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Abstract: Among other CubeSat subsystems, Antenna is one of the most important CubeSat com-
ponents as its design determines all the telecommunication subsystems’ performances. This paper
presents a coplanar wave-guide (CPW)-fed equilateral triangular slot antenna constructed and ana-
lyzed for CubeSat communications at S-band. The proposed antenna alone presents high gain and
ultra-wide band while its radiation pattern is bidirectional at an unlicensed frequency of 2450 MHz.
The objective is to use the CubeSat chassis as a reflector for reducing the back-lobe radiation and
hence minimizing interferences with electronic devices inside the CubeSat. This leads to a high
gain of 8.20 dBi and a unidirectional radiation pattern at an industrial, scientific and mdical (ISM)
band operating frequency of 2450 MHz. In addition to that, the presented antenna is low-profile
and exhibits high return loss, ultra-wide impedance bandwidth, and good impedance matching at
2450 MHz.

Keywords: 3U CubeSat; S-band; slot antenna; coplanar wave-guide (CPW); high gain antennas;
unlicensed frequencies; CubeSat body; quasi-Newton method (QNM); antenna localization; optimization

1. Introduction

Small satellite (SmallSat) is one of the fast-growing areas in space technologies.
They usually present spacecraft ranging from mini-satellites (100–500 kg) to femto-satellites
(<0.1 kg) [1]. Moreover, the development of modern technologies such as miniaturization,
microelectronic, and integrated circuits has enabled SmallSats to be small and capable of
ensuring new tasks at a long distance beyond our planet earth. Therefore, the miniaturiza-
tion of electronic instruments leads to shrinking the satellite size and so cost in satellite
launches. On the other hand, there is a tradeoff between physical dimensions and the
multifunctional capabilities that a SmallSat can ensure. This paper focuses on the most
popular kind of SmallSats, which are the CubeSats [2]. Moreover, the launch costs of this
new generation of SmallSats can be minimized by reducing the satellite volume and size
of a secondary payload on conventional launch vehicles and hence giving educational
institutions, small companies, governments, and even amateurs rational access to space
industries [3].

Since the first CubeSats were developed and then launched into space in 2003,
thousands of CubeSats have been sent into the low Earth orbit [4]. This rapid progress is
due to the short development time, lower complexity, and, most importantly, lower cost of
CubeSats than the other satellite families [5]. For instance, our institution, Sidi Mohamed
Ben Abdellah University of Fez, Morocco, has developed in the university campus the
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Moroccan First CubeSat (MaSat 1) for climate change in 2019; refer to Appendix A [6].
However, CubeSats should comply with the requirements imposed by CubeSat standard-
ization which makes the design of each CubeSat subsystem a difficult task [7]. The main
CubeSat component affected by these limitations is the communication subsystem as it en-
sures links with earth stations for Uplinking telecommands and downlinking of telemetry
and payload data. Therefore, the CubeSat antenna system should have high gain to provide
long-distance communications, low profile to occupy small space on the CubeSat’s body,
and consumes less power [8]. Power is very limited on CubeSats and for all electronic com-
ponents including antennas it is about 2 W [2]. This is due to the very limited and restricted
number of batteries and solar panels available on CubeSats. Therefore, equipping CubeSats
with high-performance and low-profile antennas for long-distance communications and
high data rate is more challenging. To deal with this issue, the technology of microstrip and
slot antennas is preferred in this study. Due to their low profile, compactness, robustness,
and ease of fabrication, patch and slot antennas represent the best choice for connecting
CubeSats into orbit with the ground station on earth. They also present low radiation loss,
low dispersion, easy matching of input impedance, and are available commercially [9–11].
However, their main drawback is their low peak gain at an operating frequency.

Therefore, this study designs a high-gain and unidirectional small-sized slot antenna
for use on 3U-CubeSats around an operating frequency of 2450 MHz. This unlicensed
frequency band frequency is chosen because it includes two satellite frequency bands (2025–
2110 MHz and 2200–2290 MHz) defined by the ECSS (European Cooperation for Space
Standardization) for Earth Exploration Satellite services, and the international amateur
satellite frequency band (2400–24500 MHz), which is proposed by the ITU (International
Telecommunication Union).

In this paper, our antenna approach aims to forward the back-lobe radiation of a slot
antenna to increase the antenna gain at an operational frequency of 2450 MHz. A small
part of the CubeSat’s top surface is used as a reflector in this antenna design to obtain
that goal. As compared to the implementation of metasurface atop source antennas such
as that introduced in [12–15], the proposed antenna design is suitable for all CubeSat
configurations, is lightweight, achieves a high gain of 9.70 dB at an ISM operating frequency
of 2450 MHz, and occupies less area on the CubeSat bodies.

The rest of this paper is organized as follows: Section 2 introduces our mechanism in
designing the proposed equilateral triangular slot antennas. Implementation of the opti-
mized CPW-Fed slot antenna design on the aluminum body of a 3U-CubeSat is presented
in Section 3. We discuss and analyze the suitability of the proposed antenna approach for
CubeSat communications in Section 4. Section 5 introduces and evaluates the effectiveness
of eleven UHF-band and S-band antenna designs proposed by the scientific community for
3U CubeSats. Then a brief comparison between all proposed antenna designs is provided.
Finally, conclusions are given in Section 6.

2. S-Band Slot Antennas: Antenna Design and Parametric Analysis

As previously mentioned, the frequency band being targeted in this antenna design
is the ISM band at 2450 MHz, which is commonly used for CubeSats [16,17]. Therefore,
the proposed antenna structure was used on CubeSats for operation at 2450 MHz since
the antenna is printed on a 90 mm × 90 mm FR-4 dielectric (εr = 4.4, tanδ ≈ 0.02). In this
antenna design, ANSYS High Frequency Structure Simulator (HFSS) [18] is used to design
and analyze the proposed slot antennas for S-band operation. As it is mentioned in
Figures 1–4, all proposed designs are printed on the same dielectric material and radiate
through equilateral triangular antennas. The constructed slot antennas were fed by 50 Ω
stripe/coplanar wave-guide lines and are printed at two air gap distances, dg and d0,
from the ground plane. The physical dimensions of proposed slot antennas were calculated
using both Finite Element Method (FEM) and quasi-Newton method (QNM) for use on
3U CubeSats at 2450 MHz. ANSYS HFSS uses FEM for electromagnetic simulations,
while QNM is an optimization tool integrated with the first one. Tables 1–4 and Appendix B
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achieve physical parameters used in designing proposed slot antennas 1–4, respectively.
Therefore, this antenna design describes the proposed low-cost and lightweight CPW-Fed
triangular lot antenna for use on CubeSats at S-band.
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Table 1. Physical parameters of proposed slot antenna 1.

W L Rg0 Wf0 Dg0
90 mm 78.77 mm 43 mm 2 mm

Lb H D0 Wt0
1 mm

55.7 mm 1.6 mm 9.65 mm 66.69 mm

Table 2. Geometrical parameters of proposed slot antenna 2.

W0 L1 Rg Wf0 D Wt Dg

90 mm 78.77 mm 42 mm 2 mm 13.55 mm 56.88 mm 1 mm

Table 3. Physical parameters of proposed slot antenna 3.

W1 L1 Rg1 Wf Dg1
90 mm 78.77 mm 42 mm 1.8 mm

Lc Wc D1 Wt1
1 mm

12 mm 0.7 mm 13.55 mm 56.88 mm

Table 4. Physical parameters of proposed slot antenna 4.

W0 L1 Rg1 Wf1 Lc1
Wc1

90 mm 78.77 mm 42 mm 1.8 mm 12 mm

Ds Ls La Wt1 Dg1
0.7 mm

2.9 mm 48.5 mm 26.93 mm 56.88 mm 1 mm

2.1. S-Band Slot Antenna 1

To design an equilateral triangular slot antenna suitable for use on CubeSats at an
ISM operating frequency of 2450 MHz, Slot antenna 1 is proposed in this research work
for beginning the design process. The physical parameters listed in Table 1 are used in
designing the proposed Slot antenna 1 and are initialized using ANSYS HFSS to design
an antenna structure with a size suitable for all CubeSat Configurations. In addition to
that, the antenna parameter Lb is arranged in this study from 44 mm to 56 mm to achieve a
small reflection coefficient at our operating frequency of 2450 MHz, see Figure 5. Moreover,
Figures 6 and 7 show Voltage Standing Wave Ratio (VSWR) and real part of the antenna
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input impedance at 2450 MHz as functions of the physical antenna size (i.e., parameter Lb),
respectively. Therefore, our study in this antenna design approves the effects of Lb on the
slot antenna performances at 2450 MHz.
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Results shown in Figures 5–7 conclude, therefore, that each of the reflection coefficient,
VSWR, and the input impedance real part of proposed Slot antenna 1 evolve inversely
with the antenna full size at our target operating frequency of 2450 MHz and achieve the
smallest when Lb = 55.7 mm. In this case, the proposed Slot antenna 1 presents a return loss
close to 10 dB, VSWR of 1.95, and input impedance with a real part of 92 Ω at 2450 MHz.
These results indicate the antenna physical size that can achieve good performances for
CubeSat communications at 2450 GHz with suitability for all CubeSat configurations.

Conclusions and results of our study in this antenna design 1 will be used as the
background of our antenna design 2 in the next subsection, which is proposed to obtain
high return loss and small VSWR at the same operating frequency of 2450 MHz.
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2.2. S-Band Slot Antenna 2

The previous subsection shows that the area occupied by the proposed Slot antenna
1 affects the antenna performances at our working frequency of 2450 MHz. In antenna
design 01, the best Return Loss (RL) at 2450 MHz is close to 10 dB and is achieved at Lb
= 55.70 mm. Henceforth, new optimization techniques can be applied to the proposed
antenna configuration to improve Slot antenna 1. Figure 2 depicts the configuration of
the Slot antenna 2 presented in this subsection. In this antenna design, the ground plane,
a rectangular perfect electric conductor is slotted by a circular slot located at the antenna
center and has an Rg radius. Therefore, both the ground plane and the triangular radiating
element are separated from each other by two varied distances, d and dg, and are printed
on the dielectric material’s top face. Electromagnetic coupling between the ground plane
and proposed triangular antenna is affected by each of Rg, dg, and d. The third antenna
dimension d is initialized at 5 mm, and the others are optimized using QNM. The overall
antenna has a lateral dimension of 90 × 90 mm2 which makes our design suitable for all
CubeSat structures, including the 3U configuration, which is our case and is analyzed using
geometrical parameters listed in Table 2. Figures 8 and 9 present reflection coefficient and
VSWR of the proposed slot antenna 2, respectively.
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Figure 9. VSWR of Slot antenna 2 at 2450 MHz versus dg and Rg (mm).

Slot antenna 2 shows that the air gap distances between the triangular antenna improve
both RL and VSWR of proposed Slot antenna 1 at 2450 MHz when dg = 1 mm and
Rg = 42 mm. Therefore, Slot antenna 2 presents an RL well above 10 dB (reflection coefficient
of −12.16 dB) and VSWR well below 2 (VSWR of 1.65) at 2450. Consequently, the proposed
approach in antenna design 2 enhances both return loss and VSWR of Slot antenna 1 at our
CubeSat operating frequency of 2450 MHz using only the antenna—ground plane air gap
distances in this parametric study.

Hence, this approach gives an RL above 10 dB (reflection coefficient below −10 dB),
VSWR less than 2 at 2450 MHz, and occupies a full area suitable for all CubeSat structures;
the antenna configuration is fed using only a 50 Ω strip line. Henceforth, achieved results
of Slot antenna 2 can be improved to obtain higher RLs, VSWR close to one, and good
impedance matching at 2450 MHz using another way of antenna excitation taken into
consideration low power on CubeSats in the outer space. In addition to that, low reflected
power is handled in this research work to achieve low power consumption and minimize
interferences generated by back lobe radiations with the other CubeSat subsystems.

2.3. S-Band Slot Antenna 3

As mentioned previously, both Slot antenna 1 and Slot antenna 2 are excited using
50 Ω stripe lines, while both full antenna area and air gap distances between the triangular
antenna and ground plane are used to optimize the proposed antenna performances at
2450 MHz. In this antenna design, proposed results of previous designs at 2450 MHz
with suitability for all CubeSat configurations, a 50 Ω coplanar wave-guide with a width
of Wc and length of Lc is used to excite the Slot antenna 3. The Triangular antenna
obtains excitation power from the CPW-Fed line through a transition line having with
of Wf. The triplet (Wc, Lc, Wf) is optimized at 2450 MHz using QNM to achieve higher
return losses (lower reflection coefficients), wide impedance bandwidth, good impedance
matching, and high gain for CubeSat communications. The proposed Slot antenna 3 is
designed using physical dimensions given by Table 3, and results of proposed QNM
optimization and parametric study are introduced in terms of reflection coefficient and
VSWR shown in Figures 10 and 11, respectively.
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We show that the proposed CPW-Fed Slot antenna 3 achieves RL above 10 dB
(reflection coefficients below −10 dB) and VSWR less than 2 at 2450 MHz for many triplets
of (Wc; Wf; Lc).The lowest of both antenna parameters are defined when Wf = 1.80 mm,
Wc = 0.70 mm, and Lc = 12 mm. The optimal solution of proposed QNM optimization
program is characterized by Wf = 1.80 mm, Wc = 0.70 mm, and Lc = 12 mm, with RL of
18.39 dB (reflection coefficient of −18.39 dB), VSWR of 1.27 (close to one) at 2450 MHz.
These results are appropriate for CubeSats and prove that the proposed CPW feed line
enforces maximum quantity of excitation power to the triangular antenna and hence that
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low power is being reflected to the excitation source. This benefit is of great importance for
CubeSats where electric power is, as mentioned previously, very limited.

Figure 12 shows that the optimized structure of CPW-Fed Slot antenna 3 gives an
RL of well above 18 dB, input impedance close to 61 Ω, and wide impedance bandwidth
850 MHz (2140–2990 MHz) around our ISM operating frequency of 2450 MHz. Moreover,
this antenna configuration presents a very low reflection coefficient of −40 dB, an ideal
VSWR of 1.02, and good impedance matching with an input impedance of 50.56−j0.74 Ω
at 2580 MHz. Therefore, the CPW-Fed Slot antenna 3 achieves very suitable return loss,
bandwidth, and impedance matching for use on CubeSats at 2580 MHz, while an essential
portion of electric power is reflected in the excitation source at 2450 MHz. From another
hand, this antenna design 3 radiates bidirectionally despite the presented high gain of
6.28 dB at 2450 MHz, see Figure 13.
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Figure 12. Reflection coefficient, VSWR, and input impedance of Slot antenna 3 versus frequency.
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Our approach in antenna design 3 presents a 50 Ω CPW strip line as a low-power and
low-cost feeding method to excite. The proposed CPW-Fed Slot antenna 3 is a lightweight,
low-cost, small-size, and high-gain antenna configuration. It can be used as a good candi-
date for CubeSat communications at long-distance communications. However, reflected
power to the excitation source and back lobe radiations at 2450 MHz minimize the effective-
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ness of the proposed CPW-Fed Slot antenna 3 and generate interferences with electronic
devices inside the CubeSat box and then minimize the effectiveness of proposed Slot an-
tenna 3. These RF issues can be solved and so re-direct/re-enforce radiating energy in the
outer space using slots in the triangular antenna or the CubeSat body as reflector.

2.4. S-Band Slot Antenna 4

Figure 4 depicts the configuration of the proposed CPW-Fed Slot antenna 4. In this
antenna structure, the CPW-Fed Slot antenna 3 is slotted using three rectangular notches
to obtain good impedance matching and so very low reflected power to the excitation
source at our CubeSat operating frequency of 2450 MHz. The three notches are inclined
from each other by an angle of 120◦ in order to define our targets of very low reflection
coefficient (very high return loss) and input impedance close to 50 Ω at 2450 MHz with
wide −10 dB bandwidth. The proposed notches are characterized by their physical width
of ds and physical length of (LS-La), which are optimized in this approach using QNM.
The CPW-Fed Slot antenna 4 is, henceforth, designed using dimensions given in Table 4.
In addition to that, a parametric study is then introduced in this approach for ds and Ls
ranging from 1 mm and 30 mm to 4 mm and 50 mm, respectively. Reflection coefficient,
VSWR, and an input impedance of CPW-Fed slot antenna 4 are analyzed as functions of ds
and Ls and are depicted in Figures 14–16, respectively.
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Figure 16. Input impedance of Slot antenna 4 at 2450 MHz versus ds and Ls (mm).

Through the achieved results, it is proved that the CPW-Fed Slot antenna 4, which is
the optimized configuration of proposed slot antenna designs in this research work, gives a
reflection coefficient well below −20 dB at 2450 MHz for ds and Ls ranging from 2 mm
and 45 mm to 4 mm and 50 mm, respectively. These results are conformed by VSWR close
to one and good impedance matching at around the same operating frequency and for the
same values of ds and Ls. In addition to that, CPW-Fed Slot antenna 4 presents a very low
reflection coefficient of −51.13 dB (very high return loss of 51.13 dB), quasi-ideal VSWR of
1.01, and good impedance matching with an input impedance of about 50 Ω at 2450 MHz
when Ls = 48.5 mm and ds = 2.9 mm. Therefore, the proposed approach of CPW-Fed
Slot antenna 4 solved the RF problem of reflected power in this research work and so all
excitation power is moved to the triangular Slot antenna 4 and then radiated into space.
The proposed CPW-Fed Slot antenna 4, consequently, ensures wide impedance bandwidth
ranging from 2210 MHz to 2900 MHz (−10 dB BW of 800 MHz) with minimal reflection
coefficient of −51.39 dB, VSWR close to one, and good impedance matching at our ISM
operating frequency of 2450 MHz; refer to Figure 17.
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Figure 17. Reflection coefficient, VSWR, and input impedance of Slot antenna 4 versus frequency.



Electronics 2021, 10, 156 12 of 26

Figures 18 and 19 demonstrate that the proposed CPW-Fed Slot antenna 4 presents the
good distribution of E-field that shows radiation of maximum energy using the optimized
triangular radiating antenna, high gain of 6.17 dB, while the radiation pattern is still
bidirectional at 2450 MHz.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 26 
 

 

Figures 18 and 19 demonstrate that the proposed CPW-Fed Slot antenna 4 presents 
the good distribution of E-field that shows radiation of maximum energy using the opti-
mized triangular radiating antenna, high gain of 6.17 dB, while the radiation pattern is 
still bidirectional at 2450 MHz. 

 
Figure 18. Distribution of E-field of Slot antenna 4 at 2450 MHz. 

  
(a) (b) 

Figure 19. 3D gain, E- and H-fields of Slot antenna 4 at 2450 MHz: (a) 3D gain plot at 2450 MHz; (b) E- and H-fields at 2450 
MHz. 

Consequently, this research work introduces, designs, analyses, and optimizes a 
high-gain and low-profile CPW-Fed slot antenna for use on CubeSats at S-band. The final 
design presents very efficient results of return loss, impedance matching, −10 dB band-
width, and gain using QNM, three notches, and a 50 Ω CPW feed line in exciting the pro-
posed slot antenna. However, the radiation pattern is still bidirectional at 2450 MHz, and 
so interferences with the other electronic components inside the CubeSat box are still im-
portant in this antenna design. Resolution of this RF issue presents an opportunity to en-
hance the gain at our CubeSat targeting frequency of 2450 MHz using metallic reflector to 
re-direct the back-lobe radiations outside the CubeSat chassis. 

  

9.00

13.00

17.00

21.00

90

60

30
0

-30

-60

-90

-120

-150
-180

150

120

'.

Curve Info

E-plan
H-plan

Figure 18. Distribution of E-field of Slot antenna 4 at 2450 MHz.

Consequently, this research work introduces, designs, analyses, and optimizes a high-
gain and low-profile CPW-Fed slot antenna for use on CubeSats at S-band. The final design
presents very efficient results of return loss, impedance matching, −10 dB bandwidth,
and gain using QNM, three notches, and a 50 Ω CPW feed line in exciting the proposed
slot antenna. However, the radiation pattern is still bidirectional at 2450 MHz, and so inter-
ferences with the other electronic components inside the CubeSat box are still important in
this antenna design. Resolution of this RF issue presents an opportunity to enhance the
gain at our CubeSat targeting frequency of 2450 MHz using metallic reflector to re-direct
the back-lobe radiations outside the CubeSat chassis.
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3. Full Satellite: CPW-Fed Slot Antenna 4 + 3U CubeSat

In this section, the RF issue of back lobe radiation introduced by the proposed CPW-
Fed slot antenna is solved using a small metallic part of the CubeSat’s top face below the
antenna backside to re-radiate the back-lobe radiations outside the CubeSat box and then
improve the peak gain at 2450 MHz; refer to Figure 20. Therefore, this approach studies the
effects of the CubeSat body on antenna performances along X-, Y-, and Z-axis. It defines
the optimal position that can permit the proposed antenna design to present unidirectional
radiation with better than 8 dBi at 2450 MHz.
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Figure 20. 3D HFSS model of the proposed full system (3U CubeSat + Slot antenna 4).

The highest gain at 2450 MHz is achieved by shifting an air gap distance of Ha mm
between the CubeSat’s chassis and the antenna dielectric. This air gap distance, which is
the position of the proposed antenna along the Z-axis, is optimized using QNM and shows
the effects of antenna displacement along the Z-axis on the full satellite performances,
which are also studied along the X-axis and Y-axis in this research work. Henceforth,
our full satellite’s antenna performances are calculated and analyzed in this study as
functions of displacement of proposed CPW-Fed slot antenna along X-axis, Y-axis, and Z-
axis. Figure 21 illustrates our proposed full satellite’s reflection coefficients as functions of
air gap distance Ha, positions along X-axis, and Y-axis, respectively.

We observe that the proposed CPW-Fed slot antenna mounted on the CubeSat chassis
can achieve reflection coefficients below −10 dB at 2450 MHz along X-axis for x = −3 cm,
4 cm, and for positions ranging from −7.92 cm and 4.8cm to −7.06 cm and 5.94 cm,
respectively. The lowest is given at −7.5 cm with a small reflection coefficient of −22.36 dB.
Along the Y-axis, our proposed full satellite presents reflections well below −10 dB for Y
ranging from 0.5 cm to 5 cm with a lowest of −22.36 dB at y = 5 cm from the CubeSat tope
face center. On the other hand, air gap distance, Ha, between the CubeSat tope face and
backside of the proposed CPW-Fed slot antenna achieves a high return loss of 22.36 dB
(reflection coefficient of −22.36 dB) at Ha = 16.8 mm and reflection coefficients well below
−10 dB for Ha ranging from 15.62 mm to 15.96 mm. In addition to that, Figure 22 shows
that the real part of the proposed antenna’s input impedance behaves similarly with good
impedance matching defined by an input impedance close to 53 Ω at x = −7.5 cm, y = 5 cm,
and Ha = 16.8 mm. Figure 23 depicts VSWR as functions of displacement of proposed
CPW-Fed slot antennas along the X-axis, Y-axis, and Z-axis. It proves that the proposed full
satellite achieves the lowest VSWR of 1.16 on the same antenna position, i.e., x = −7.5 cm,
y = 5 cm, and Ha = 16.8 mm.
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The proposed full satellite achieves high return loss of about 23 dB, VSWR close to
one, and good impedance matching at 2450 MHz for x = −7.5 cm, y = 5 cm, and Ha =
16.8 mm, which are optimized in this antenna design using the QNM optimization program
introduced by Appendix C. Therefore, at this antenna position, the aluminum chassis of the
3U CubeSat body forwards back-lobe radiations generated by the proposed CPW-Fed slot
antenna and then leads to maximizing radiating energy in the boresight direction at our
ISM operating frequency of 2450 MHz. Consequently, that will minimize to the maximum
interferences with other subsystems inside the CubeSat body from one side and permit our
CubeSat communication system to cover larger orbits. Figure 24 shows that our CubeSat
mission’s obtained benefit is proved with a high gain of 8.19 dBi, total directivity of 8.4 dBi,
and unidirectional radiation pattern at 2450 MHz. In addition to that, the proposed full
satellite covers a large beamwidth of about 150◦, and so wide coverage is accessible to our
CubeSat mission at an ISM operating frequency. Table 5 summarizes the achieved results
as per antenna position on the CubeSat body.
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Table 5. Performances of proposed full satellite at 2450 MHz along X-, Y-, and Z-axis.

Antenna Performances X-Axis Y-Axis Z-Axis

Log|S11| < −10 dB −7.5 cm; −6 cm; −3 cm;
5.5 cm; 4 cm 0.46 mm to 5 mm 15 mm to 16 mm; 16.5 mm to

17 mm

VSWR < 2 −7.83 cm to −7.12 cm; −6 cm;
−3 cm; 3.37 cm to 6.04 cm 0.77 mm to 5 mm 15.6 mm to 15.96 mm;

16.61 mm to 17 mm

Re(Zin) ~ 50 Ω −7.5 cm; 5.5 cm 2.5 mm to 5 mm 15.7 mm to 15.9 mm; 16.7 mm
to 17 mm

Optimal Solution

X = −7.5 cm:
Log|S11|= −22.36 dB

VSWR = 1.16
Re(Zin) = 53.23 Ω

Gain = 8.2 dBi
Directivity = 8.4 dBi
Unidirectional RP
Beamwidth = 150◦

Efficiency ~ 97%

Y = 5 mm:
Log|S11|= −22.36 dB

VSWR = 1.16
Re(Zin) = 53.23 Ω

Gain = 8.2 dBi
Directivity = 8.4 dBi
Unidirectional RP
Beamwidth = 150◦

Efficiency ~ 97%

Z = 16.8 mm:
Log|S11|= −22.36 dB

VSWR = 1.16
Re(Zin) = 53.23 Ω

Gain = 8.2 dBi
Directivity = 8.4 dBi
Unidirectional RP
Beamwidth = 150◦

Efficiency ~ 97%

Conclusions Low reflection coefficient; high gain; good impedance matching; unidirectional radiations; wide
coverage; very high efficiency

It is important to mention that an antenna for CubeSats can have different orientations
on the CubeSat’s body. In addition to that, one antenna is enough for CubeSat–Earth
communication links because the antenna orientation can be ensured using magnetic
torqueing from ground stations [19]. At the same time, one antenna per face is required for
inter-CubeSat communications.

4. Result Synthesis and Discussion

Table 6 below summarizes antenna performances achieved by the proposed study
in this research work where our CubeSat mission frequency was centered in 2450 MHz,
and the S-matrix was normalized to 50 Ω. The proposed CPW-Fed slot antenna’s reflection
coefficient with and without CubeSat chassis is well below −22 dB at our operating
frequency of 2450 MHz, and the antenna operates on an ultra-wide band ranging from
2210 to 2900 MHz (−10 dB BW = 690 MHz). Input impedance of CPW-Fed slot antenna
alone is 49.97+j0.27 Ω at 2450 MHz. Therefore, the real part is almost 50 Ω with negligible
imaginary part (very small value), which means good impedance matching is achieved, and
then the maximum power is radiated into space. The slot antenna alone (design without
CubeSat chassis) presents a bidirectional radiation pattern despite its high gain of 6.17 dB
at 2450 MHz. This radiation mechanism is undesirable for CubeSat applications because it
causes interferences with the electronic instruments inside the CubeSat box.

Moreover, the CubeSat body is used as a reflector to suppress back-lobe radiation and
improve the antenna peak gain at our working frequency of 2450 MHz. Using a small
part of the CubeSat’s top face as a reflector is applied to achieve a unidirectional radiation
pattern by redirecting the back-lobe radiation and consequently improving the peak gain
of 8.17 at 2450 MHz. Consequently, the proposed antenna approach demonstrates that
slot antennas can achieve higher gains at S-Band with high return loss (small reflection
coefficient), wide impedance bandwidth (−10 dB BW), and good impedance matching
around our CubeSat targeting frequency of 2450 MHz. These results and remarks are
concluded in Table 6 below.
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Table 6. Brief summary of antenna performances of all proposed antenna designs.

Proprieties Antenna 1 Antenna 2 Antenna 3 Antenna 4 Full Satellite

Full area 90 mm ×
90 mm

90 mm ×
90 mm 90 mm × 90 mm 90 mm ×

90 mm
90 mm ×

90 mm

Feeding System 50 Ω strip line 50 Ω strip line 50 Ω CPW Fed line 50 Ω CPW Fed
line

50 Ω CPW Fed
line

Operating
Frequency 2450 MHz 2450 MHz 2450 MHz 2580 MHz 2450 MHz 2450 MHz

Log|S11| −9.87 Db −12.16 dB −18.39 dB −40.68 dB −51.39 dB −22.36 dB

VSWR 1.95 1.65 1.27 1.02 1.01 1.16

Re(Zin) 92.23 Ω ~61 Ω ~50 Ω ~50 Ω ~53 Ω

Gain - - ~6.2 dBi ~6.2 dBi ~6.2 dBi 8.20 dBi

RP Bidirectional Bidirectional Bidirectional Bidirectional Bidirectional Unidirectional

Reflected
power

√ √ √
× × ×

Back lobes
√ √ √ √ √

×

Advantages

Lightweight,
low-cost, size
suitable for all

CubeSat
configurations

Lightweight,
low-cost, size
suitable for all

CubeSat
configurations

Lightweight, low-cost, size suitable
for all CubeSat configurations;

acceptable gain

Lightweight,
low-cost, size
suitable for all

CubeSat
configurations;
acceptable gain;

good
impedance
matching

Lightweight;
low-cost; size
suitable for all

CubeSat
configurations;
high gain; good

impedance
matching;

unidirectional
radiations

Drawbacks
Power losses

and
interferences

Power losses
and

interferences
Power losses and interferences Interferences ×

Suggestions
Notches;

CPW-Feed line;
Cavity reflector

Notches;
CPW-Feed line;
Cavity reflector

Notches; Cavity reflector Cavity reflector
√

It is also important to mention that the first two antenna parameters that verify the
effectiveness of any CubeSat antenna are its full size and the peak gain at the target working
frequency. Therefore, the antenna design that achieves the biggest gain can be preferred
for use on CubeSats if its physical size is suitable with the desired CubeSat structure and
the other antenna performances are acceptable for space missions at LEO. Henceforth,
effectiveness of our equilateral triangular CPW-Fed slot antenna for 3U CubeSat missions
is proved by its small size which is suitable for all CubeSat configurations and use of a
simple CPW-Fed line that leads to low power consumption in exciting the antenna.

5. Comparative Study: Brief Comparison with Literature Works

A qualitative comparison between the proposed equilateral CPW-fed slot antenna and
six S-band antenna designs with metasurface [20–31] is now provided; refer to
Figure 25. We analyze, compare, and evaluate the suitability of all these antenna designs for
3U CubeSats using the following criteria: small physical size at S-band, wide impedance
and Axial Ratio bandwidth, low reflection coefficient (<−10 dB), orientability, and high
gain at S-band. We first present each antenna design approach and then examine their capa-
bilities for uploading and downloading data at S-band using CubeSats. Lastly, we compare
all antenna designs’ suitability, including our equilateral triangular CPW-fed slot antenna
for the 3U (10 cm × 10 cm × 30 cm) CubeSat configuration.
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5.1. Comparison with S-Band Metasurfaced/Metamaterial Antennas

J. L. S. Paiva et al. proposed, in [20], the use of metasurface to enhance the peak
gain at an S-band working frequency of 2460 MHz and convert linear generated by an
S-band microstrip antenna into circular polarization. The source antenna, which is a
microstrip antenna, is printed on the dielectric Rogers Corporation RO4350, and an array
of 4 × 4-unit cells, is used to configure the metasurface. This antenna design’s key feature
is a 45◦ chamfered square ring shape in the upper left and lower right corners of each
unit cell for converting the linear polarization (LP) generated by the source antenna to
circular polarization (CP) at S-band. The metasurfaced antenna, then, generates a greater
concentration of fields in the inter-unit cells spaces. It emits electric fields intensely in its
horizontal directions in phases 0◦ and 180◦. In phases 90◦ and 270◦, the antenna emits
principally electric fields in the metasurface’s vertical directions. These horizontal and
vertical distributions of fields through the metasurface unit cells take turn to generate CP
signal by emitting horizontal and vertical signals.

This metasurfaced antenna generates CP with an AR close to 0 dB, ARBW of 113 MHz,
and 5.69 dBi at the target working frequency of 2460 MHz. Because these results are
suitable for CubeSat missions at orbits close to the earth surface, this metasurfaced antenna
design can be used for CubeSats at very low orbits and inter-CubeSat communications
despite its high volume on the CubeSat body. Whereas, iplinking and downlinking of data
at deep orbits using CubeSats require higher values of gains at 2460 MHz.

In [21], S. Chaimool et al. used PIN diodes for reconfiguring metasurface for dual oper-
ations when the diode is forward-prejudiced or reverse-prejudiced. Hence, the metasurface
presents the characteristics of epsilon-negative materials and then reflects all incident
radiation with an appropriate polarization when the PIN diode is forward-prejudiced at
the frequency of interest. Whereas, it presents characteristics of mu-near-zero materials
and then directs radiation when the diode is reverse-prejudiced. Because of these two
controllable metasurface behaviors, a controlled feeding dipole is proposed for the use of
beam switching in opposite regions at the same frequency of interest in order to control
radiation patterns of the proposed metasurfaced antenna using bias of PIN diodes and so
ensure the maximum gain. Therefore, the electromagnetic coupling between unit cells and
feeding dipole shifts the dipole’s lower frequencies when PIN diodes of the metasurface
are forward-prejudiced. So, a reverse favor voltage is applied to the dipole PIN diodes
to ensure higher frequencies. However, the dipole shifts higher frequencies when PIN
diodes of the metasurface are reverse-prejudiced. A forward prejudice voltage is applied
to the dipole PIN diodes to ensure the target operating frequency of 2450 MHz. Hence,
the metasurface works as a reflector when diodes of both metasurface and the feeding
dipole are forward- and reverse-prejudiced, respectively; and acts as a director when the
metasurface and dipole diodes are reverse- and forward-prejudiced, respectively.

This metasurfaced antenna achieves good impedance matching for both diode states,
gives maximum gain of about 6 dBi at 2450 MHz, while its high volume, cost, and electric
controllability using PIN diodes limit its effectiveness for use on CubeSats.

In [22], A. H. Naqvi et al. proposed an S-band microfluidic slotted antenna with
metasurface. The source antenna is an LP simple slotted patch antenna that generates a
metasurface of 4 × 4 microfluidic unit cells. In this antenna design, LP signal is con-
verted to left-hand circular polarization (LHCP) and right-hand circular polarization
(RHCP) signal through the metasurface, which is bonded with microfluidic channel layers.
The proposed microfluidic antenna achieves a 3 dB axial ratio bandwidth from 2.47 GHz to
2.55 GHz for the LHCP and from 2.49 GHz to 2.55 GHz for the RHCP, with peak gains of
5.86 dBi and 5.84 dBi at 2510 MHz in boresight for LHCP and RHCP, respectively. Therefore,
this microfluidic polarization-switchable antenna presents good ARBW and acceptable
gains for use at CubeSat orbits close to the Earth’s surface. However, high volume and
the use of three dielectric materials limit this antenna configuration’s effectiveness for
transmitting data between CubeSats at deep orbits and Earth stations.
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Figure 25. Candidate antennas with metasurface for CubeSats [20–24]: (a) S-band microstrip patch antenna with meta-
surface [20]; (b) Controlled reconfigurable S-band antenna with metasurface [21]; (c) Microfluidic slotted patch antenna
with metasurface [22]; (d) CP Reconfigurable monopole antenna with metasurface [23]; (e) S-band slot antenna with
metasurface [24].

In [23], Y.F. Cao proposed an S-band monopole antenna with metasurface for use at
S-band. The proposed antenna consists of two monopoles, a switchable feeding network,
and a metasurface. The dual-cap mushroom-like unit cells are proposed for improving the
−10 dB bandwidth with small size. The two monopoles are used for achieving −10 dB
bandwidth and good impedance matching at 1580 MHz. The metasurface enhances the
peak gain from 0.4 to 6.6 dBi, and the impedance bandwidth from 330 MHz to 460 MHz,
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respectively. Therefore, this reconfigurable metasurfaced antenna presents acceptable
results for use on CubeSats at orbits close to the Earth’s surface. Its high volume, complexity
of structure, controllability, and medium gain limit a CubeSat mission’s success using this
antenna in the space environment.

In [24], M. El Bakkali et al. proposed an S-band slot antenna with metasurface for
use on CubeSats. This antenna design consists of a miniaturized slot antenna and an MSS
of a 7 × 7 matrix of unit cells placed atop the first one. The used metasurface enhances
the −10 dB bandwidth and total gain from 93.72 MHz to 261.47 MHz, and 3.07 dBi to
5.4 dBi, respectively. This Metasurface Superstrate Structure (MSS) antenna is low-profile
and occupies a physical size suitable for all CubeSat configurations, while the use of two
dielectric materials increases its cost and weight on the CubeSat body. In addition to that,
the medium gain achieved by this antenna design cannot ensure deep orbits.

Table 7 summarizes the design properties and radiation characteristics of this qualita-
tive comparison. It shows that our equilateral triangular CPW-Fed slot antenna achieves
the highest gain at S-band and presents the lowest volume and cost.

Table 7. A brief comparison with literature works on S-band metasurface/metamaterial antennas.

Reference Frequency Dielectric
mat.

Feeding
Syst. Volume/Size Gain CubeSat

[20] 2460 MHz Rogers
RO4350

Microstrip
line

96.5 × 96.5
× 20 mm3 5.69 dBi 3U

[21] 2450 MHz FR-4 Controlled
dipole

80 × 80 ×
11 mm3 ~6.0 dBi 6U

[22] 2510 MHz
FR4,

Rogers
3003

microfluid
injection

120 × 120
× 21 mm3 5.86 dBi 6U

[23] 1580 MHz Rogers
3003

Phase
shifters

71 × 92 ×
20.4 mm3 6.6 dBi 3U

[24] 2450 MHz FR-4 50 Ω CPW 54 × 62 ×
10.4 mm3 5.4 dBi 3U

Our work 2450 MHz FR-4 50 Ω CPW 90 × 90 ×
1.6 mm3 8.2 dBi 3U

5.2. Comparison with S-Band Antenna Designs of Six International Collaborative CubeSat
Missions

In this subsection, the proposed antenna design is compared with planar antenna
designs of six international collaborative CubeSat missions at UHF and S-bands. Table 8
shows that our CubeSat antenna gives the highest gain, low reflected power with suitability
for all CubeSat configurations. Moreover, our antenna is low-cost, lightweight, and can be
easily integrated with the other CubeSat Subsystems.

Through the previous analysis and data given in Tables 7 and 8, our equilateral
triangular antenna presented in this paper is high-gain, lightweight, low-cost, and oc-
cupies physical size suitable for all CubeSat configurations, including the 3U structure.
This CPW-SA, therefore, is the best among the cited designs in Table 6 and permits the
CubeSat constructor to implement more solar panels on the CubeSat box for producing the
maximum power possible.
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Table 8. Brief comparison with UHF- and S-bands planar antenna designs proposed by CubeSat missions.

Reference [25] [26,27] [28] [29] [30] [31] Our Work

Country China
Japan South Africa Europe USA South Korea Malaysia Morocco

Frequency 2180 MHz 2420 MHz 2150 MHz 2250 MHz 900 MHz;
2200 MHz 450 MHz 2450 MHz

Dielectric
mat.

(εr = 2.17;
tanδ = 0.005;
h = 1.6 mm

Air (metal
antenna)

Rogers
TMM4;
Rogers
RO4003

- Paper
substrate

Solar
panel/Air FR-4

Feeding Syst. Microstrip
line Coaxial Feed Coaxial Feed Coaxial Feed Microstrip

line Coaxial Feed 50-Ω CPW

Volume/Size 100 × 95 ×
1.6 mm3

~100 × 100
mm2

66 × 66 ×
25.5 mm3

82 × 82 ×
12 mm3

50 × 50 ×
50 mm3

80 × 90 ×
0.5 mm3

90 × 90 ×
1.6 mm3

Gain 4.66 dBic ~ 7.0 dBi ~7.0 dBi ~7.0 dBi 1.11 dBi; 2.32
dBi 0.6 dBi 8.2 dBi

Log|S11| <−50 dB <−15 dB ~−7.0 dB - ~−16 dB;
~−18 dB ~−16 dB −22.36 dB

Solar
Integration

Facility
Yes Yes No No No Yes Yes

Cost Medium High High Medium Low High Low

CubeSat 3U 3U 3U 3U 3U 1U; 2U; 3U 1U; 2U; 3U

6. Conclusions

A high-gain equilateral triangular slot antenna at an ISM operating frequency of
2450 MHz is presented in this paper. This antenna design targets CubeSat communications
at S-band and, specifically, the configuration of 3U. It was found that a high gain of 8.20 dBi
at 2450 MHz is obtained using a metallic part of the CubeSat chassis below the slot antenna
as a reflector. Moreover, the radiation pattern becomes unidirectional at the same operating
frequency. The achieved results have shown that the constructed antenna achieves a
return loss of about 23 dB, input impedance close to 50 Ω at 2450 MHz, and ultra-wide
−10 dB BW of 1240 MHz (2230–3470 MHz). It is also important to note here that the
constructed antenna design has a lightweight and compact size, which makes it suitable
for any CubeSat structure.
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Appendix A. Moroccan CubeSat One (MaSat 1) of Sidi Mohamed Ben Abdellah
University, City of Fez, Morocco

Sidi Mohamed Ben Abdellah University has finished the development of its first
nationally made CubeSat (MaSat 1). MaSat 1 weighs just 960 g and was manufactured
by a group of students from the same university. University of Oujda and Al Akhawayn
University in Ifrane also contributed to the project of MaSat 1 which was funded by the
Ministry of Higher Education.

The first Moroccan-made satellite is a simple cube with a volume of 10 Cubic cen-
timeters and mass of 960 g. The cube-shaped satellite will have five faces covered with
solar panels. The sixth face will carry the CubeSat antenna allowing transmission with two
ground stations in Fez and Ifrane. MaSat 1 has a power of 1 watt, and a lifetime between
6 months and 2 years. It will also include a camera and will be at an altitude of 650 km.
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Morocco [6].

Appendix B. List of Parameters Used in Designing the Proposed Antennas

Table A1. Antenna parameters used in designing the proposed antennas.

Parameter Behavior

L1 Long distance between the antenna corner and the excitation
source

W0 Antenna physical width/antenna physical length

Lb Diagonal distance between the antenna center and the
excitation source.

Lc Length of the CPW-fed line
Wc Width of the CPW-fed line
Lf Length of the transition line
Wf Width of the transition line

Ha Air gap distance between the antenna dielectric and the
CubeSat chassis

D, d0, d1, Distances between the triangular edge and the ground plane
Rg, Rg0, Rg1 Radius of the circular slot-ground plane
dg, dg0, dg1 Distance between the CPW-Fed line and the ground plane

x Antenna position along X-axis
y Antenna position along Y-axis
x Antenna position along Z-axis
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Appendix C. QNM Program

In this research work, QNM is used to optimize antenna position on the CubeSat
chassis for operation at 2450 MHz. In this optimization program, the proposed CPW-fed
slot antenna is placed first on center of the CubeSat top face and then displacement along
X-, Y-, and Z-axis is studied. The QNM program starts, therefore, with x = y = 0 mm
and analyzes the full satellite performances at 2450 MHz. If the calculated RL and peak
gain are greater than 20 dB and 8.0 dBi at 2450 MHz with an antenna placement suitable
for our 3U CubeSat mission, the criteria are satisfied, and the optimization is terminated.
Else, the results are not satisfied and then the optimization goes to the next triplet (x; y; z)
on the CubeSat tope face. The proposed QNM program is defined on 80 iterations per axis.
This means that if the 80 iterations cannot satisfy the program criteria, the optimization
problem is unsolved at 2450 MHz using QNM.Electronics 2021, 10, x FOR PEER REVIEW 25 of 26 
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In the present study, the proposed QNM scenario gives good solution of antenna
placement at 2450 MHz when for x = −7.5 cm, y = 5 cm, and Ha = 16.8 mm. The antenna
satisfied all proposed criteria, is high-gain, and occupies physical size suitable for all
CubeSat configurations including 3U structure.
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