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Abstract
Model predictive control (MPC) applications for multilevel power electronics converters are often facing

problems of a high computation burden. By using supervised imitation learning, it is possible to synthe-

sise computationally light controllers, which can capture the behaviour of computationally heavy MPC.

To obtain a high performance controller, which can do the correct control actions, training data genera-

tion and pre-processing of the data are of high importance. This paper presents guidelines for training

data generation and artificial neural network (ANN) controller design for a multistep-horizon finite set

FS-MPC applied to neutral point clamped (NPC) converter. A particular challenge of the selected con-

verter topology is that some control actions are used more often than others, thus the training data will

be heavy skewed i.e. it will be difficult for the controller to learn when to apply these actions due to the

lack of data. A workaround for solving this challenge is discussed in the paper. The performance and the

robustness of the designed controller has been validated in a hardware in the loop (HIL) system, where

the limitations of the synthesised ANN controller were explored. It was observed that ANN controller

performance can match the performance of the FS-MPC algorithm when operating within the span of

training data values and the computational burden was much lower.

Introduction
Artificial neural networks (ANN) have rapidly spread into various engineering applications. In power

electronics applications, they are used to solve problems in design optimization [1,2], maintenance [3,4]

and control [5, 6] that go beyond the capabilities of the traditional methods [7]. One of the problems,

where an ANN based solution was proposed, is the reduction of the high computational burden of multi-

step horizon FS-MPC for power electronic converters. Due to the iterative structure of the FS-MPC

algorithm, an extension of the prediction horizon is exponentially increasing the number of required

calculations. In [8, 9] supervised machine learning is used to create a computationally light ANN con-

troller that can provide a matching performance to the original FS-MPC controller. This reduces the need

for a high speed control platform application or the use of sorting algorithms to reduce the number of
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(a) Three phase 3L-NPC converter in standalone operation.
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Fig. 1: System schematics and voltage vectors of a 3L-NPC converter.

candidates that need to be evaluated. The next application that should be investigated is the supervised

machine learning application in the multi-level converters, where a further increase of the FS-MPC com-

putational burden is expected. In [10] four deep neural networks are employed to control the switches

of a 5-level flying capacitor converter. This solution has a significant drawback, as the accuracy of the

control depends on the accuracy of four septate neural networks. Moreover, it might not be necessary to

employ such large network for this application.

Application of the imitation learning for multi-level converters presents a hidden challenge that was not

addressed in [8, 9]. Both papers explore the applications in a two level voltage source converter where

only 7 or 8 voltage vectors are utilized. In machine learning this is referred to as a classification problem

[11] and it can be said that the input data is assigned to one of the 8 classes. It is expected that all vectors

during normal operation of the converter are utilized equally. Thus, when generating the datasets for

training the ANN controller, a balanced distribution of classes will be obtained. However, this does not

apply for multilevel converter applications, where depending on the cost function design and operating

conditions of the converter like commutation restrictions and modulation index, some voltage vectors

will be utilized more often while others will be rarely applied. This leads to a very uneven distribution

of classes, which requires application of techniques for imbalanced classification learning. Imbalanced

classification is an open problem and it needs to be practically identified and addressed specifically for

each training dataset [12, 13]. Therefore, the guidelines for the ANN application addressed in this paper

can be of significant help for the future classification applications in power electronics. Moreover, in

previous publications the limitations of the trained ANN controller were not explored i.e. can the network

operate in the operating points that were not included in the training data? How high is the robustness of

the trained network to model uncertainties? In [14] it was demonstrated that FS-MPC algorithm shows

a high robustness to model parameter mismatch, the question is if this robustness is also inherited by the

trained ANN controller. In the following section these questions will be answered by performing a HIL

verification of the trained ANN controller.

System model
The FS-MPC application with highly unbalanced distribution of classes, which is addressed in this paper,

is a three level neutral point clamped converter (3L-NPC) operating in a standalone application as shown

in Fig. 1a. In Table I are summarized the converter system parameters. In the 3L-NPC converter 27

voltage vectors like depicted in Fig. 1b can be selected by the FS-MPC algorithm and applied to the

converter output. It can be observed that small voltage vectors (V5 −V14) and medium voltage vectors

(V17,V19,V21,V23,V25,V27) control the neutral point current flow (i0), thus their application is important

for obtaining a balanced neutral point (NP) voltage. Predictions of system voltages and currents are

calculated using the following differential equations in the αβ reference frame:
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Fig. 2: Training data generation, preprocessing and ANN training to be applied in 3L-NPC converter.

vdc1,2(t) =Cdc1,2
didc1,2(t)

dt
i f αβ(t) =Cf

dvcαβ(t)
dt

+ ioαβ(t) viαβ(t) = L f
di f αβ(t)

dt
+vcαβ(t) (1)

where vdc1,2 are the DC-link voltages, Cdc1,2 are the capacitances of the DC-link capacitors and idc1,2 are

the capacitor currents, i f is the filter current and vc is the filter capacitor voltage which also corresponds

to the load voltage, L f and Cf are output filter inductance and capacitance and vi is the inverter output

voltage. To reduce the cost of the system, a state observer was implemented to estimate the load current

as shown in [15, 16]. The cost function implemented in the FS-MPC algorithm has two objectives:

voltage reference tracking, where v∗cα,β are reference voltages and vP
cα,β the predicted voltages, and NP

voltage balancing, which minimizes the voltage difference of the two DC-link capacitors:

g = (v∗cα − vP
cα)

2 +(v∗cβ − vP
cβ)

2 +λdc(vP
vdc1 − vP

dc2)
2 (2)

Although it is not used in this example, switching frequency minimization can also be implemented

like shown in [8]. Without switching frequency minimization the number of utilized voltage vectors

is reduced to 25. If the prediction horizon is extended to 2, the number of possible voltage vector

combinations that need to be evaluated by the algorithm will reach 625 combinations. In the following

section, guidelines for generating the training data and techniques for preprocessing the data will be

presented. The goal of the ANN controller is to learn the control principles of the 2-step horizon FS-

MPC controller.

Training data generation
The quality of the training data has a high impact on the trained ANN accuracy. Two approaches for data

generation can be distinguished: simulation based data generation [8,10] and artificial dataset created by

defining the input variable state-space and afterwards used as inputs for the FS-MPC algorithm [9].

Data generation from simulation model
The downside of collecting the data from the simulation model is that it requires more time and it is

difficult to extensively cover the state-space of the input variables. Transients are one of the phenomena

that are not easy to cover. Moreover, in case a current limitation is included in the cost function, the

simulation based data generation needs to cover the cases where the limiter is activated in order to learn

how to apply the switching states that can keep the converter in a safe operation mode.

Artificial data set

Generating the artificial dataset is faster and it can cover a much wider input variable space state. It is

very important to analyse the behaviour of the converter system to correctly specify the input variable

state space. This can be done by observing the simulation results of the converter system with the original

FS-MPC algorithm. For example it can help to identify the average, maximum and minimum value of the



(a) Voltage control, DC-link balancing. (b) Voltage control, DC-link balancing and switching fre-

quency minimization.

Fig. 3: Voltage vector (class) distribution recorded during operation of 3L-NPC converter for different

objectives in the cost functions of FS-MPC algorithm.

inputs. This will help in correctly defining the span of the inputs and whether it makes sense to uniformly

sample this span or increase the density of the samples close to the minimum value. One downside of

the artificial data set is that once the input vector range is defined and used to create a mash grid with all

possible combinations of these vector values, it is possible to get a lot of combinations that are less likely

to appear in normal operation conditions. Therefore, the accuracy of the trained ANN might be lost by

the ANN trying to fit these ambiguous datasets.

Class distribution
As mentioned in the introduction, learning the behaviour of the FS-MPC algorithm applied to power

converters represents a classification problem where the output vectors of the converter are defined as

classes. It needs to be mentioned that most of the machine learning algorithms are optimized for appli-

cation on cases with a balanced class distribution i.e. all classes have approximately the same number

of data samples. In multilevel converters like the NPC converters, the problem of unbalanced classes as

shown for example in Fig. 3 will emerge. Unbalanced class distribution is very often observed in many

classification problems like e.g the fraud detection, spam detection, anomaly detection [12] etc. where

there is one minority class and one majority class. The application presented in this paper will have to

deal with not only one minority and majority class, but multiple, making the complexity of recognising

the correct class even tougher.

In the first step of II. Data preprocessing (see Fig. 2), it is important that the class distribution is preserved

when the data set is split to training data and testing data. The test data should preserve the imbalance,

as this imbalance will also be present in the operating conditions of the controller. Next, techniques

for correcting the skewness of the class distribution in the training dataset need to be applied. This can

be done either by under-sampling the majority classes or oversampling the minority classes. In most

cases it was proven that a combination of both methods can provide good results. Another alternative

is cost-sensitive learning where to each class a different misclassification cost is applied to correctly or

incorrectly classified samples. Thus, misclassification of a minority class will have a higher cost value.

The goal here is to minimize the total misclassification cost [17]. Several combinations of oversam-

pling and under sampling were applied to the training artificial training data generated for the 3L-NPC

converter applications. The highest accuracy improvement was obtained for combination of SMOTE

(Synthetic minority oversampling technique) and ENN (Edited nearest neighbours rule). SMOTE selects

a random data point of a minority class and then finds its k nearest neighbours from the same class, a

random neighbour is selected and a synthetic example is created between the two examples in the feature

space. The procedure is repeated until the number of minority class samples has reached the desired

number. Afterwards, ENN is using the k=3 nearest neighbours to locate examples that are misclassified

and deletes them. The purpose of the ENN is to find ambiguous and noisy examples in a dataset. After

improving the class distribution, the ANN input training data and ANN input testing data are normalized

separately in order to avoid data leakage. The output training and testing data are encoded using the

one-hot encoding technique as shown in [9].



Table I: Parameters of the converter system .

Parameter Value
DC-link voltage (VDC) 520 V

DC-link capacitors (Cdc1,2) 4 mF

Filter inductance (L f ) 2.4 mH

Filter capacitance (Cf ) 15 μF

Reference (V ∗
c , f ∗vc

) 230 V, 50 Hz

Sampling time (Ts) 25 μs

Table II: Input training data range.

Input variable Range
Filter current (I f αβ) [-9:3:9] A

Load voltage error (Δvcαβ) [-6:1.5:6] V

Load resistance (Rload) [30:10:60] Ω
DC-link imbalance (Δvdc) [-1:0.25:1] V

Voltage reference (V ∗
cαβ) [-230:44:230] V

Previously applied vector (xold) [1:1:25]

For the selected case study of a 2-step horizon controller, 39 million data points were initially generated

in step I depicted in Fig. 2. The range of the input data is summarized in Table II. 13 minority classes

corresponding to zero vector and all small vectors (see Fig. 1b) were identified. The ratio of number

of samples in minority classes and majority classes was 6:100, indicating a high skewness of the class

distribution. Therefore, the mentioned methods for correcting the skewness of the class distribution were

applied. If this step is skipped, the synthesized controller would not have enough samples to learn when

to apply the small and zero vectors, which as mentioned before are essential for NP balancing of the

NPC converter.

Neural network design
Neural network design is an iterative process. A good starting point is to define a network with one

hidden layer that has a number of neurons that is higher than the number of neurons in the input and

output layer. In the application presented in this paper the input layer has 9 neurons (x1,x2...x9) and the

output layer 25 neurons (y1,y2...y25). Thus, for the hidden layer 30 neurons were chosen. If after the

training the accuracy of the network is not sufficient, the number of neurons can be increased or a second

hidden layer can be added. A rectifier linear unit (ReLU) was used as the activation function ( f1) for the

hidden layer and a softmax activation function ( f2) for the output layer as shown in Fig. 4. Optimization

algorithm Adam was used to update the weights (wn) and bias (bn) parameters of the ANN.

Output of the n-th neuron in the hidden layer:

hn = f1(bn1 +
9

∑
j=1

w(1)
n j · xn)

Output of the y-th neuron in the output layer:

yn = f2(bn2 +
30

∑
k=1

w(2)
nk ·hn)

w22
(1)
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Fig. 4: Structure of the feed-forward ANN used in the case study. Number of input neurons n=9, hidden

layer neurons h=30 and output neurons y=25.

The data preprocessing and training of the network were performed in Python using the machine learning

libraries (keras, tensorflow, scikit-learn, imbalanced-learn etc.) on a workstation with 12 processor cores

to reduce the required training time to 20 minutes. To monitor the performance of the ANN training,

classification accuracy can not be used as it is not an appropriate metrics for imbalanced classification.

Instead, following threshold metrics that are most commonly used for imbalanced classification were

defined: categorical accuracy, F1 score, recall score and precision. Precision score quantifies the number

of minority class samples that belong to minority class and recall score quantifies how well the minority
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Fig. 5: Output voltage waveforms in αβ reference frame and DC-link voltage balancing performance of

3L-NPC converter with two controllers.

classes were predicted [12]. The F1 score is obtained as a combination of precision and recall score. For

the application presented in the paper 88% categorical accuracy was obtained during the validation phase

of the ANN.

Performance evaluation
After the successful training, the obtained ANN can be implemented in MicroLab controller to check the

required computational time. The turn around of the trained ANN with a sampling time of Ts = 25 μs

was 21 μs, while the FS-MPC algorithm due to the high number of iterative calculations (625 iterations)

required 47 μs and produced an overrun. As it was not possible to safely operate the converter system

with a 2-step FS-MPC algorithm and Ts = 25μs, a benchmark performance comparison will be done

using the Simulink models. In Fig. 5 the simulated waveforms of the load voltage and DC-link capacitor

voltages can be observed for the two controllers. A very good reference tracking and balancing can be

observed by the ANN controller. Moreover, the total harmonic distortions (THD) of the load and the

operating switching frequencies of the controllers show only 11% and 4% difference. This confirms the

very high accuracy of the ANN controller. For a comparison, the ANN controller that was trained on the

data that used only random majority class under sampling (a number of samples in the majority class was

randomly selected and then removed from the dataset) was also implemented in the 3L-NPC converter

system. The obtained waveforms showed the load voltage THD of 1.3%, a switching frequency of 5.7

kHz. However, instabilities in the NP balancing were observed. This means that the controller did not

successfully learn the behaviour of the original FS-MPC controller.

Hardware in the loop validation
The synthesized ANN controller was implemented in dSpace MicroLab box. A detailed converter system

model as shown in Fig. 1 was created and downloaded to the Typhoon HIL 404 platform which provides

a safe environment for testing the robustness of the controller and exploring its limitations. The first

conducted test, as shown in Fig.7 was the steady state performance test of the voltage control and NP

balancing. The obtained results were in accordance with the simulations, showing low THD and good

balance of the NP. Afterwards, a step load change from 60 Ω to 30 Ω, which is within the range of

training data, was performed. A fast current response can be observed and a minimum voltage sag at the

moment of the load change, see Fig. 8.

Next, operating points that are out of range of the training data were tested. First the load resistance was

decreased to 15 Ω. From the obtained voltage waveforms in Fig. 9 it can be noticed that the system has

provided a stable response, with a good NP balance but the reference was not correctly traced. There is a

noticeable 30V drop in the voltage amplitude. In contrary, when the load resistance was increased to 70

Ω in Fig. 10, where there was no significant drop in the voltage amplitude and the NP balance was also



Fig. 6: HIL set-up for validation of the ANN controller performance and robustness.
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Fig. 7: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=30 Ω, Vre f =

230V, Vdc = 520V obtained in HIL system.
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Fig. 8: Step response of a 3L-NPC converter with 2-step ANN controller for Rload=60 → 30 Ω, Vre f =

230V, Vdc = 520V obtained in HIL system.
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Fig. 9: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=15 Ω, Vre f =

230 V, Vdc = 520 V obtained in HIL system.
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Fig. 10: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=70 Ω, Vre f =

230 V, Vdc = 520 V obtained in HIL system.
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Fig. 11: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=30 Ω, Vre f =

230 V, Vdc = 600 V obtained in HIL system.
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Fig. 12: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=30 Ω, Vre f =

120 V, Vdc = 300 V obtained in HIL system.

retained. Therefore, to increase the span of the controller operating points the load range of the training

data should be expanded to include the low values.

Another system variable that is interesting to evaluate in the robustness validation is the DC-link input

voltage. Two cases were defined, one with a higher voltage (Vdc = 600 V), shown in Fig. 11, and lower

voltage (Vdc = 300 V), shown in Fig. 12. For the second, the reference was reduced to 120V. In both

operating points the controller provided a stable response and NP balance.

In the final test the controller robustness to parameter mismatch was tested. Interestingly, the controller

responded well to the negative mismatch of the values i.e. the values of the LC filter that were used in

training were 30% smaller than the one set in the HIL simulator. However, for positive mismatch the

controller could not provide the correct response. This indicates that in order to have a controller that is

robust to parameter mismatch, the training would have to be modified to also include these data points.
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Fig. 13: Voltage waveforms of a 3L-NPC converter with 2-step ANN controller for Rload=30 Ω, Vre f =

230 V, Vdc = 520 V and 30% filter parameter mismatch obtained in HIL system.

Table III: Summary of the ANN controller tests in HIL system.

System parameters values Response THD(Vc)

Within training range stable 0.99%

Rload = 15 Ω stable 1.17%

Rload = 70 Ω voltage sags 1.17%

Vdc = 115% Vdcnom stable 1.11%

Vdc = 60% Vdcnom stable 1.60%

L f = 130% L f nom

Cf = 130% Cf nom
stable 1.12%

L f = 70% L f nom

Cf = 70% Cf nom
unstable -

Conclusion
ANN can be used for implementation of high computational FS-MPC algorithms in multilevel power

electronic converters. In the presented example of a 3L-NPC converter, 2-step horizon FS-MPC algo-

rithm can be replaced by a shallow ANN, which is executed 2 times faster than the conventional FS-MPC

algorithm implementation without a significant accuracy loss. However, in order to achieve a high accu-

racy of the ANN, the training data should be balanced and provide good coverage of the operating states

of the converter. With a correct preprocessing of the training data, the difference in the performance

metrics (THD and the NP balancing) of the trained ANN controller and the FS-MPC controller were

within 11%. The ANN controller responded well to DC-link voltage values which were out of the train-

ing range. It was also discovered that the ANN controller does not have a high robustness to parameter

mismatch and load values out of training range. Thus, to improve this, training data should also include

response to mismatched parameters and higher load value span.
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