traditional signal
processing techniques require a probing signal (either artificial
or natural disturbance) and a time windowwide enough to capture
the slow electromechanical oscillations [TP462 (2012)]. However,
providing optimal damping capabilities depends not only on the
accuracy of the mode frequency estimation but also its speed. As
shown in Figure 5, measurement-based methods need to observe
several seconds of the feedback signals for an accurate prediction,
yet such delay will constrain the damping provided by the MiPOD.

The modeling capabilities of AI are becoming more and more
appealing as the means to exploit the information and
communication network of WAMS (Gopakumar et al., 2014;
Senesoulin et al., 2019). AI can overcome the issues of the
conventional methods with reasonable computational power
and fast processing speeds. Specifically, machine learning is able
to derive functions that relate system variables to other system
variables or some stability indices: a task commonly known as
Supervised Learning where input-output pairs are used to develop
a model, as depicted in Figure 6. Concretely, this paper adopts AI
to develop a model that will use WAMS information to predict the
oscillatory frequency of twomodes (instead of one as in Baltas et al.
(2020)) from steady state data as depicted in Figure 5.

To develop the said model it is necessary to create a database
that will contain sufficient amount of system conditions along
with their corresponding mode frequencies. The database has to
contain input-output pairs that will be used for 1) training and 2)
testing the performance. In this case, these inputs or examples are
system variables, whereas the outputs or labels are the two mode
frequencies for each example. The system conditions are varied
using random coefficients that scale upwards or downwards each
of the load’s active and reactive power for emulating the demand
variations. The process followed to generate the data is
graphically illustrated in the flowchart presented in Figure 7.
Finally, the database consists of approximately 23, 000 examples
and labels. Each example represents a unique sequence of values
that correspond to 22 uncorrelated system variables.

FIGURE 4 | Frequency response of decoupling network in Eqs. 8, 9.
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3.2.1 Random Forests
Among the wide variety of machine learning algorithm this paper
adopts a special case of an ensemble, called Random Forests (RF),
to predict the targeted mode frequencies. An ensemble aims to
improve the overall performance of several individual machine
learning models that (usually) have weak performance by
combining them (Duda et al., 2001). Similarly, RF combine Q
decision trees placed in parallel using a randomized procedure for
training the individual Qr decision tree (Breiman, 2001; Louppe,
2014), where r ∈ {1, . . . ,Q}. Decision trees are simple and easy to
understand (see Figure 8), robust to input types and scales and in
addition do not make any assumptions regarding the underlying
distribution of the data (i.e., non-parametric). However, they tend
to overfit the training samples leading to a high generalization
error (Theodoridis and Koutroumbas, 2008).

The crucial step toward the development of a decision tree is,
at each non-terminal node, the selection of the split criterion. In a
regression task, such as in this paper, the split criterion is
determined so that the drop of impurity from the parent to
the child nodes is maximum (Theodoridis and Koutroumbas,
2008), as in Eq. 10, where tLeft and tRight are the left and right
ancestor nodes, respectively and NtLeft/Nt and NtRight/Nt are the
portion of samples that belong to each of the these two nodes. The
I(t) is the mean squared error between true value y(p) and
predicted value ŷt for patterns in subset St averaged over all
training patterns Nt at the parent node t, as in Eq. 11. The
predicted ŷt value is calculated according to Eq. 12.

A fraction of one from the 1,000 decision trees of the MiPOD’s
RF mode frequency predictor is depicted in Figure 8. Each node
is represented by a rectangle that encapsulates all the information
characterizing that node. The split criterion lies at the top
followed by the MSE and the number of samples allocated at
that node. At the bottom, the predicted inter-area and local mode
frequency values are shown. Note that the decision path from the
top toward the terminal nodes (indicated by the green outline) is
straightforward and clearly interpretable. RF build on top of the
decision trees’ simple yet intuitive structure to develop individual
predictors that collectively yield much higher performance
(Breiman, 2001).

ΔI(t) � I(t) − NtLeftNt

I
(tLeft) − NtRight

Nt
I(tRight), (10)

I(t) � 1
Nt

∑
i∈St

(y(i) − ŷt)2, (11)

ŷt �
1
Nt

∑
p∈St

(y(p)) (12)

3.2.2 Comparison Between Univariate andMultivariate
Random Forest Structure
The development of the frequency predictor for twomodes can be
designed as a univariate or multivariate multiple regression. In
the former case two prediction models are developed to predict
the frequency of a specific mode as shown in Figure 9, while in

FIGURE 5 |Comparison between the proposed AI-basedmode estimation approach and the traditional signal processing techniques. A properly trained AI model
can provide fast and accurate estimations of the mode frequency faster than signal processing.

FIGURE 6 | Conceptual representation of Supervised Learning.
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the latter a single prediction model is developed to predict both
frequencies at the same time as in Figure 10. Regardless, the
univariate/multivariate RF is trained for predicting the frequency
of two modes (inter-area and local) while its performance is
evaluated through a 5-fold cross validation scheme. Generally, the
k-fold cross validation technique is used for obtaining a better
approximation of the true error (Shalev-Shwartz and Ben-David,
2017). To do so, k subsets of equal size are created from the
original training dataset and a prediction model is trained using a
unique combination of k-1 folds and tested with the remainder.
The k-fold prediction is simply the average prediction over all
models. To quantify the performance of the developed models
two metrics are used: the R2 score Eq. 13 and the Mean Absolute
Error (MAE) Eq. 14 where n is the number of samples, y is the
mean true value and y, ŷ are the true and predicted values. The
MAE measures the average error between true and predicted
values whereas the R2 score shows the fitness of the model for the
given task with 0 being the worse possible score and 1 being the
best.

R2(y, ŷ) � 1 − ∑n
i�1(yi − ŷi)2∑n
i�1(yi − y)2 (13)

MAE(y, ŷ) � 1
n
∑n
i�1

∣∣∣∣yi − ŷi
∣∣∣∣ (14)

A comparison of the performance and processing time
between the two schemes is presented in Table 1. Based on
these results, a trade-off is revealed between prediction accuracy
and processing speed. Particularly, the accuracy of prediction for
both frequencies using separate models is higher although the
processing speed is slower. In contrast the time required for
obtaining a prediction with the multivariate model is faster, while
the accuracy is slightly reduced. Given that the two types of
prediction models have similar performance, the decisive factor is
the processing speed. Therefore, based on the results of Table 1,
the multivariate regression approach is adopted. Note, however,
that if parallel computing is employed the gap in processing speed
might be lower.

3.3 Performance Analysis of Multivariate
Random Forest
Analyzing the learning curves of the multivariate model with the
lowest error, i.e., RFBest, a few comments are necessary. For
instance, the gap between cross validated error and training
error deceases when the training size increases as it is seen in
Figure 11. Assuming this trend remains the same adding around
5,000 samples will reduce the error further. However, adding even
more will not contribute much to improving the performance but
instead the fitting time could be doubled. Moreover, an attribute
of RF worth mentioning is the inherent ability of input variable
ranking according to their contribution in the decision process.
Specifically, this impurity based measure relies on the calculation
of the average drop of impurity, ΔI(t), of each feature over all
decisions trees of the ensemble Raschka andMirjalili (2019). Such
an attribute is particularly important for removing unnecessary
features thus reducing the dimentionality and complexity of the
task and improving speed as well as performance at the same
time. For instance, in this case Figure 12 reveals the most
important features w.r.t. their participation in the decision
making. Specifically, if a hard threshold around 0.025 is
applied then the installation of measurement units can be
limited to only 6 buses instead of 14.

4 VALIDATION SETUP

The performance of the proposed MiPOD is demonstrated on a
two area system (Kundur et al., 1994), as depicted in Figure 13.
This is a well-known system that allows studying
electromechanical oscillations, particularly between two
interconnected areas. The system is implemented on
DIgSILENT Powerfactory 2019, and in addition, the
simulation platform’s Python API is used in the development
of a script for automating and streamlining the process of the
experimental study. For the purpose of this study, two non-
synchronous generation units representing the distributed power
plants are connected to the B10 through virtual synchronous

FIGURE 7 | Database generation flowchart.
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power converters. The rated apparent power for each plant is
100 MVA, around 2.8% of the total apparent power for the four
synchronous generators (G1–G4).

Generally, there are three electromechanical modes of
oscillation in the two area system: an inter-area mode at
0.55 Hz, a local mode between G1 and G2 (in area A) at
1.05 Hz, and a local mode between G3 and G4 (in area B) at

1.1 Hz. The developed MiPOD aims to protect the system from
low frequency oscillations by damping the inter-area mode and
local mode in area B. After connection of the distributed power
plant the frequency of the inter-area mode increased to 0.61 Hz,
while the local mode increased up to 1.14 Hz.

Furthermore, it is assumed that a wide area monitoring system
equipped with phasor measurement units and phasor data

FIGURE 8 | Sample decision tree within random forests.

FIGURE 9 | Univariate structure of 5-fold cross validated Inter-area and Local mode frequency prediction.
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concentrators, provides full observability of the system by
recording, storing and transmitting the required signals to the
MiPOD installed in the DPP. A complete list of the feedback
signals for the MiPOD is presented in Table 2. The selection of
these signals was achieved by using the recursive feature
elimination (REF) algorithm [Guyon et al. (2002)]. From
Table 2 it can be observed that the REF algorithm identify
that important variables from generator buses is voltage
magnitude while at load buses are the active and reactive
power. Note, also, that the latter two were used to calculate

the power factor, which had a higher importance factor in
Figure 12.

5 RESULTS

Electromechanical oscillations exist naturally in the system due to the
interaction between generation units and power exchange among
them (Grigsby, 2007). An imperative factor that affects the inter-area
mode damping and frequency is the system operating conditions
majorly dictated by the loading characteristics (Kundur et al., 1994).

In reality, demand changes constantly and thus the damping and
frequency of the oscillatory modes in the system also change. To
emulate this behavior and demonstrate the ability of the MiPOD to
adapt and damp electromechanical oscillations as system
conditions change, the active and reactive power of loads L7 and
L9 are varied randomly using scaling factors drawn from aGaussian
distribution with a mean of 1 and a standard deviation of 0.1.

5.1 Modal Analysis for Random Operating
Points
Based on the load variation discussed above, approximately 100
random operating points were generated. The inter-area and local
mode characteristics are calculated through modal analysis for
three study cases: Base case, SPC only, and MiPOD. The
probability density function (PDF) of each case is obtained
using a Gaussian Kernel density estimation over all randomly
created points for their resulted damping ratio as in Eq. 15 and
amplitude ratio as in Eq. 16, where α and β are the real and
imaginary components of an eigenvalue.

ζ � − α������
α2 + β2

√ (15)

A1

A2
� e

|2πα|
β (16)

FIGURE 10 | Multivariate structure of 5-fold cross validated Inter-area
and Local mode frequency prediction.

TABLE 1 | Performance of RF on test set.

Approach Interearea Local Processing

MAE R2 MAE R2 Time

Univariate 0.0014 0.9883 0.0005 0.9942 3.9 s
Multivariate 0.0015 0.9882 0.0008 0.9886 2.7 s

FIGURE 11 | Learning Curves of the best multivariate Random Forest.
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The estimated PDFs of each ratio are depicted in Figure 14,
where the shaded area under the curves represent the probability,
which is equal to 1. By observing the areas under the curves, it can
be concluded that the overall small signal stability of the system is
improved most in the cases using the MiPOD. Specifically, the

area defined by the PDF and the grey vertical line is the largest for
the MiPOD case, meaning that the probability of an inter-area
and local mode damping ratio being more than 5% is the highest.
Similarly, the probability of having the amplitude ratio A1/A2

more than 2 is higher when the MiPOD is connected, as revealed

FIGURE 12 | Random Forest’s feature importance.

FIGURE 13 | Modified two area system.

TABLE 2 | List of feedback signals.

Location

Signals B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11

V magnitude (p.u.) ✓ ✓ ✓ ✓ ✓ ✓ ✓
V angle (Deg) ✓ ✓ ✓
I magnitude (p.u.) ✓a

P (MW) ✓ ✓ ✓b ✓ ✓ ✓
Q (Mvar) ✓ ✓ ✓c ✓ ✓ ✓
Gen. Loading (%) ✓
aAt terminal L07−08−1, i.e., upper line connecting buses 07 and 08
bAt terminal L08−07−1 and L08−09−1
cAt terminal L08−07−1 and L08−09−1
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by the area under the curve defined by the PDFs and the grey
vertical line at point 2.0 of the x-axis.

Apart from the high probability for cases with positive damping
ratio, there is a small chance the operating conditions might lead to
a negative damping ratio even when the MiPOD is in operation.
This may be due to a combination of two things: the system is
extremely loaded (thus the damping of the oscillatorymodes is very
low) and the finite capacity of the DPP imposes a constraint to the
available damping that it can provide.

5.2 System Response After a Contingency
for Random Operating Points
Following the same rationale, the effectiveness of the MiPOD is
demonstrated by analyzing the response of the system under

different contingency scenarios for randomly generated operating
points. All contingency events occur after 2 s from the beginning
of the simulation, which runs with a 10 ms resolution for a total
duration of 20 s. The same events and conditions are repeated
three times to obtain the system response 1) without the
distributed power plant i.e., the Base case, 2) with the
distributed plant using SPC and 3) with the distributed plant
using MiPOD.

5.2.1 Symmetrical Short Circuit
Due to the particular design of this system a contingency can
jeopardize the angular stability and synchronization of the two
areas. To test this hypothesis, a three phase short circuit is
designed to occur at B07 for 100 ms. The event has been
simulated for approximately 30 random operating points. The

FIGURE 14 | Comparison of the probability density functions for the damping and A1/A2 ratio for the local and inter-area mode combined per study case.

FIGURE 15 | Frequency and active power flow at B08 after a symmetrical fault at B07 for 2 random operating points.
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active power and frequency at the center of the system (i.e., B08)
for two random points are plotted in Figure 15. From these
trajectories, the positive impact of the MiPOD in the oscillatory
response of the system is obvious. In both cases, the system settles
at the equilibrium point faster with narrower power oscillations.
In reality, the initial frequency overshoot, which is unavoidable
considering the severity of the fault and operating conditions,
might have caused the activation of power curtailments or
breaker tripping. Nevertheless, this initial overshoot is slightly
smaller in the case of using MiPOD.

5.2.2 Step Change of Load Active and Reactive Power
Load variations are common in actual power systems especially in
large interconnected systems. These variations can either be
modeled as ramp or step changes. Regardless, both types of
load variation affect the power balance, which can excite the
electromechanical modes of the system. However, sudden load
variations (such as step changes) have greater impact on the
system stability. Concretely, a 5% reactive power increase of load
9 is simulated for 30 random operating points. The results for two
selected operating points are illustrated in Figure 16. In this case,
the advantage of MiPOD is demonstrated predominantly in the
active power flow of the tie line where system settles at the new
equilibrium with smaller power fluctuations. Furthermore, the
new equilibrium point in terms of frequency is closer to
fundamental frequency compared to the base case.

Similarly, to verify this behavior a second set of simulations
(for another 30 random operating points) is conducted but now
for a 5% active power increase at load 9. The results are presented
in Figure 17. As expected, the MiPOD adapts to the random
operating points providing additional damping to the inter-area
mode. Both active power flow and frequency converges promptly
to steady state at a higher decaying rate.

5.2.3 Synchronous Generation Event
Generally, the contingencies that have been discussed so far
were not able to excite the local mode between G3 and G4. In an
attempt to do so, a synchronous machine event is designed to
force the two aforementioned generators to oscillate against
each other. Specifically at time t � 2s the input mechanical
torque of G3 is increased by 0.1 per unit while the input
mechanical torque of G4 is decreased equally. The results are
shown in Figure 18. The local mode component in the system
oscillation is revealed only in the first couple of swings in the
recorded frequency at Bus 8. After this narrow window the
inter-area mode dominates the signal, which converges to
steady state faster when the MiPOD is installed. Notably, in
the base case the system is unstable as indicated by the
increasing amplitude of the active power oscillations. Even
with the SPC the system is oscillating very close to the
stability boundary. However, with the MiPOD the system
behaves significantly better in terms of stability.

5.2.4 Variation of Network Topology
The final contingency is a three phase short circuit at Bus 7 with
the transmission line connecting buses 8 and 9 out of service. The
remaining lines in the tie line are heavily loaded, which forces the
damping and frequencies of the oscillatory modes to alter
significantly. This final event not only evaluates the
performance of the MiPOD in the most severe (although less
probable) occasions but also the ability of the AI predictor to
generalize and provide accurate information regarding the
characteristics of each mode. The trajectories of the system
variables are drawn in Figure 19. As by the severity of the
event, large power swings exist in the tie line and frequency
fluctuations. Nevertheless, the MiPOD’s superior performance is
evident in both figures as opposed to the SPC and base case.

FIGURE 16 | System frequency and active power flow at B08 after a sudden 5% increase of reactive power demand by L9 for 2 random operating points.
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6 CONCLUSION

Power electronics facilitate the connection of distributed power
plants with grid thus contributing to the de-carbonization of
power systems. However, wider integration of power electronics
can risk the stability and reliability of the system in many aspects.
Yet, the versatility and fast response characterizing them can be
used to counter attack particular issues and finally improve the
overall performance.

The validation of the proposed controller demonstrates the
improvement of the damping by accounting for two oscillatory

modes over the typical case of using only grid-forming power
converters, i.e., SPC. According to the results the following
conclusions can be made.

• With the introduction of the MiPOD it is possible to
concentrate the available damping capacity of the GCC
based power plat to attenuate two critical modes, like the
inter-area and local mode of the two area system. After
analyzing the damping and A1/A2 ratios for a large number
of random operating points the MiPOD appears to enhance
the overall stability of the system much more than the SPC.

FIGURE 17 | System frequency and active power flow at B08 after a sudden 5% increase of active power demand by L9 for 2 random operating points.

FIGURE 18 | System frequency and active power flow at B08 after a sudden change in the mechanical torque of G3 and G4 for 2 random operating points.

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 59843614

Baltas et al. AI-Based Damping of Oscillations

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


• In addition, the dynamic responses of the system under
symmetrical faults, variations in mechanical torque, load
and topology changes show that the proposed controller can
increase the damping of these modes by accurately
predicting the frequency of two modes (local and inter-
area) as operating conditions vary.

• Most importantly, the distributed power plant has only 6%
of the total nominal capacity of the synchronous generators
in the system yet it can ensure the stability improvement.

• The RFmodel developed in this paper assumes the existence
of a WAMS, which facilitates for measurements to be
received from different locations of the system. As
mentioned a hard threshold scheme can be designed to
limit the number of buses that need to be monitored in case
full observability is not a realistic option.

As opposed to the conventional PSS devices, the number of
parameters that need to be tuned for tracking and damping the
electromechanical modes are lower e.g., 1 parameter per
oscillation band. The lower number of adjustable parameters is
achieved by integrating the AI model in the control loop, which
provides accurate predictions of the modes frequency.
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NOMENCLATURE

General Abbreviations

AI Artificial intelligence

DPP Distributed power plants

ESS Energy storage systems

GCC Grid connected converter

MiPOD Multi-band intelligent power oscillation damper

PCC Point of common coupling

PLC Power loop controller

PMU Phasor measurement units

PSS Power system stabilizer

PV photovoltaic

RES Renewable energy systems

RF Random forests

SG Smart grids

SPC Synchronous power controller

WAMS Wide area measurement system

Controller Symbols

ω Angular frequency of the SPC

ωc Filter center frequency

θ Internal angle of the SPC

θPCC Grid angle

ζ i Damping ratio

D Damping

H Inertia constant

i Inter-area mode

l Local mode

Pref Active power reference

R Virtual resistance

VPCC Grid voltage gagnitude

Vref Voltage referece

X Virtual impedance

Random Forest Symbols

ΔI(t) Drop of impurity at node t

ŷt Predicted value at node t

I(t) Mean Squared Error at node t

Nt Total number of patterns in t

NtLeft Total number of patterns in tLeft

NtRight Total number of patterns in tRight

Q Total Decision Trees in the Ensemble

r Index of Decision tree in the Ensemble

St Set of patterns at node t

t Node of Decision Tree i

tLeft Left ancestor node

tRight Right ancestor node

y(p) True value for pattern p ∈ St
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