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Abstract: Satisfying the mobile traffic demand in next generation cellular networks increases the cost
of energy supply. Renewable energy sources are a promising solution to power base stations in a
self-sufficient and cost-effective manner. This paper presents an optimal method for designing a
photovoltaic (PV)-battery system to supply base stations in cellular networks. A systematic approach
is proposed for determining the power rating of the photovoltaic generator and battery capacity
from a technical and economical point of view in order to minimize investment cost as well as
operational expenditure, while the power autonomy of the PV-battery system is maximized in
a multi-objective optimization framework. The proposed method is applied to optimally size a
photovoltaic-battery system for three cases with different availability of solar power to investigate
the effect of environmental conditions. Problem-solving using the proposed approach leads to a set of
solutions at different costs versus different levels of power autonomy. According to the importance of
each criterion and the preference of decision-makers, one of the achieved solutions can be selected for
the implementation of the photovoltaic-battery system to supply base stations in cellular networks.

Keywords: photovoltaic system; battery storage device; base stations; cellular networks

1. Introduction

In recent years, the energy consumption of information and communication technol-
ogy (ICT) has become an economic issue for operators and a major challenge for sustainable
development [1]. The energy consumption of the ICT industry accounts for approximately
3% of global annual energy consumption and is growing at an annual rate of 15–20% [1].
The carbon footprint from ICT is furthermore predicted to increase 7.3% annually and
exceed 14% of the global footprint by 2040. The need to bring next generation cellu-
lar telecommunication network services to areas that do not have access to a reliable
power grid results in a variety of objective challenges for telecom providers, government
agencies, and researchers. Solar-powered cellular telecommunication networks can be
particularly significant for regions that have poor grid connectivity while being rich in
solar resources [2]. Using solar energy for supplying cellular telecommunication networks
not only reduces the carbon emission, but also lowers operational cost as compared to
powering from the grid or conventional sources of energy [3].

Deployment of renewable sources, such as solar photovoltaic (PV) panels, is currently
increasing in order to meet the needs of growing energy demand and to mitigate the
impact of fossil pollutants on the environment and guarantee socio-economic benefits
for sustainable development [4]. Despite their advantages, the intermittent nature of
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most of the renewable sources is still a challenge that can be resolved by hybridization.
A renewable-hybrid energy system (RHES) combines renewable energy sources (RESs),
energy storage (ES) devices, such as batteries, and the electrical grid to supply the base
stations [5].

Research has been done concerning the possibility of powering a base station in a
telecommunication network with solar PV panels and battery for ES such that the base
station could operate even when the PV panel was not producing energy. In [5], the authors
studied cellular access networks, which solely relied on renewable energy, while in [6], an
exchange link between the PV panels and the main grid exists. Authors in [7] suggested
a traffic-aware renewable energy assisted base station cooperation. The focus of some
papers, [8–11], was on the overview of sustainable and green mobile network deployment,
while some others, [12,13], focused on modeling the behavior of renewable-based base
stations in order to dimension the system components correctly by understanding the
system characteristics. In [12–14], a study was presented about the Markovian models to
compute the possibility of base station interruption in a solar-powered cellular network.
In [12], two Markov chain models based on solar irradiation data, respectively in two and
three successive days were considered. The objective of [12] was to expose the influence of
correlation in weather conditions. Furthermore, only the influence of different battery sizes
on the operation of the system was studied. Authors in [13] considered a similar model
as in [12], while they investigated the impact of three different types of quantization—
weather characteristics, duration of time steps, and size of the battery to analyze the
performance of renewable energy-based power supply for cellular networks. In [14],
a discrete-time Markov procedure for modeling the battery state of charge (SOC) was
proposed which could be applied for assessing the impact of system parameters on the
base station interruption probability.

Optimal energy management of green next generation telecommunication networks
is another aspect which was investigated in [2,15–30]. The “energy consumption-based
and user joint allocation” approach together with “the energy cost-based and user joint
allocation” method were presented in [2]. After converting the two multi-objective op-
timization problems into two convex optimization problems, the convex optimization
toolbox in MATLAB (MathWorks corporate, Natick, MA, USA) was used to solve the
optimal allocation strategies. The focus in [15] was on decreasing the “on-grid energy
consumption in Heterogeneous telecommunication Networks (HetNets)” supplied with
hybrid power sources while analyzing the short- and long-term energy efficiency problem.
In [16], a user association approach for improving the behavior of hybrid energy-based
HetNets was proposed. Authors in [17] considered an online energy management frame-
work for mobile networks, including both on- and off-grid base stations. Reference [18]
investigated four techniques, including “the base station sleeping strategy,” “the optimized
energy procurement from the smart grid,” “the base station energy sharing”, and “the
green networking collaboration between competitive mobile operators”.

In order to provide environmental and economic benefits for wireless operators, these
techniques could be exploited separately or together. Optimization of PV panel azimuth
angle was considered in [19,20]. The purpose was to attain an acceptable match between
the daily energy generation and consumption profiles. In [19], the considered system
was off-grid and consisted of one PV cell while in [20], several PV cells were used for
powering one on-grid base station and the objective was to optimize the azimuth angles of
N PV cells to draw less energy per day from the main grid. Reference [21] presented an
analytical method to find a suitable combination of PV panels and batteries to power base
stations to reduce the required capital expenditure (CAPEX). In [22], the feasibility of solar
PV power generation for cellular networks from technical, economic, and environmental
aspects was investigated from a mobile network operator point of view. The power rating
of the PV system was determined based on total cost including CAPEX and operational
expenditure (OPEX). The effects of quantization in the three parameters of the model
including time slot in horizon of study, weather, and ES capacity in dimensioning of the
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power system of PV-powered off-grid base stations were examined in [23]. The target of [24]
was to minimize the installation costs for an unmanned aerial vehicle (UAV)-based cellular
network, considering the constraints of UAV’s coverage, solar panel energy consumption,
levels of the batteries, and the deployment of the optical ring for connecting the installed
sites. In [25], in order to prepare a reliable emission-free and economic power supply,
optimal sizing of a hybrid renewable energy system based on a discrete multi-objective
grey wolf algorithm was applied in off-grid rural base stations. In [26], a low complexity
approach based on a convex optimization framework was proposed for dimensioning PV-
battery systems in a stand-alone base station. The techno-economic feasibility of renewable
energy-based off-grid cellular base stations was studied in [27]. The stochastic nature of
renewable energy sources in addition to the load traffic for distant regions in Bangladesh
was also considered. Authors in [28] investigated the layout of green mobile networks
(using renewable energies) by setting up an intelligent energy management that facilitates
the off-grid operation of base stations. In [29], the validity of some power supply solutions
such as “standalone PV”, “hybrid PV-wind turbine,” “hybrid PV-diesel generator”, and
“hybrid PV-electric grid” was examined to supply the long-term evolution (LTE) base
stations associated with technical, economic, and environmental prospects in Bangladesh.
In [30], an energy management strategy was suggested in order to improve the energy
efficiency of, and to reduce fuel consumption in, off-grid cellular networks supplied with a
hybrid PV-diesel generator system.

Regarding the scope of these studies, it is observed that almost all of them focused
on the PV-battery systems, while none of them was dedicated to an accurate model for
available PV output power generation estimation. Moreover, in the PV-battery system
case, the SOC limits as well as battery operation cost were not considered. Current models
of power management in these systems do not take the ambient temperature effect, battery
degradation, or feed-in tariff into account. Therefore, this paper will start by defining
realistic scenarios used in combination with models of power generation and storage
devices to evaluate the power generation capability and ES capacity of PV-battery powered
base stations. Subsequently, an optimization framework will be developed and formulated
for determining the power rating of PV panels and battery capacity from a technical and
economical point of view in order to minimize CAPEX as well as OPEX while the power
autonomy of the PV-battery system is maximized.

2. System Structure

Figure 1 illustrates the energy flow within different elements of a solar-powered next
generation telecommunication network that consists of a macro base station (MBS) and two
small base stations (SBS). The red arrows represent the energy flows, whereas the black-
dashed arrows represent the communication links. Each base station is equipped with a PV-
battery system. The energy management system (EMS) unit as a central controller collects
information regarding power consumption, generation, and ES state, and sends commands
to the dispatchable units [3]. The determination of the power rating of the PV system
and battery capacity in PV-battery equipped base stations can be tackled by establishing
an optimization framework which considers the amount of available power produced by
installed PV panels and the profile of power consumed by the base stations (BSs).
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Figure 1. The configuration of next generation cellular telecommunication networks.

2.1. PV Generation Modeling

The aim of this section is to select a mathematical model for PV power generation.
Several models to estimate the output power of a PV system have been proposed in the
literature [19]. The solar power generation in different geographical locations depends on
a variety of parameters, including solar irradiance and installation angles of PV panels,
as well as cell and ambient temperatures [31]. The studied models of solar-powered base
stations were investigated while considering some of the above-mentioned parameters.
The considered model in this paper is based on the one proposed in [19], while the model
is enhanced to include cell temperature effects.

From the photovoltaic geographical information system (PVGIS) database [32], the
direct normal irradiance DNIt, the diffuse horizontal irradiance DHIt, and the global
horizontal irradiance GHIt in three different case studies of Malaga, Aalborg, and Boujdour
are obtained for each hour.

When installing a PV system, the location optimal tilt and azimuth angles, γ and θ,
can guarantee the maximum achievable solar power. A detailed research on installation
angles of a PV panel was presented in [19].

The generated PV power can be modeled as follows:

Pt
PV =

It(θ, γ)× PPeak
PV

1000
(1)

where PPeak
PV is the PV system rated power. It(θ, γ) is the received solar irradiance by the

PV system which can be calculated as follows:

It(θ, γ) = It
b(θ, γ) + It

d(θ, γ) + It
g(γ) (2)

where It
b(θ, γ), It

d(θ, γ), It
g(γ) are the direct-beam, sky-diffuse, and ground-reflected com-

ponents, respectively.
It
b(θ, γ) (the direct-beam component) is defined as follows:

It
b(θ, γ) = DNIt ×Max(0, cos(AOIt

θ)) (3)
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where AOIt
θ is the angle of incidence at t and can be calculated in [19] as the following:

cos(AOIt
θ) = + sin(δd) sin(lat) cos(γ)

+ cos(δd) cos(lat) cos(γ) cos(ωt)
+ cos(δd) sin(γ) sin(ωt) sin(θ)
− sin(δd) cos(lat) sin(γ) cos(θ)
+ cos(δd) sin(lat) sin(γ) cos(ωt) cos(θ)

= at + bt sin(θ) + ct cos(θ),

(4)

with
at = + sin(δd) sin(lat) cos(γ)

+ cos(δd) cos(lat) cos(γ) cos(ωt)

bt = + cos(δd) sin(γ) sin(ωt)

ct = − sin(δd) cos(lat) sin(γ)
+ cos(δd) sin(lat) sin(γ) cos(ωt)

where the latitude of the installation site is demonstrated by lat, δd is the declination angle,
and ωt is the hour angle at t [19], which are respectively calculated as follows:

δd = 23.45◦ × sin(
360
365

(d + 284)) and ωt = 15(AST − 12hour).

where d is the day of the year and AST is the apparent (true) solar time [32], which is
calculated as follows:

AST = LST + EoT + (4
min
deg

)[(LSMT − LOD)] (5)

where LST is the local standard time, LOD is the longitude, LSMT is the local standard
meridian time, and EoT is the equation of time [33], which are given, respectively, as follows:

LSMT = 15
◦ × Time zone in GMT (6)

EoT = 9.87 sin(2B)− 7.53 cos(B)− 1.5 sin(B) (7)

where B is a factor calculated as follows:

B =
360

◦

365
(d− 81) (8)

It
d(θ, γ) (the sky-diffuse component) is defined as the following:

It
d(θ, γ) = DHIt

{
At

max(0,cos(AOIt
θ))

cos(ζt)
+

(1− At)
1+cos(γ)

2 (1 +
√

DNIt · cos(ζt)
GHIt sin3( γ

2 ))

} (9)

where At is the anisotropy index and ζt is the solar zenith angle, which are calculated
as follows:

cos(ζt) = sin(lat) sin(δd) + cos(lat) cos(δd) cos(ωt)At =
DNIt

Ed
(10)

where Ed, the extraterrestrial radiation, is calculated as follows:

Ed = Econ·(
r
rd
)

2
= Econ·(1 + 0.033 cos(

360·d
365

)) (11)
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It
g(γ) (the ground-reflected component) is defined as follows:

It
g(γ) = GHIt × α× 1− cos(γ)

2
(12)

where α ∈ [0, 1] is the albedo of the ground [19].
In order to make the model more realistic, the panel temperature should be added to

the model. The cell temperature is dependent on the ambient temperature and the total
irradiation on the PV system is based on the nominal operating cell temperature (NOCT),
which is considered 45◦ [34].

Tt
C = Tt

a +

[
NOCT − 20

800

]
× It(θ, γ) (13)

where Tt
a is the ambient temperature. Accordingly, the generated PV power of (1) is

modified as:

Pt
PV =

It(θ, γ)× PPeak
PV × (1 + dp(Tt

C − 25))
1000

(14)

where dp (%/◦C) is the temperature coefficient which is considered −0.4 in this paper.
In order to validate the built model, the estimated output power based on the pre-

sented model using the irradiation and temperature data from the Aalborg University
(AAU) site as well as the PVGIS [32] are compared with the measured output power of the
installed PV system in the AAU for 23 April 2009 and the results are shown in Figure 2.
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Figure 2. Comparison of the measured output power (Aalborg University (AAU) measured) of
the installed photovoltaic (PV) system in the AAU with the estimated output power based on the
presented model using the irradiation and temperature data from the AAU site (Our model-AAU) as
well as the photovoltaic geographical information system (PVGIS) (Our model-PVGIS).

2.2. Energy Storage Modeling

In order to deal with the intermittent nature of RESs systems that combine these
sources and ES devices, some suggestions were made in the literature. A review of battery
energy storage modeling was presented in [35].

In this paper, it is assumed that the solar energy is first used to power the base station,
and the excess energy is stored in the battery (if not fully charged). During the periods
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when no solar energy is being generated, e.g., during the night or in cloudy weather, or if
the PV production is not sufficient to satisfy the base station demand, the stored energy
can be used. In case the battery fully discharges, the required power can be drawn from
the grid, if applicable [3] (Figure 1).

For considering the limitation on the battery charge and discharge rates along with
limits on the state of charge (SOC), the following equation and constraints should be
satisfied [36]:

SOCBatt,min ≤ SOCt
Batt ≤ SOCBatt,Max (15)

SOCt
Batt = SOCt−1

Batt +
ηChPt

Ch·∆t
Bcap

+
1

ηDch·Bcap
Pt

Dch·∆t (16)

PCh,min ≤ Pt
Ch ≤ PCh,Max (17)

PDch,min ≤ Pt
Dch ≤ PDch,Max (18)

where SOCBatt,min and SOCBatt,Max are, respectively, the minimum and maximum SOC of
the battery, SOCt

Batt is the battery SOC at time t, Pt
Ch and Pt

Dch are the battery charge and
discharge rates at time t, Bcap is the battery capacity, ηCh and ηDch are, respectively, the
battery charge and discharge efficiencies, and ∆t is the time slot. PCh,min and PDch,min are
the battery minimum charge and discharge rates, and PCh,Max and PDch,Max are the battery
maximum charge and discharge rates, respectively.

3. Problem Formulation

The main advantages of energy harvesting from PV-battery systems in telecommuni-
cation networks are: (i) selling the excess power of the PV-battery system to the main grid,
and (ii) increasing the power autonomy factor, which leads to increasing the reliability of
the system due to the reduction of dependency on the main grid [37].

This section is devoted to the presentation of the considered objective functions
including the minimization of the total cost and the maximization of the power autonomy
factor of the PV-battery system.

3.1. Minimization of the Total Cost

The first objective (OF1) is to minimize the total financial costs of the PV-battery power
system, including CAPEX and OPEX, from the mobile network operator (MNO) point
of view:

OF1 = min(TotalCost) (19)

TotalCost = CAPEX + OPEX =

Bcap·CostBatt + Ppeak
PV ·CostPV + APV ·CostRent

+
H
∑

t=1
(OPEXt

Batt + Pt
grid·Prt)

(20)

where CostBatt is the cost of battery in $ and APV is the installation area of the PV system in
m2. CostPV is the cost of PV panels in $/kW, CostRent is the rental cost of installation area
in $/m2, Pt

grid is the power of the main grid in kW, and Prt is the electricity price in $/kWh.
H is the horizon of study, which equals D×T (number of days of the year multiplied by
the number of hours in a day), and OPEXt

Batt is the battery operational cost, including the
SOC-related (CostSOC) as well as DoD-related (CostDoD) costs [38]:

OPEXt
Batt =

H

∑
t=1

Costt
SOC +

H

∑
t=1

Costt
DoD (21)

Costt
SOC = CostBatt·

LBDS·SOCt
Batt − LBDI

8760·CFMax·Battli f e
(22)
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Costt
DoD =

CostBatt·Bcap + Costlabor

Battli f e·DoDt
Batt·Bcap

·(Pt
Dch) (23)

DoDt
Batt = 1− SOCt

Batt (24)

where LBDS is the linear battery degradation cost-slope parameter, LBDI is the linear
battery degradation cost-intercept, CFMax is capacity fade at end of life, and Costlabor is the
labor cost for battery replacement, the values of which are derived from [38].

3.2. Maximization of the Power Autonomy Factor

Prevention of greenhouse gas emissions is another major goal of PV system imple-
mentation in different applications. Accordingly, if the share of the main grid to supply
the base stations decreases, the amount of carbon footprint will consequently decrease.
Moreover, with the increase of the share of PV-battery systems to supply base stations, the
self-sufficiency and power autonomy of telecommunication networks will be enhanced [37].

In order to maximize the power autonomy factor in telecommunication networks,
the drawn power from the main grid should be minimized. Hence, the second objective
function (OF2) is defined as follows:

OF2 = max

{[
1
H

H

∑
t=1

(
Pt

PV2Load + Pt
Batt2Load

Pt
load

)

]
× 100

}
(25)

where Pt
PV2Load and Pt

Batt2Load are, respectively, the hourly PV and battery power share for
supplying the load. Pt

load is the hourly electricity demand of the base station.

3.3. Technical Constraints

Beside the battery constraints, one of the most important requirements in power
management of base stations is the balance of electricity demand and supply as in the
following [39]:

Pt
PV + Pt

Batt + Pt
grid = Pt

load (26)

where Pt
PV and Pt

Batt are the hourly power of PV panels and battery, respectively.

3.4. Power Dispatch Strategy

The flowchart of the selected power dispatch strategy is illustrated in Figure 3. When
the PV generation is more than the load demand, after supplying the load, the extra energy
will be stored in the battery if it is not fully charged. Any surplus energy will be delivered
to the electric grid. If the PV cannot provide enough energy to supply the load, the first
choice is to discharge the battery. If there is not enough energy stored in the battery, then the
electricity will be purchased from the main grid such that the power balance be satisfied.

By applying this power dispatch strategy, the dependency of the telecommunication
network on the power grid will reduce and this results in the reliability increase of the
system. Moreover, this strategy can also be implemented in cases in which the electricity
grid is not available. In this situation, when the PV-battery system cannot satisfy the
demand, some forms of green programmable energy sources such as hydrogen and fuel
cells can be a used [40].
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4. Multi-Objective JAYA Algorithm

In order to determine the optimal size and installation (tilt and azimuth) angles of
PV panels and the battery capacity to power base stations, a multi-objective optimization
framework is proposed in this section. As is mentioned in Section 3, the objectives are min-
imization of the total financial cost as well as maximization of the power autonomy factor.

The main advantage of using meta-heuristic algorithms in order to solve multi-
objective problems is that they deal with a set of feasible solutions, which allows finding
different solutions in the Pareto-optimal front by executing the algorithm only once. More-
over, meta-heuristic algorithms are not sensitive to the Pareto front pattern and continuity,
which is one of the drawbacks of mathematical programming [41,42]. In order to solve the
considered base station power management problem, the multi-objective version of the
JAYA algorithm is proposed.

4.1. JAYA Algorithm

Compared to other meta-heuristic algorithms, the JAYA algorithm is simpler and more
rapid while there is no need to tune the algorithmic parameters [36,43,44]; hence, the JAYA
algorithm is applied in this paper.

The JAYA algorithm proposed by R. Venkata Rao [43] is selected due to its simplicity
and rapidity, and as there is no need to have any information about control parameters.
The major convenience of the JAYA algorithm is its independence in tuning and controlling
the algorithmic parameters. Moreover, based on a detailed comparison between the PSO
algorithm and the JAYA algorithm in [36], it is concluded that the JAYA algorithm is more
advantageous to be used in solving multi-objective optimization problems.
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If f(x) is considered as the objective function to be minimized, it is assumed that m
is the number of design variables (i.e., i = 1, 2, . . . , m) in each iteration iter, and n is the
number of solutions (i.e., the size of the population j = 1, 2, . . . , n). The best solution has
the lowest value of f(x) in solution queues and the worst solution has the maximum value

of f(x). Considering
→
Xi,j,iter as the ith variable for the jth solution in iterth iteration,

→
Xi,j,iter

is modified according to the following [36]:

X′i,j,iter = Xi,j,iter + r1i,iter(Xi,best,iter − Xi,j,iter)− r2i,iter(Xi,worst,iter − Xi,j,iter) (27)

where Xi,best,iter is the ith variable in best solutions in iterth iteration, and Xi,worst,iter is the ith
variable in worst solutions in iterth iteration. X′i,j,iter is the modified version of Xi,j,iter; and
r1i,iter and r2i,iter are two random values in range [0, 1]. r1i,iter(Xi,best,iter − Xi,j,iter) expresses
the tendency of the solution to approach to the best solution, while r2i,iter(Xi,worst,iter − Xi,j,iter)
shows the trend of the solution to get far from the worst solution. If X′i,j,iter leads to a better
objective function value than that of Xi,j,iter, it is acceptable. At the end of each iteration,
best solutions based on the values of the objective function are preserved and will be
considered as the population for the next iteration. The best and worst solutions are
determined in the recent preserved population for the next iteration. This procedure will
continue until the termination criterion is satisfied.

4.2. Multi-Objective JAYA

In the design of the PV-battery system power supply for base stations, a multi-objective
JAYA is applied to optimize both total cost and power autonomy factor. However, in order
to make the JAYA algorithm suitable for multi-objective optimization problems, the concept
of Pareto dominance is associated to generate non-dominated (Pareto-optimal) solutions,
which results in Pareto fronts. At the end of each iteration of the multi-objective JAYA, the
updated Pareto-optimal solutions are stored in a repository [45]. The steps of the proposed
multi-objective framework are as follows:

Step 1. Specify hourly solar irradiations, ambient temperature, geographical location,
load profile, the battery specification, the design variables ranges, number of variables, and
the termination criterion.

Step 2. Generate initial solutions in the feasible design variable range based on
the following:

X = Xmin + rand·(Xmax − Xmin) (28)

where X is an array of variables considered as a solution including the battery capacity,
the area of installed PV panels, installation angles, battery charge and discharge rates, and
the exchanged power with the main grid; Xmin and Xmax are, respectively, the lower and
upper bands of design variables; and rand is a random value in range (0,1).

Step 3. Evaluate the initial solutions, i.e., check the constraints and calculate the
objective functions.

Step 4. Determine and store non-dominated solutions in the repository.
Step 5. Determine the best and the worst solutions.
Step 6. Set iter = 1
Step 7. In order to achieve new (modified) solutions, apply the JAYA algorithm based

on (27) to each solution.
Step 8. For each new solution, check the battery constraints according to (15)–(18) and

the power balance constraint (26). Calculate the objective functions for each new solution.
Step 9. If any of the new solutions is better than the current ones, replace the current

solution by the corresponding modified solution.
Step 10. The non-dominated solutions in the modified solutions are identified and

stored in the repository. The best and worst solutions are then determined among the
stored solutions.

Step 11. Check the termination criterion and if satisfied, terminate the algorithm and
go to Step 12; otherwise, set iter = iter + 1 and return to Step 7.
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Step 12. Print the solutions in the repository as the Pareto-optimal front.

5. Simulation Results

In order to verify the effectiveness of the proposed approach, it is applied to three
cases with different availability of solar power, namely, Aalborg, Denmark, Malaga, Spain,
and Boujdour, Morocco to investigate the effect of environmental conditions. The hourly
power consumption profiles of a base station in commercial and residential areas [23] on a
weekday and weekend are shown in Figure 4. According to the results of [23], a reasonable
choice for time slot for a one-year horizon of study is considered equal to one hour.
The price for buying electricity based on time-of-use prices (TOU) are shown in Table 1,
for Aalborg, Malaga, while the one-third of these prices is considered for the Boujdour,
Morocco case. The cost of the PV panel and the battery are considered 1350 $/kWp and
500 $/kWh, respectively [37]. The considered yearly rental cost of the sites for commercial
and residential areas are provided in Table 2. The proposed method was implemented
in a MATLAB environment. The population size (the number of candidate solutions)
and number of maximum iterations in the JAYA algorithm are considered 50 and 200,
respectively. Table 3 presents the system variables and their range.
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Figure 4. Weekday and weekend power consumption for a macro base station in commercial and
residential areas.

Table 1. Electricity tariffs.

Tariff Type Time (Hours) Price ($/kWh)

Peak 9–20 0.25

Off-peak 0–9, 20–24 0.23

Feed-in 0–24 0.1



Energies 2021, 14, 1895 12 of 21

Table 2. Rental cost for base station sites.

Rental Cost ($/m2)

Aalborg Malaga Boujdour

Residential
area

Commercial
area

Residential
area

Commercial
area

Residential
area

Commercial
area

100 200 50 100 33 66

Table 3. System variables and their range.

Variable Symbol Unit Variable Range

Peak PV power PPeak
PV kWp (0–11.25)

Azimuth angle θ degree (−90–90)

Tilt angle γ degree (0–90)

Battery capacity Bcap kWh (0–30)

State of charge SOC % (10–90

Figure 5 demonstrates the Pareto-optimal solutions of different power autonomy
levels at different values of total cost for a PV-battery system-powered base station in a
commercial area in the Aalborg, Malaga and Boujdour case studies. As is observed, a high
level of power autonomy leads to a higher total cost, and vice versa. According to Figure 5
to achieve a 70% power autonomy factor for Aalborg, the total cost is $35,000, while for
Malaga and Boujdour, the total cost is $15,000 and $12,000, respectively.
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in a commercial area.

Figures 6–8 respectively show the values of total cost and power autonomy factor for a
variety of peak PV power and battery capacity values for Malaga, Aalborg and Boujdour in
commercial area case studies. Accordingly, as an example, for achieving a power autonomy
factor of 70%, in the case of Malaga, installation of a 4.9 kWp PV panel and a 5 kWh battery
is required. In the case of Aalborg, installation of a 10.5 kWp PV panel and a 15 kWh
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battery is required, while in the case of Boujdour, installation of a 3.4 kWp PV panel and a
9 kWh battery is required.
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Figure 9 demonstrates the Pareto-optimal solutions of different power autonomy
levels at different values of total cost for a PV-battery system-powered base station in a
residential area in Aalborg, Malaga and Boujdour. According to Figure 9, in the case of
Aalborg, it is difficult to achieve a power autonomy factor of 70% due to the low solar
irradiation. However, in order to achieve a maximum power autonomy factor of 68%
in Aalborg, the total cost equals $35,000. For Malaga, the maximum achievable power
autonomy factor is 71% for a total cost of $24,000. For Boujdour, the maximum achievable
power autonomy factor is 73% for a total cost of $27,700.
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Figures 10–12 respectively show the values of total cost and power autonomy factor
for a variety of peak PV power and battery capacity values for Malaga, Aalborg and
Boujdour in residential area case studies. Accordingly, as an example, in the case of Malaga,
to achieve a power autonomy factor of 68%, installation of a 5.3 kWp PV panel and a 9 kWh
battery is required, which leads to a total cost of $12,900. For the case study of Aalborg, in
order to have a power autonomy factor of 68%, installation of a 11.25 kWp PV panel and a
19 kWh battery is required, which leads to a total cost of $35,000. In Boujdour, a 4.5 kWp
PV panel and a 5 kWh battery need to be installed, which leads to a total cost of $10,400.
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According to Figures 5 and 9, solving the PV-battery dimensioning problem for
supplying base stations in cellular networks leads to a set of solutions with different
values of economic index (total cost) and self-sufficiency (power autonomy). Consequently,
based on the priority of each of the mentioned indices, an MNO can adopt one of the
solutions. If the economic aspect is of high importance, the adopted solution leads to a low
power autonomy level; on the other hand, if the self-sufficiency aspect is more important,
supplying the base station using a PV-battery system leads to a high economic cost. The
MNO should always adopt a trade-off between these two approaches.

Based on the peak PV power ranging from zero to 11.25 kWp with an interval of
0.375 kWp and the battery capacity ranging from 0 kWh to 30 kWh for azimuth and tilt
angles −13◦ and 19◦, Figures 13 and 14 respectively illustrate the annual total cost yield
and power autonomy factor for the case study of a commercial area in Aalborg. According
to the results, a higher power autonomy factor is achievable with higher total cost since
these considered objectives for the optimization problem are in conflict.

According to Figures 13 and 14, if the PV panel with the maximum peak power is
installed in a commercial area in Aalborg, when the battery capacity is increased, it only
leads to a higher total cost value, while the maximum achievable power autonomy factor
does not improve.

Figures 15–17 illustrate the annual daily maximum achievable power autonomy for
Malaga, Aalborg, and Boujdour, respectively. It is shown in Figure 15 that the maximum
value of power autonomy factor for Malaga is between 70 to 80%, which is achieved
during summer. However, the lower values of power autonomy factor are during winter
and autumn.
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According to Figure 16, it is observed that for Aalborg during winter and autumn,
since there is less solar availability, a lower daily power autonomy factor is achieved. In
summer, however, the daily power autonomy factor can reach to values higher than 70%.

From Figure 17, for Boujdour, the highest values of power autonomy factor during
summer are higher than 80%, while these values are between 50 to 60% during winter
and autumn.

6. Conclusions

The densification of 5G cellular telecommunication networks leads to an extensive
energy demand. An advantageous solution to power base stations is RESs, which can
both decrease the emission and operational cost while increasing the power autonomy
of the system. However, due to the intermittent nature of RESs, an optimal dimension
of renewable-based plus battery power supply is essential to power cellular networks
self-sufficiently. In this paper, an optimal method for designing a PV-battery system to
supply base stations in cellular networks to maximize power autonomy and minimize
the total cost of the system is presented. The effect of solar power availability on optimal
PV-battery sizing is investigated by comparing results on three different geographical
locations, and a detailed analysis of the results leads to the following observations. For
achieving a power autonomy factor of 70%, the total cost for the Aalborg case study is three
times that of the total cost of Boujdour and two times that of Malaga. Consequently, in order
to determine the optimal PV-battery system to supply base stations in cellular networks,
the exact power generation of the supply system and consumption profiles of the base
station deployment site should be available. Since the power supply of a grid-connected
base station is investigated in this paper, future work can focus on solving the problem
in a situation where a reliable power grid is not available; however, in cases that 100%
power autonomy has not been achieved, another source, such as fuel cell, may be needed
to power off-grid base stations. Furthermore, in order to decide on the highest economic
design of the PV-battery system for supplying base stations in the next generation cellular
telecommunication networks, different energy storage devices as well as a variety of battery
technologies can be investigated.
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