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Abstract
Characterization of the environment in which communication is taking place,
termed the radio channel, is imperative for the design and analysis of communica-
tion systems. Stochastic models of the radio channel are widely used simulation
tools that construct a probabilistic model of the radio channel. Calibrating these
models to new measurement data is challenging when the likelihood function is in-
tractable. The standard approach to this problem involves sophisticated algorithms
for extraction and clustering of multipath components, following which, point
estimates of the model parameters can be obtained using specialized estimators.
We propose instead an approximate Bayesian computation algorithm based on
the maximum mean discrepancy with a kernel careful crafted for this task. The
proposed method is able to estimate the parameters of the model accurately in
simulations, and has the advantage that it can be used on a wide range of models.

1 Introduction
Stochastic channel models are used to simulate the behavior of the radio channel in order to test
the performance of communication and localization systems [22, 25]. Often models are flexible
enough to be applied to different scenarios, provided that their parameters can be adjusted accordingly.
Adjustment of the model parameters based on data collected from measurement campaigns is called
calibration (or inference). Calibration is usually challenging since most state-of-the-art stochastic
radio channel models have intractable likelihood functions. This renders usual inference techniques
such as maximum likelihood estimation or standard Bayesian inference inapplicable. Calibration
has been a significant technical challenge to date because existing methods usually depend on the
specific model being calibrated. As a result, a new calibration method needs to be developed every
time a new model is proposed, which significantly slows down the innovation process.

In this paper, we propose an algorithm based on approximate Bayesian computation (ABC) which
is able to calibrate models with vastly different mathematical structures. We use the maximum
mean discrepancy (MMD) [12] in the ABC framework to compare the distribution of simulated and
measured data. The MMD has previously been used for frequentist inference in [8, 9], and in a
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Bayesian sense in [10]. Specific ABC methods using kernels include [18, 19, 16, 14], and the MMD
has also been used to train generative adversarial networks in [11, 23, 15]. These papers have shown
MMD to be a powerful way to represent either data-sets or distributions, and as a result calibrate
complex models. They have acted as inspiration for our work, but our algorithm specializes the
approach to the problem of calibrating stochastic channel models.

2 Background

Stochastic Channel Model Calibration In this paper, a model is a parametric family of distribu-
tions {Pθ} with a p-dimensional parameter vector θ defined on some Euclidean space. In the case of
generative models such as the stochastic channel models, it is straightforward to simulate realizations
of Y from the model, even though the distribution Pθ is unknown. Calibration then amounts to
finding the parameter θ for which the model output fits the observed data Y well. For most stochastic
radio channel models, p(Y|θ) is either intractable or cannot be approximated within reasonable
computation time. However, likelihood-free inference is possible by comparing simulated data-sets
to the observed data. We use the maximum mean discrepancy (MMD) to perform this comparison.

The Maximum Mean Discrepancy (MMD) The MMD is a distance between distributions. To
compute it, we first map the distributions to a function spaceHk, then use the distance in that space
to compare the mapped distributions. The spaces of functions to which we will map distributions
are called reproducing kernel Hilbert space (RKHS). We denote the RKHS with Hk, and 〈·, ·〉Hk
and ‖ · ‖Hk for its inner product and norm, respectively. Associated to each RKHS, there exists a
symmetric and positive definite function k : Rd × Rd → R called a reproducing kernel [4]. This
function satisfies two properties: (i) for all f ∈ Hk, f(x) = 〈f, k(x, ·)〉Hk (called the reproducing
property), and (ii) k(x, ·) ∈ Hk for all x ∈ Rd. The MMD between P and Q embedded in Hk is
defined as the supremum taken over the mean of all functions in the unit ball in an RKHS, i.e. [17]

MMDk[P,Q] = sup‖f‖Hk≤1
|EX∼P[f(X)]− EX∼Q[f(X)]| . (1)

Suppose we have access to X = {x1, . . . ,xNX}
iid∼ P and Y = {y1, . . . ,yNY }

iid∼ Q. Then, an
unbiased empirical estimate of MMD2

k[P,Q] can be obtained as [12]

M̂MD
2

k[X,Y] =
∑
i6=i′ k(xi,xi′ )

NX(NX−1) −
2
∑NY
j=1

∑NX
i=1 k(xi,yj)

NYNX
+
∑
j 6=j′ k(yj ,yj′ )

NY (NY −1) . (2)

Note that the choice of kernel k will be key to determine whether the MMD is a suitable probability
metric for a given application.

3 Kernels for Radio Channel Measurements

We now construct a kernel for a type of time-series data frequently available from channel measure-
ments. Consider data from a linear, time-invariant radio channel, measured using a vector network
analyzer (VNA) in the bandwidthB. The transfer functionHk is measured atK equidistant frequency
points resulting in a frequency separation of ∆f = B/(K − 1). The measured signal at each
frequency point, Yn, can be modeled as Yn = Hn + Wn, for n = 0, 1, · · · , Ns − 1, where Hn is
the transfer function sampled at the nth frequency and Wn is the complex measurement noise. The
additive noise samples are assumed independent and identically distributed (iid) at each frequency
point, and are usually modeled as zero-mean circular symmetric complex Gaussian variables with
variance σ2

W .

The time-domain signal, y(t), is obtained by taking the discrete-frequency, continuous-time inverse
Fourier transform of Yn as y(t) = 1

Ns

∑Ns−1
n=0 Yn exp(j2πn∆ft), periodic with a period of tmax =

1/∆f . Multiple realizations of the channel can be obtained by repeating the measurements Nobs

times, yielding an Nobs×Ns complex data matrix Y. The data consists of iid realizations from some
unknown distribution Y with state-space Y , where each realisation is a time-series of size Ns.

In order to use the MMD for calibrating stochastic radio channel models, we need a kernel defined
on the space of transfer function measurements: kY : Y × Y → R. A significant challenge with
this approach is that Y is usually a high-dimensional space; in fact Ns can be in the order of several
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Figure 1: Diagram depicting steps in the proposed kernel-based ABC algorithm

thousands. To tackle this issue, we construct a kernel specifically tailored to transfer function
measurements. We base the kernel on the temporal moments of y(t), defined as

m(i) =
∫ tmax

0
ti|y(t)|2dt, i = 0, 1, 2, . . . , I. (3)

Referring to [7, 5], the first few moments are well modeled by a log-normal distribution. Thus,
taking the entry-wise logarithm z(i) = lnm(i) brings the moments to the same scale and gives an
approximately Gaussian vector z = [z(0), . . . , z(I−1)]. Alternatively, an anisotropic kernel could be
used to account for the difference of scales of the temporal moments. Multiple channel realizations
yield Z = (z1, z2, . . . , zNobs

). Define the mapping AI : Y → RI from Y to the I-dimensional space
of log temporal moments. We propose to construct a kernel kY for transfer function data as

kY (y,y′) := kSE (AI(y), AI(y
′)) , for all y,y′ ∈ Y, (4)

where kSE(x,x′) = exp(−‖x− x′‖22/l2) is the squared-exponential kernel in dimension I . Given

this choice, we have M̂MD
2

kY [Y,Ysim] = M̂MD
2

kSE
[Z,X], where X is the simulated log temporal

moments data-set. Following [12], we propose to set the lengthscale using the median heuristic
l =

√
med/2, where med denotes the median of the set of squared two-norm distances ‖xi − xj‖22

for all pairs of distinct data points in X. This choice of l scales the kernel with the spread of the data,
and is robust to outliers.

4 Kernel-based Approximate Bayesian Computation Method

With this kernel at hand, we propose to calibrate a stochastic radio channel model using the ABC
approach based on MMD depicted in Fig. 11. We employ the Population Monte Carlo (PMC) ABC
method [2] to iteratively refine our approximation of the ABC posterior. At the end of each iteration,
we perform local-linear regression adjustment [3] to further improve the posterior approximation.

First, M independent parameter samples Θ = (θ1, . . . ,θM ) are drawn from the prior p(θ). For each
i ∈ {1, . . . ,M}, we then simulate a data-set Xi ∼ Pθi and compute the MMD (based on the kernel
in (4)) between Xi and Z. The parameter samples resulting in the Mε smallest MMD values are then
accepted and the rest is discarded.

The accepted samples are then adjusted using local-linear regression [3] to improve the posterior
approximation. Given the accepted set {(si,θi)}Mε

i=1 where s is a vector of summary statistics of
X (in our case, we take the temporal moments), the ith accepted parameter sample is adjusted as
θ̃i = θ∗i − (si − sobs)

>
β̂ where

β̂ := arg min
α,β

∑Mε

i=1

[
θ∗i −α− (si − sobs)

>
β
]2
W(

M̂MD
2

kSE
[Xi,Z]

).
Here,W is the Epanechnikov function,W(δ) = 1− (δ/δmax)2 for |δ| ≤ δmax and zero otherwise.
The regression adjustment therefore gives the adjusted parameter values Θ̃ = (θ̃1, . . . , θ̃Mε).

The ABC method then draws a new set of M parameter samples from (θ̃1, . . . , θ̃Mε) in a sequential
Monte Carlo fashion [2]. These new samples form the prior distribution for the next iteration of

1The source code is available at https://github.com/bharti-ayush/Kernel-based-ABC.

3

https://github.com/bharti-ayush/Kernel-based-ABC


0.0e+00

2.5e−08

5.0e−08

7.5e−08

1.0e−07

1 2 3 4 5 6 7 8 9 10
Iterations

Q

2.5e+07

5.0e+07

7.5e+07

1.0e+08

1 2 3 4 5 6 7 8 9 10
Iterations

Λ

True value

0e+00

1e+09

2e+09

3e+09

1 2 3 4 5 6 7 8 9 10
Iterations

λ

1e−08

2e−08

3e−08

4e−08

5e−08

1 2 3 4 5 6 7 8 9 10
Iterations

Γ

1e−09

2e−09

3e−09

4e−09

5e−09

1 2 3 4 5 6 7 8 9 10
Iterations

γ
5.0e−10

1.0e−09

1.5e−09

2.0e−09

1 2 3 4 5 6 7 8 9 10
Iterations

σ W2

Figure 2: Violin plots of ABC posterior samples of Saleh-Valenzuela model parameters as a function of PMC
iterations. Note that a violin plot is similar to a box plot with the addition of a rotated kernel density plot on
each side. The dark green lines denote the true parameter values θtrue = [5× 10−8, 2× 107, 109, 10−8, 2×
10−9, 10−9]>. Settings: B = 4 GHz, Ns = 801, and tmax = 200 ns, I = 4, M = 2000, Mε = 100.

the algorithm, where they are used to generate simulated data from the model again and perform

regression adjustment. The set of parameters in the initial iteration, Θ̃(1) = (θ̃
(1)

1 , . . . , θ̃
(1)

Mε
), are

assigned equal weights. The next set of parameters is obtained by drawing M values from Θ̃(1) and
perturbing these according to the proposal ϕ(θ; θ̃,Σ) = 1(θ ∈ R) exp(− 1

2 (θ − θ̃)>Σ−1(θ − θ̃))
where 1 is an indicator function,R ⊂ Rp is the prior range, and Σ is a diagonal matrix with variances
σ2
j > 0 corresponding to parameter θj along the diagonal. We set the diagonal elements of Σ to

twice the empirical variance of the adjusted parameter samples.

At iteration t, the set of samples Θ(t) is used to simulate (X
(t)
1 , . . . ,X

(t)
M ) from the model for MMD

computation and regression adjustment. Here, the weight of each parameter sample is selected as

w
(t)
j ∝ p

(
θ
(t)
j

)/∑Mε

i=1 w
(t−1)
i ϕ

(
θ
(t)
j ; θ̃

(t−1)
i ,Σ(t−1)

)
, for j = 1, . . . ,Mε. (5)

The adjusted parameter values after iteration T are now samples from the ABC posterior.

5 Simulation Experiment

To study the performance of this algorithm, we focus on the model of Saleh and Valenzuela [21] who
defined the transfer function as Hk =

∑
l

∑
p βpl exp (−j2π∆fk(Tl + τpl)), where Tl is the delay

of the lth cluster, while τpl and βpl are the delay and complex gain of the pth ray within the lth cluster,
respectively. By definition in [21], T0 = 0 and τ0l = 0, l ∈ {0, 1, . . . }. The arrival time of the
clusters and that of the rays within the clusters are modelled as one-dimensional homogeneous Poisson
point processes, i.e., Tl ∼ PPP(R+,Λ) and τkl ∼ PPP(R+, λ) with parameters Λ, λ > 0. The gains
βkl, conditioned on Tl and τkl, are modelled as iid zero-mean complex Gaussian random variables.
Their conditional variance is modelled as E

[
|βkl|2|Tl, τkl

]
= Q exp(−Tl/Γ) exp(−τkl/γ), with Q

being the average power of the first arriving multipath component, and Γ, γ > 0 being the cluster and
ray decay constants, respectively. The expression for the power delay spectrum is given in [13]. To
calibrate this model, the parameter vector, θ = [Q,Λ, λ,Γ, γ]>, should be estimated based on Y.

We generate pseudo-observed log moments, Xtrue, with Nobs = 1000 realizations from the model by
setting θ to a “true" value. We now use the proposed method to calibrate the S-V model using Xtrue

as observed data Z. The number of samples in X is set to Nsim = 100 as a reasonable compromise
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considering the trade-off between accuracy and computational cost. We assume uninformative (flat)
priors for all the parameters to ensure that their marginal posteriors are unaffected by any prior beliefs.
The plots indicating convergence of the algorithm and the marginal posterior distributions for T = 10
iterations are shown in Fig. 2. The approximate posterior samples concentrate around the true value
for all the parameters. The algorithm ran on a Lenovo ThinkPad with Intel Core i7 processor (24 GB
RAM) and had a run-time of around 2 days, which can be improved using parallel computations. The
algorithm converges rather quickly and the posteriors taper as the iterations proceed. In principle, the
iterations could be stopped after four or five iterations, but we let it run till T = 10 for clarity. The
algorithm gives a reasonable estimate for the parameters even in the first iteration. See [6] for further
experiments on applying the method to another model and testing it on real data.

6 Conclusion

This paper proposed a novel approach for calibrating stochastic radio channel models. The approach
is an ABC algorithm based on the MMD with a carefully crafted kernel for the type of data available
in this field. The main advantage of the approach is that it is not model specific, and can be used to
calibrate a wide range of models with different mathematical structures such as [20, 1] and [24]. This
will need to be explored in more detail in future work.
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