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 

Abstract— Early fault detection in power electronic systems 

(PESs) to maintain reliability is one of the most important issues 

that has been significantly addressed in recent years. In this paper, 

after reviewing various literature based on fault detection in PESs, 

data mining-based techniques including artificial neural network, 

machine learning, and deep learning algorithms are introduced. 

Then, the fault detection routine in PESs is expressed by 

introducing signal measurement sensors and how to extract the 

feature from it. Finally, based on studies, the performance of 

various data mining methods in detecting PESs faults is evaluated. 

The results of evaluations show that the deep learning-based 

techniques given the ability of feature extraction from measured 

signals are significantly more effective than other methods and as 

an ideal tool for future applications in power electronics industry 

are introduced. 

 
Index Terms—Power electronic systems, reliability, fault 

detection, fault tolerant, artificial neural network, machine 

learning, deep learning. 

 

I. INTRODUCTION 

OWADAYS, electrical energy has become an influential 

factor in the scientific, economic and welfare fields of 

human daily life. In recent years, the expansion of 

electrical energy applications and the increase of electrical 

energy consumers have made distributed generation (DGs) 

dramatically replace traditional power systems [1], [2]. On the 

other hand, DGs such as renewable energy sources (RESs) and 

energy storage systems have been widely used to reduce fossil 

fuel consumption and solve environmental problems. But the 

important point is that the production, storage and utilization of 

electrical energy in the economic and daily life cycle require 

power electronic systems (PESs) [3]. PESs have a significant 

role in integrating RESs, energy management, and reliability of 

power grids, and other related infrastructures and systems [4], 

[5]. Energy/power conversion using PESs is easy and low cost. 
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Despite all the advantages of PESs, their high vulnerability to 

natural disasters, frequent switching in harsh environment, and 

etc. that results in power outages or system shutdown and 

accordingly increased cost of operating, is one of their biggest 

disadvantages. Long-term sustainability without power 

interruption is one of the most important factors in the needs of 

PESs applications. In most cases, severe environmental 

conditions such as high temperatures, over voltage and over 

current, wear-out of electrical components, radiation, vibration 

and mechanical damages, thermal damages, hardware design or 

control defects, and electromagnetic stresses are major causes 

of critical failures in PESs. Some studies have shown that 

semiconductors of the primary side (low voltage, high current) 

and resonance elements used in PESs can be the main sources 

of damage due to various factors. Faults that occur mainly in 

different parts of the PESs are divided into two categories of 

structural faults (hard faults) and parametric faults (soft faults) 

[6]–[8]. Each of the hard and soft faults are divided into various 

types of anomalies, which are introduced as follow: 

A. Hard faults 

Hard faults occur due to drastic changes in the value of 

parameters related to the components or circuit structures in the 

PESs. These faults are observed in two cases of SC fault and 

OC fault. Hard faults can have effects such as a sudden increase 

in current and a sudden voltage drop in PESs. Thus, the 

occurrence of a hard fault provides the basis for serious and 

catastrophic damage to the entire system. Hard faults generally 

do not occur directly in the system and are happen often due to 

the intensity and persistence of soft faults in the circuit [9], [10]. 

B. Soft faults 

Soft faults mainly refer to the parameters of the circuit 

components from their tolerance range, but they do not affect 

the circuit connections. Soft faults are known as parameter drift 

and cause a gradual decrease in system performance and 

ultimately cause aging and wearing out [11]. The occurrence of 
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soft faults does not completely interrupt the operation of the 

circuit in PESs, but causes an unacceptable operation of the 

circuit by creating an unwanted output. Studies and experiments 

have shown that the soft faults can become a hard fault if they 

are not detected and fixed in a timely manner [9]. 

In recent years, various studies have been conducted on the 

stability and reliability of power electronic converters, and 

based on more than 200 products from 80 companies, it has 

been concluded that capacitors and power semiconductor 

devices include more than 50% of PES failures (As shown in 

Fig. 1). Occurrence of any faults in these systems will cause 

serious damages to the entire system.  

Maintenance in PESs is an topic that has posed many 

challenges and includes reliability, stability, condition 

monitoring, fault detection, and useful life estimation [12]. 

Several review papers over the past decade have addressed this 

issue [10], [13]–[15]. Advanced analysis of condition 

monitoring and fault diagnosis in PESs is reviewed in [13]. 

However, the study includes very limited methods of 

faultdiagnosis based on Artificial Neural Network (ANN) 

algorithms. Authors of [10] examine the condition monitoring 

techniques of capacitors in power electronic converters, which 

also emphasize the methods of parameter identification based 

on ANNs. In addition, a variety of ANN-based techniques 

called the dynamic Bayesian network and object-oriented 

Bayesian network have been employed in [16], [17], for 

industrial applications such as transient and intermittent fault 

detection in complex electronic systems. In another valuable 

study [18], the hybrid applications rule-based algorithm and 

back propagation neural network (BPNN) for fault detection in 

a diesel engine are introduced. In this study, the signals are 

processed via wavelet threshold denoising and ensemble 

empirical mode decomposition. Early fault detection in 

permanent magnet synchronous motor has been done in [19] by 

presenting data-based approaches called Bayesian network. In 

this study, to improve the fault detection process, wavelet 

threshold denoising and minimum entropy deconvolution 

techniques are employed to pre-processing and denoising the 

input signals. In [14], a summary of machine learning methods 

used to manage the reliability of energy systems has been 

provided. Another valuable study [15], examines the 

application of ANN 

 
Fig. 1. Percentage of PESs failures [7] 

techniques in PESs. This paper is also generally limited to ANN 

algorithms. 

Accurate and early detection of any of the faults in PESs is 

one of the most important issues that has created many 

challenges for researchers and craftsmen in the fields of power 

electronics and industrial electronics. Most of the recent 

research has identified, analyzed, and diagnosed all types of 

faults in PESs in different ways. Some of them have succeeded, 

but some others have failed to detect the fault correctly. 

Identifying and diagnosis any faults in PESs requires an 

evaluation of the impact of each fault on the system [4], [20]. 

So far, in various studies several categories of fault detection 

methods have been introduced and employed in PESs. 

Frequency-domain based techniques, Wavelet Transform 

(WT), ANN algorithms, machine learning-based procedures, 

and deep learning applications are the most important methods 

discussed in identifying faults of PESs. Fault detection in PESs 

began with conventional methods and the use of numerous 

sensors. These methods were expensive and suffered from 

problems in timely and accurate fault detection. Meanwhile, 

with the advent of the Internet of Things, the use of intelligent 

sensors has led to the exchange of a wide range of data in energy 

systems technologies and PES applications. After that, 

traditional and conventional methods did not perform 

reasonably well in the face of high volumes data. Thus, the 

increasing volume of data provided a good basis for the 

application of data mining science and other techniques such as 

ANN, machine learning, and deep learning. In addition, the 

challenges and specific features of PESs such as high sensitivity 

in condition monitoring for aging detection, the need for online 

monitoring, and high adjustment speed in control, has increased 

the need for data mining applications in PESs dramatically. 

In this paper, the application of data mining techniques such 

as ANN, machine learning, and deep learning algorithms in 

detection of PES faults are reviewed in detail. By examining the 

machine learning and deep learning techniques, the gaps in 

previous research that mainly focus on ANN techniques are 

filled. Furthermore, this paper introduces the types of faults in 

PESs and the necessity of timely fault detection, investigates 

the impact of each fault on the system, and reviews a variety of 

fault diagnosis methods. Finally, the fault prognosis models that 

can be a very important step in the increasing the reliability of 

PESs will be explored. 

The rest of the paper is organized as follows. Section II 

reviews studies conducted to identify faults in PESs. Section III 

introduces and categorize the fault diagnosis methods in PESs. 

Routine of fault diagnosis in PESs is presented in Section IV. 

Section V introduces the sensors and instruments for signal 

measurement in PESs. Section VI describes fault-tolerant in 

PESs. Finally, the concluding remarks are presented in Section 

VII. 

II. HISTORICAL AND LITERATURE REVIEW OF FAULT 

DETECTION IN PESS 

The main objective of this study was to review and evaluate 

the performance of each of the methods used to detect faults in 

PESs. This evaluation includes all studies conducted on fault 
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detection from the beginning to the present and looks at future 

challenges over time. Thus, the initial studies related to fault 

detection in PESs in the form of a sub-section called historical 

review and other recent studies under the title of the literature 

review are presented in the continuation of this section. 

A. Historical review of fault detection in PESs 

So far, many solutions have been utilized based on the 

classification presented in the previous section to detect faults 

related to PESs. A probabilistic applications of ANNs called 

radial basis function (RBF) was reported in 2003 in [21], to 

identify SC fault associated with an inverter driver. In another 

valuable study [22], using ANN algorithms, single 

commutation failure, double not successive commutation 

failure, and double successive commutation failure in a 

converter used in high-voltage direct current (HVDC) system 

have been identified. In [23] and [24], the ANN applications are 

employed to detect OC faults and hard faults (which refer to the 

analogue part of the circuit) in a delta-sigma converter, 

respectively. Transistor switch faults in a voltage source 

inverter have been identified in [25] by a new model of ANN 

based on the controller of space vector modulation. 

As can be seen from the reviewed literature, the ANN 

applications have been used continuously for several years as 

fault diagnostic methods in PESs. In 2007, two advanced neural 

network called self-organizing maps (SOM) and learning vector 

quantization have been introduced and used to detect the SC 

and overcurrent faults of transistor utilized in isolated DC-DC 

converters in multi-phase multilevel motor drives [26]. Later, a 

hierarchical fuzzy-based diagnostic solution was introduced in 

[27] to identify the SC and AC faults of switches in a direct 

current (DC)-motor-based brake-by-wire system. In a PV 

system, fault in DC transmission line, commutation fault in one 

of the thyristors of the inverter, and single-phase fault in the AC 

system in the inverter side have been diagnosed using an 

improved ANN algorithm called, ADAptive linear neuron [28]. 

The SC fault associated with converter-fed induction motors is 

identified in [29] using the Feed Forward Neural Network 

method and based on the FFT signals of the system. 

B. Literature review of Fault detection in PESs 

With the advancement of technology and the expansion of 

the data volume related to various issues of power systems and 

PESs, the performance of ANNs was reduced to some extent. 

To improve the detection process and increase the accuracy of 

detection operations, in 2009, a supervised kernel-based 

method and support vector machine (SVM) were first proposed 

as applications of machine learning in power electronics [30]. 

In the study, the proposed methods were employed to detect OC 

fault of switch in pulse-width modulation (PWM) voltage fed 

power converter of brushless DC motor drive. In another 

valuable work [31], rotor faults corresponding to a converter-

fed induction motor and changeable rotors have been 

categorized using machine learning techniques called radial 

basis neural network and k-means. The SVM technique has 

been proposed in [32] to identify thyristors faults in a three-

phase full-bridge controlled rectifier.  

The proper performance of machine learning techniques in 

various studies led to the rapid development of the use of these 

methods in the science and industry related to power 

electronics. For the first time in 2013, a new machine learning 

technique called Extreme Learning Machine (ELM) has been 

proposed to predict the inter-turn SC fault in a three-phase 

converter-fed induction motor [33]. In the same study, in order 

to express the effectiveness of the suggested procedure, one of 

the ANN methods called MLP is also utilized to identify faults, 

which the results emphasize the superiority of the ELM method. 

Identification and classification of six types of faults including 

the SC, pulse loss, AC single-phase grounding, AC two-phase 

grounding, AC three-phase grounding, and DC grounding in an 

HVDC converter have been performed via the SVM in [34].  

In the process of using different machine learning techniques, 

a new algorithm called Least-Squares Support-Vector Machine 

(LSSVM) in 2014 has been introduced and utilized to detect the 

SC fault in a three-phase squirrel-cage induction motor fed by 

a sinusoidal PWM converter [35]. In the same work, the 

effectiveness and high performance of the suggested method 

has been compared to other ANN and machine learning 

techniques such as MLP, ELM, SVM, and the Minimal 

Learning Machine was approved. Various faults in Inverter side 

of a 12-pulse Line HVDC commutated converter include Single 

Line to Ground (Rectifier side), Double Line to Ground 

(Rectifier side), Line-to-Line (Rectifier side), and DC Fault 

have been identified and categorized by an ANN technique 

called Levenberg Marquardt backpropagation algorithm in 

[36]. 

As stated in the literature, the utilize of data mining 

techniques in detecting PES faults began with the employing 

supervised algorithms and over time led to a significant increase 

in their use. With the expansion of data volume, these methods 

encountered some problems in the training phase, such as 

overfitting or data missing. In 2015, in two valuable studies 

[37], [38], one of the unsupervised methods of data mining 

called Principle Component Analysis (PCA) has been 

introduced for the first time to fault detection and improve the 

problems of supervised methods. In those studies, the PCA 

technique for detecting the SC switch fault in a cascaded H-

bridge multilevel (5-level) inverter has been combined with the 

FFT and SVM methods to significantly increase the fault 

detection accuracy. In [39], Discrete Wavelet Transform 

(DWT) and Fuzzy Inference Logic methods have been selected 

to detect the various faults include DC SC to ground, OC of 

insulated gate bipolar transistor (IGBT), SC damage of IGBT, 

DC link capacitor, and single line to ground fault of a machine 

terminal is used in a 3-phase inverter. In another study [40], the 

OC faults of thyristors used in a 3-phase full-bridge rectifier in 

21 types have been investigated via the support vector data 

description and SVM techniques. A multi-layer ANN based on 

multi-valued neuron with a complex QR-decomposition has 

been designed and utilized in [41] to identify capacitor faults in 

a Class-E DC-AC inverter. In [42], four type of converter faults 

(namely backfire, fire-through, commutation failure, and 

misfire) used in an HVDC transmission system are identified 

by a wavelet-based ANN. A hybrid model of Park's vector 
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transform, DWT, and ANN methods have been presented in 

[43] to identify single and multiple OC switch faults under 

variable load conditions in a 3-phase voltage source inverters. 

In another valuable study [44], the OC and SC faults diagnosis 

in a 3-phase inverter circuit has been performed using 

optimized machine learning algorithms. In this paper, wavelet 

and PCA graph methods are selected for statistical processing 

of measured signals, and fuzzy logic system and relevance 

vector machine methods are utilized to fault detection and 

classification. So that, diagnostic methods are optimized using 

evolutionary particle swarm optimization and cuckoo search 

optimization algorithms. In [45], an unsupervised data mining 

technique called weighted Kernel PCA has been introduced and 

utilized to detect the OC switches faults in the 3-level inverter. 

In 2016, another powerful machine learning technique called 

the decision tree has been proposed for the first time in [46] to 

detect the OC fault tested in a voltage source inverter of 

induction motor drives. In [47], an improved ANN algorithm 

called kernel SOM has been proposed to detect the SC fault in 

3-phase converter-fed induction motors. Identification of AC 

filter’s health status based on the opening/closing current of AC 

filter’s breaker in an AC filter in converter station in [48] has 

been detected via the RBF neural network. In [49], an active 

semi-supervised fuzzy clustering algorithm with pairwise 

constraints has been utilized to detect the fault of the OC 

switches faults in a multiphase multilevel neutral point clamped 

(NPC) converters in a five-phase machine. In [50], the 

identification of parametric faults (the parametric degradation 

trends of resistors and capacitors from accelerated life tests) in 

a benchmark Sallen–Key filter circuit and a DC-DC converter 

system is performed via a kernel learning-based procedure. In 

another valuable study [51], unsupervised techniques called 

PCA and Kullback-Leibler divergence have been employed to 

detect incipient bias fault and incipient ramp fault in an inverter 

used in China Railway High-speed 2. 

Over the past years, the use of ANN and machine learning 

techniques in power electronic applications has shown 

significant growth potential. However, advances in science and 

the complexity of power systems and the increasing volume of 

monitored data from industrial equipment and power systems 

have increased the need for feature extraction and pattern 

recognition methods. In 2017, for the first time, deep learning 

techniques were used to fault detection in PESs [7]. In this 

paper, the deep belief network as one of the deep learning 

algorithms has been suggested to identify hard faults such as 

OC and SC faults but also the soft faults such as the component 

degradation of power MOSFET, inductor, diode, and capacitor 

in a DC-DC converter (closed-loop single-ended primary 

inductance converter). The method proposed in this paper was 

optimized using the crow search algorithm. In another valuable 

work in 2017 [52], one of the other deep learning applications 

called, Sparse Autoencoder has been introduced to detect the 

OC fault in various modes of a cascaded H-bridge seven-level 

converter. Hard and soft faults in the super-buck converter 

circuit have been investigated in [53] using the Kernel Entropy-

Based Classification approach and ELM methods. In [54], one 

of the novel deep learning applications called Long Short-Term 

Memory (LSTM), a prominence version of the Recurrent 

Neural Network (RNN) has been suggested for fault detection 

and scalable reliability in high-frequency Gallium Nitride 

power dc-dc converter. In 2018, in a valuable study [55], one of 

the powerful applications of deep learning in feature extraction 

called Convolutional Neural Network (CNN) has been 

proposed and utilized for the first time to detect OC fault in 

modular multilevel converter (MMC). In [56], eight kinds of 

DC bus capacitor faults and energy storage inductor in dual-

buck bidirectional DC-AC converter have been investigated by 

fuzzy cerebellar model neural network. Six different fault 

situations in a PWM DC–DC converters using multilayer 

multivalued neuron neural network have been identified in [57]. 

In another valuable study [58], various machine learning 

techniques called k-nearest neighbors (k-NN), Bagging, 

AdaBoost, MLP, SVM, and Naive Bayes have been employed 

to identify half broken rotor bar and broken rotor bar in an 

induction motor. In that study, the performance of each of the 

methods used is evaluated and compared, and finally Naive 

Bayes and Bagging methods are selected as the best models. 

The Deep CNN technique in [59] investigates the SC and OC 

faults in MMCs. In another study [60], a hybrid machine 

learning technique called mixed kernel support tensor machine 

detects the OC fault in a MMC. The IGBT OC fault detection 

in a traction inverter has been performed using a combination 

of WT and SVM methods in [61]. In [62], a hybrid solution 

based on wavelet packet and ELM techniques, which is also 

optimized using the Firefly algorithm, has been proposed to 

detect the OC switch fault in a phase shifted full bridge 

converter. The Sparse Autoencoder based Deep Neural 

Network method has been selected as one of the hybrid 

applications of deep learning in [63] to detect the OC fault in a 

3-phase full-bridge rectifier. The OC fault associated with a 

Permanent Magnet Synchronous Generator Wind Energy 

Converters and Modular Multi-level Converter has been 

investigated in [64] and [65], respectively, using neural 

network-based techniques. The OC faults and current sensor 

faults in grid-tied 3-phase inverters have been identified in [66] 

by presenting a method that innovatively combines two types 

of diagnosis variables, line voltage deviations and phase voltage 

deviations. A hybrid method based on integrating the wavelet 

packet transform and LSTM has been introduced in [67] to 

Identify SC and OC faults in a five-level nested neutral-point-

pilot topology. In [68], the CNN technique has been used as one 

of the deep learning applications to identify OC faults in the 

back-to-back converter in permanent magnet synchronous 

generator-based wind generation system. In another valuable 

study [69], the CNN method has been selected as a diagnostic 

tool to detect inverter faults in the PV system and 

symmetrical/unsymmetrical faults in the distribution line. In 

[70], the CNN procedure has been represented as a powerful 

tool to diagnosis OC switch fault in a hybrid active NPC 

inverter. The ELM and Random Vector Functional Link 

network techniques, as machine learning applications, identify 

and classify OC fault in an IGBT utilized in a 3-phase PWM 

converter [71]. In a novel study in 2020 [72], detection of 

multisensor-based traction converter faults has been performed 
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by the LSTM technique in an experimental setup. The proposed 

LSTM in this study, extracts the long-term patterns and 

dependencies in time-series effectively, and learns hidden fault 

features from traction converter multisensor signals adaptively, 

without needs of expert knowledge or system modeling. In [73], 

an unsupervised learning approach based on PCA has been 

suggested for detecting semiconductors and modules faults in 

Silicon Carbide MOSFETs. Moreover, in order to increase the 

accuracy and reduce the time horizon of abnormally detection, 

a PCA-based pre-processing approach is applied to the 

measured signals from the system. 

As reviewed in the above literature, today deep learning 

applications based on their high capabilities in pattern 

recognition and feature extraction are mainly utilized in fault 

detection applications of PESs. Nowadays, researchers are 

dramatically improving deep learning methods or looking for 

new ones. In 2021, for the first time in [74], another deep 

learning technique called Temporal Convolutional Network has 

been introduced and employed to identify and classify OC 

faults and six unknown faults in a 3-phase voltage inverter. 

A review of fault detection studies in PESs showed that 

learning-based techniques were mainly used for this purpose. In 

some other studies, using techniques based on hardware 

equipment, control, and mathematical calculations, faults in 

PESs have been identified [75]–[82]. Ref. [75] introduces a 

compensation control method based on a mixed switching 

strategy to detect the OC switch faults in a boost DC-DC 

converter. In another valuable study [76], the fault fast switch 

fault in a AC-DC Converters of Hybrid Grid Systems has been 

diagnosed using the threshold point calculation method. 

A review of various studies shows that the faults related to 

the PESs occur mainly in industrial equipment, which increases 

the need for rapid detection to prevent serious damage to the 

system and power electronic instruments. Based on literature 

reviewed, the ANN algorithms have been the most widely used 

to detect PES faults. Since 2009, machine learning methods 

have come into play with the improvement of problems related 

to ANN techniques and their use continues. Deep learning 

techniques based on their high ability to extract features and 

high performance speed have been utilized to detect PES faults 

since 2017 and the use of these methods is expected to increase 

in the coming years. 

A review of the literature in this section shows that the 

studies performed to detect the PESs faults have mainly focused 

on the detection of hard faults. It is important to note that hard 

faults are caused by soft faults, and if diagnostic methods focus 

on timely detection of soft faults, the hard faults can be 

prevented. 

III. FAULT DIAGNOSIS METHODS IN PESS 

The PESs are critical components in the power/energy 

systems and industrial equipment that ensure the stability and 

efficiency of these systems. Therefore, the health of PESs must 

be fully guaranteed and any abnormalities in these systems must 

be detected and corrected in a timely manner. Choosing the 

suitable method for fault detection in PESs is very important. 

The method selected must have the ability to act very quickly 

and with high detection accuracy. As reviewed in the literature, 

many methods for fault detection in PESs have been introduced 

and used so far. The continuation of this section categorizes and 

introduces all of the model-based and data-based fault detection 

techniques in PESs and finally evaluates the performance of the 

methods used, technically. The block diagram in Fig. 2 

categorizes the types of learning-based algorithms of data 

mining techniques. 

A. Model-based techniques 

The model-based fault detection approaches have long been 

widely used in PESs. The performance of these techniques is 

based on physical processes and interactions between system 

components. Thus, fault detection in the system is based on the 

impact of physical changes in the converter model or any PES's 

component. The use of model-based techniques requires 

knowledge of the structure of a system and the characteristics 

of its components [7], [83]. Model-based techniques are divided 

into two classes: Qualitative and quantitative procedures. The 

qualitative-based methods do not require accurate numerical 

models and this is the reason why they are more resistant to 

noise and modeling errors. However, these model-based 

methods are not very accurate and do not have the ability to 

accurately determine the magnitude of the fault. However, 

quantitative methods include fault detection and the ability to 

determine the magnitude of the fault. Therefore, quantitative 

methods can be utilized for fault prognosis applications as well 

as estimating the useful lifetime of the PESs [84]. So far, fault 

detection in PESs has been performed in many studies based on 

model-based techniques. 

In [85], quantitative fault detection has been performed by 

proposing a diagnostic model-based technique called a hybrid 

bond graph (HBG). A hybrid circuit model, based on the HBG 

and global analytical residuals redundancies has been 

introduced for fault detection in [86]. A model-based fault 

detection technique is proposed in [84] to detect SC faults in 

switches as well as incipient and abrupt faults in switches and 

detectors on a dc-ac half-bridge inverter. In this study, the 

proposed model is modeled based on the HBG and the residues. 

In [87], a model-based technique for detecting OC faults in a 

single-phase DC/AC converter, which includes an H-bridge and 

a capacitor with parallel resistance and current source on its DC 

side, has been presented. The technique proposed in this study 

is based on dynamic regressor extension and mixing, and works 

 
Fig. 2. Classification of types of learning-based algorithms of data mining 

techniques 
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based on fault signature estimates. The OC fault detection in a 

two-level three-phase converter has been done in [88] by 

providing a hybrid model-based and data-based approach. The 

performance of the model proposed in this study is based on 

parameters and observations related to output currents, grid 

voltages, and DC voltage. A model-based state estimator 

procedure has been suggested in [89] for OC fault diagnosis in 

switches of a nanogrid prototype with a 380 V DC distribution 

bus. This nanogrid consists of four various switching power 

converters, including a buck converter, an interleaved boost 

converter, a single-phase rectifier, and a three-phase inverter. In 

[90], the OC fault detection of single-phase three-level neutral-

point clamped converters used in an electric railway has been 

performed by introducing a model-based fault detection 

approach. The proposed algorithm detects the faults using the 

signals existing in the control system. In order to identify the 

single-phase PWM rectifier open switch faults, a model-based 

approach based on the mixed logical dynamic model and 

residual production has been proposed in [91]. 

A review of the literature shows that model-based fault 

detection techniques have been widely used in the industrial 

applications of PESs. However, these techniques suffer from 

high dependence on the model and physical behavior of the 

system. Thus, issues such as the types of harmonics and 

component exhaustion can cause misleading changes in the 

fault pattern and complicate the fault detection process. In 

addition, in many cases, it is very difficult to calculate accurate 

mathematical representations, and the mathematical modeling 

of the physical model of the system under study is very complex 

[7]. Therefore, nowadays, in valuable studies [15], [92], the use 

of data-based techniques that have no dependence on the 

physical model of the system and do not have any 

computational complexity has been suggested. 

B. Artificial Neural Network (ANN) 

The ANN has been one of the most prominent areas of 

research for the past few decades and is growing rapidly 

nowadays. ANN is also referred to as artificial intelligence 

which is a system derived from human intelligence and based 

on training that is utilized to analyze and process various types 

of data [93], [94]. So far, various algorithms have been 

introduced for ANN that are used for applications such as 

regression, classification, and pattern recognition in various 

scientific and industrial fields. Applications such as maximum 

power point tracking (MPPT) control for wind power 

conversion systems [95], optimal and intelligent control in 

power electronic converters [96]–[99], intelligent controller for 

light emitting diode (LED) [100], [101], remaining useful life 

estimation for super-capacitors [102], and the identification of 

a variety of anomalies are considered to be the capabilities of 

ANN algorithms in PESs. A valuable review paper [15], fully 

introduces and reviews the applications of neural networks in 

PESs. Due to the fact that this paper mainly emphasizes the 

introduction of techniques used in the identification of PES 

anomalies, the ANN techniques used in this regard are 

classified and introduced as follows: 

1) Multilayer Perceptron (MLP) 

The MLP is one of the ANN algorithms with a layer-by-layer 

feed-forward structure that can mainly model different 

functions to solve many complex problems. In addition, solving 

problems such as regression, categorization, and non-linear 

modeling are other applications of MLP [103]. As shown in Fig. 

3, the input layer (x), hidden layer, and output layer (Y) forms 

the structure of this network, respectively. The first layer 

receives the inputs and transfers them to the next layer for 

processing. Operational calculations and determination of 

weight (W) and bias (b) for data are performed in the hidden 

layer. The MLP uses a supervised learning procedure named 

back propagation for training. After completing the calculations 

in the hidden layer, the output layer can finally provide the 

desired estimation for n input samples as follow [104], [105]: 

𝑌 = 𝑓(𝑏 +∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (1) 

One of the most important issues in achieving the ideal 

prediction by MLP is determining the number of neurons in the 

hidden layer. The MLP network training is done in a 

supervised-based manner with a network called 

backpropagation [106]. 

2) Self-Organization Map (SOM) 

SOM is one of the ANN algorithms with supervised and 

unsupervised learning capability, which was first proposed in 

1982 by Kohunen [107]. The SOM analyzes and processes data 

based on the mapping of high-dimensional data in a low-

dimensional network while preserving the inherent nature of the 

data. This algorithm is mainly used in prediction, classification, 

clustering, and data visualization applications [108], [109]. 

The process of SOM performance, like other ANN-based 

techniques, is based on two modes of training and mapping. In 

the first stage of the SOM implementation process, the input 

dataset is transformed into a low-dimensional dataset (map 

space) during the training process. Then, low-dimensional data 

is classified based on the Euclidean distance mapping. 

The map space consists of components called neurons or 

nodes arranged in a two-dimensional rectangle or a hexagonal 

 
Fig. 3. Block diagram of MLP 
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grid. The number of nodes and their arrangement are 

determined in advance and according to the larger objectives of 

data analysis and exploration. Each node in the map space is 

associated with a weight vector. The data related to the map 

space is classified based on the weights of each node and their 

Euclidean distance on the feature space. 

Mapping complex high-dimensional relationships between 

input and output into a low-dimensional space while 

maintaining the topological structure of the original data is one 

of the most important features of SOM. Studies have shown that 

SOM is one of the best learning algorithms in text clustering 

research. The simplicity of SOM is one of its salient features 

compared to other two- or multi-layer neural networks. As Fig. 

4 shows, in a simple SOM topology each input neuron is 

directly connected to the output neuron [110].  

3) Adaptive Neuro Fuzzy Inference System (ANFIS) 

The ANFIS was first introduced in 1993 by Jang as a 

combination of ANNs and fuzzy inference to solve complex 

problems and to estimate nonlinear relationships between input 

and output functions [111]. In this hybrid model, the fuzzy part 

establishes the relationships between the input and output 

variables. Meanwhile, fuzzy membership functions become 

more efficient with the help of neural networks. An ANFIS 

model uses the Takagi-Sugeno fuzzy inference system to form 

a feed forward network of five layers. In this structure, the 

desired output is calculated based on parameters that are 

adjusted by the learning algorithm to minimize modeling error 

[112], [113]. In such network, estimation of the parameters of 

the membership functions is also done by the backpropagation 

or a mixture of backpropagation and least-square. The ANFIS 

is a supervised training network used primarily for modeling 

nonlinear functions, classification, regression, and estimating 

chaotic time series [114]. The training process of ANFIS 

network is completed in a two-step approach. The default 

parameters are trained via the gradient descent and, in the 

backward pass, by the back-propagation algorithm. 

In the ANFIS structure, the input layer, called layer 0, 

consists of n nodes, where n is the number of inputs. The next 

layer is layer 1 and is called fuzzification layer, in which each 

node denotes a membership value as a Gaussian function with 

average as presented in (2): 

𝜇𝐴𝑖(𝑥) =
1

1 + [
𝑥 − 𝑐𝑖
𝑎𝑖

]
2𝑏𝑖

 
(2) 

where ai, bi, and ci represent the parameters of the function and 

their values are matched in the learning phase by a back-

propagation algorithm. At each step, as the parameters change, 

the membership function of the linguistic term Ai changes. 

In layer 2 of the ANFIS structure, the multiplication operation 

for each node is represented by the strength of the rule. Thus, to 

find the firing strength of a rule in which the variables 𝑥0 have 

a linguistic value of Ai and xi has a linguistic value of Bi, the 

membership values denoted by 𝜇𝐴𝑖(𝑥0) and 𝜇𝐵𝑖(𝑥1) are 

multiplied in the antecedent part of Rule i. The number of rules 

 
Fig. 4. Block diagram of SOM 

in layer 2 is represented by pn nodes. Thus, n and p represent 

the number of input variables and the number of membership 

functions.  

𝑤𝑖 = 𝜇𝐴𝑖(𝑥0) ∗ 𝜇𝐵𝑖(𝑥1)  (3) 

Layer 3 is called the normalization layer and normalizes the 

strength of all rules based on the following equation: 

𝑊̅𝑖 =
𝑊𝑖

∑ 𝑊𝑗𝑅
𝑗=1

 (4) 

where wi demonstrates the firing strength of the i-th rule. This 

layer contains 𝑝𝑛 nodes. 

Layer 4 in the ANFIS structure is a layer consisting of 

adaptive nodes. Each node in this layer calculates a linear 

function in which the leading multilayer feed-forward neural 

network error function is used to adjust the coefficients of the 

function as follows: 

𝑊̅𝑖𝑓𝑖 = 𝑊̅𝑖(𝑝0𝑥0 + 𝑝1𝑥1 + 𝑝2) (5) 

pi’s represent the parameters where n denote the number of 

system inputs and 𝑖 = 𝑛 + 1. Finally, 𝑊̅ is the output of layer 

3. The back-propagation algorithm is used as the training 

algorithm in ANFIS and the parameters are updated with a 

learning step. 

Layer 5 is the output layer that the net sum of the output of 

the nodes in layer 4 expresses its function, and finally, the 

output is expressed as follows: 

∑𝑊̅𝑖𝑓𝑖

𝑖

=
∑ 𝑤𝑖𝑖 𝑓𝑖

∑ 𝑤𝑖𝑖

 (6) 

where the output of node i in layer 4 is expressed as 𝑤̅𝑖𝑓𝑖. 
Finally, the overall output of the ANFIS is based on the 

summation of the consequences of the rule. 

In recent years, in addition to fault detection in PESs, the 

ANFIS has been employed in other applications related to 
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power electronics and industrial electronics, such as control, 

modeling, estimation, and harmonic elimination [113], [115]–

[117]. 

4) Radial Basis Function (RBF) 

The RBF was introduced in 1988 by Broomhead and Lowe 

as one of the generalized structures of feed forward ANNs 

[118]. In this type of neural network, biological neurons have a 

local response. Like other ANN algorithms, the RBF has a 

structure with an input layer, a hidden layer, and an output layer. 

In the input layer, the number of nodes is equal to the number 

of input dimensions. In the second layer, which is the hidden 

layer, the number of nodes depends on the complexity of the 

problem. In the third layer or output layer, the number of nodes 

is equal to the output data dimension [119]. In this structure, the 

input layer distributes the normalized input variables to the 

hidden units of the hidden layer. An RBF associated with a 

center vector with dimensions equal to the number of input 

variables is implemented by each hidden unit. In the RBF 

structure, the output layer is connected linearly to the hidden 

layer. Thus, the simple structure of RBF has made this 

algorithm faster and more efficient than algorithms such as 

MLP [120]. 

The orthogonal least-squares algorithm, clustering and 

gradient-based algorithm can be named as the most widely used 

RBF network training algorithms [121]. The overall output of 

an RBF network for a dataset D containing N patterns of 

(𝑥𝑝 , 𝑦𝑝) is expressed as 𝑦𝑝, where 𝑥𝑝 is the input samples. The 

output corresponding to the i-th activation function ∅𝑖 in the 

hidden layer is computed as follows: 

∅𝑖(‖𝑥 − 𝑐𝑖‖) = exp⁡(−
‖𝑥 − 𝑐𝑖‖

2

2𝜎𝑗
2 ) (7) 

where ‖. ‖ shows the Euclidean norm, 𝜎𝑗 and 𝑐𝑖 represents the 

width and center of the hidden neuron j, respectively. Finally, 

the output associated with the node k of the RBF output layer is 

calculated as: 

𝑦𝑘 =∑𝑤𝑗𝑘∅𝑗(𝑥)

𝑛

𝑗=1

 (8) 

The RBF is mainly used for classifying, forecasting, and 

estimating the relationship between input and output variables. 

However, the network has been used in recent years for issues 

such as control, stability, and anomaly detection in power 

electronics [122]–[124]. 

5) Fuzzy Neural Network (FNN) 

A fuzzy system performs the control and estimating process 

by mapping the fuzzy sets in input product hypercube to the 

fuzzy sets in an output hypercube. Fuzzy systems behave like 

associative memories that associate output fuzzy sets with input 

fuzzy sets [125]. Using the concept of fuzzy system, a fuzzy 

neural network (FNN) can be created for forecasting, 

categorizing, and mapping applications between input and 

output variables. The FNN has the advantages of fuzzy logic 

and neural networks. It is able to combine fuzzy reasoning in 

the management of uncertain information and the ability of 

ANNs to learn from the process. The training process of FNN 

network is performed by using back-propagation and gradient 

algorithms. 

 In FNNs it is based on the fact that input represents a 

precondition and output is considered as the result of a rule. An 

FNN, in addition to all its control and training capabilities, 

suffers from limitations such as static problems in the scope of 

application due to the limited advanced network structure and 

poor performance in large and time-series data processing 

[126]. However, these systems are mainly used in power 

electronics applications such as anomaly detection, control 

[127], [128], and controller design [97]. 

Literature review provides an overview of the performance 

of ANN-based techniques in power electronics applications. It 

is observed that the ANN-based algorithms have been widely 

used in power electronics industry and science. Given the focus 

of this paper on fault detection in PESs, Table I categorizes fault 

detection studies in PESs based on the ANN algorithms. 

C. Machine Learning  

Recently, machine learning in particular has become a highly 

active research field as well as an essential technology. 

Machine learning techniques have been able to suitably solve 

problems related to various scientific and industrial 

applications. The continuation of this section introduces the 

various machine learning techniques that are mainly used in 

power electronics applications. 

1) Support Vector Machine (SVM) 

The SVM is one of the supervised machine learning 

techniques that was first introduced in 1995 [129]. The SVMs 

were introduced specifically to solve problems related to 

classification and then generalized as support vector regression 

for use in linear regression problems. In general, categories 

related to two or more variable classes, estimation, and pattern 

recognition are various applications of SVM. Additionally, the 

SVM can globally evaluate any multivariate function with any 

level of approximate accuracy [130], [131]. As Fig. 5 shows, 

the main idea of SVM is to estimate an optimal hyperplane as 

the decision surface and to maximize the edge of isolation 

between the two data types. Finding the suitable hyperplane and 

predicting each sample in the corresponding class can be 

accomplished by training the SVM model on the training 

dataset, a process that involves sequentially optimizing an error 

function [132]. 

Creating a linear mapping for the 𝑍 = {𝑋𝑖 , 𝑌𝑖|𝑖 =
1, 2, 3, … , 𝑛} dataset by SVM is based on the following relation: 

𝛾 = 𝜔𝑇𝜃(𝑥) + 𝑏 (9) 

where ω and b represents the weight vector and bias. 𝜃(𝑥) 
denotes the agent of a nonlinear mapping function. 

Computation  
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TABLE I 
STUDIES THAT HAVE IDENTIFIED FAULTS BASED ON ANN TECHNIQUES 

Method Ref Year Fault type PES application Advantages Limitations 

MLP [22] 2003 Single commutation 
failure, Double not 

successive commutation 

failure, Double successive 
commutation failure 

3-phase cycloconverter drive 
scheme 

HVDC converter 

Multilevel-inverter drive 

Capable of implementing 
on complex nonlinear 

problems and data. 

Fast performance after 
training and save in the test 

stage. 

Ideal and accurate 
performance against small 

datasets. 

It’s very simple structure 
makes it easy to design the 

desired network. 

 

The effectiveness of 
independent variables from 

dependent variables is not 

known in this method. 
Computations of this 

method is complex and 

time consuming 
Model performance and 

test results are highly 

dependent on the quality of 
the training process 

In processing high 

dimension data, it mainly 
suffers from over-fitting 

problems 

Does not have the ability to 
model time-series data and 

extract correlations 

between input and output 
variables in this data 

 

 

 

 [29] 2009 SC Converter-fed induction motors 

 [31] 2011 Rotor fault Converter-fed induction motor 

and changeable rotors 

 [148] 2012 OC switch fault Three-parallel converters in a 

wind turbine 

 [149] 2013 OC Proton exchange membrane fuel 

cell and DC-DC Converter 

 [33] 2013 Intern-turn SC Three-phase converter-fed 

induction motor 

 [35] 

[150] 

2014 

2015 

SC incipient fault 

Four different levels of 
switches fault 

Three-phase squirrel-cage 

induction motor fed by a 
sinusoidal PWM converter 

Series hybrid electric vehicles 

 [57] 2018 Boundary conduction 

mode, discontinuous 
conduction mode, CCM, 

deviations in nominal 

values of capacitor, power 
inductor, and duty cycle 

PWM DC-DC converters and 

their applications for the buck and 
boost DC-DC converters 

 [151] 2018 Stator SC Three-phase induction motors 

 [29] 2019 SC Converter-fed induction motors 

 [65] 2019 Single-Submodule OC 
fault 

Modular multi-level converter 

BPNN [21] 2002 OC and SC 3-phase cycloconverter drive 

scheme 

Duals converters applied in DC 
drives 

Correction of trajectories in 

weight and bias space 

through gradient descent is 
one of the most important 

features of this technique. 

Due to the removal of 
weight links, it provides a 

very simple network 

structure. 
It has fast and easy 

programming. 

No prior knowledge of 
networks is required. 

Its training process is 

independent of the features 
of the function. 

Allows efficient calculation 

the gradient in each layer 
completely. 

Mainly in solving most 

problems, it has a high 

dependence on the type of 
inputs. 

It is highly sensitive to 

complex and noisy data. 
Cannot do time-series data 

modeling. 

The processing of large 
volumes of data by this 

method suffers from the 

problem of over-fitting. 
Not able to extract features 

from input data. 

 

 [32] 2012 Faults in a single thyristor 

and the faults happening 

in two thyristors at the 
same time 

Three-phase full-bridge controlled 

rectifier 

 [33] 2013 Intern-turn SC Three-phase converter-fed 

induction motor 

 [52] 2017 OC switch fault Cascaded H-bridge seven-level 
converter 

 [152] 2017 Diode OC Three-phase full-bridge rectifier 

 [7] 2018 OC, SC,  component 

degradation of power 
MOSFET, inductor, 

diode, and capacitor 

DC-DC Converter (closed-loop 

single-ended primary inductance 
converter) 

 [56] 2018 Eight kinds of faults 
related to DC bus 

capacitor and energy 

storage inductor 

Dual-buck bidirectional DC-AC 
converter 

 [59] 2018 Switch OC and SC MMC 

 [61] 2018 IGBT OC Traction inverters 

 [153] 2019 Multiple OC switch fault A back-to-back converter in 

doubly-fed induction generator-

based wind turbine systems 

SOM [26] 2007 Driver power supply 
under voltage, transistor 

SC, and overcurrent 

Isolated DC-DC converters in 
multi-phase multi-level motor 

drive 

The process of test and 
evaluating new data after 

network training is very 

fast. 
The SOM has a very simple 

network structure that 

avoids the complexity of 
computing. 

It can also be used as an 

unsupervised procedure. 
It can be used as a tool to 

dimension reduction of 

high-dimension data. 

The process of training a 
network to deal with high-

dimension data is time-

consuming. 
Despite processing large 

data, it does not have the 

ability to model the time-
series mode of data. 

The training process of this 

network and its 
performance in the test 

phase is highly dependent 

on the quality of the input 
data. 

 [33] 2013 Intern-turn SC Three-phase converter-fed 
induction motor 

 [47] 2017 SC Three-phase converter-fed 

induction motors 

RBF [154] 2003 OC Inverter drive 
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 [31] 2011 Rotor fault Converter-fed induction motor 
and changeable rotors 

It has a fast process of 
determining the network 

parameters and training 

stage. 
The RBF has a high ability 

to solve function 

approximation problems 
for data and surfaces with 

regular peaks and valleys. 

Ideal performance and high 
resistance against noisy 

data are the prominent 

features of this technique. 
Fast performance after 

training in the test stage. 

The large number of 
neurons increases the 

complexity of the network 

for processing input 
variables and determining 

their correlation with 

output variables. 
The RBF network training 

algorithm is incapable of 

processing and modeling 
robust and complex 

nonlinear systems. 

Like other traditional 
neural networks, it suffers 

from time-series data 

modeling and high-
dimension data. 

 [60] 2018 Switch OC MMC 

 [64] 2019 OC Permanent magnet synchronous 

generator wind energy converters 

 [64] 2020 OC in both single and 
double switches 

A permanent magnet synchronous 
generator system for wind 

turbines 

FNN [21] 2002 OC and SC Duals Converters Applied in DC 
Drives 

This technique has a much 
better and more accurate 

learning ability and the 

convergence error in this 

network is very small. 

Compared to other ANN 

techniques, it has a high 
ability in modeling and 

mapping nonlinear 
systems. 

The structure and training 

process of this network 
requires less adjustable 

support parameters than 

other ANNs. 
Better integration of this 

network with other control 

design methods is a 
prominent feature of this 

method. 

The limited structure of this 
network causes limitations 

such as static problems in 

its application areas. 

High-dimension data 

processing is not very 

accurate and it is not 
possible to discover the 

correlation between input 
and output variables in 

time-series data by this 

method. 
In the face of noisy data, 

especially in the training 

process, suffers from over-
fitting problems. 

 [23] 2004 Fault-free circuit Delta-sigma converter 

 [27] 2007 OC and SC switch faults A dc-motor-based brake-by-wire 

system 

 [44] 2016 Transistor OC Three-phase inverter circuit 

 [155] 2017 Structural and functional 

faults 

Analog to digital converter 

 [49] 2017 Switch OC Multiphase multilevel NPC 
converters in five-phase machine 

 [56] 2018 Eight kinds of faults 

related to DC bus 
capacitor and energy 

storage inductor 

Dual-buck bidirectional DC-AC 

converter 

 
Fig. 5. Main idea of SVM 

of support vectors associated with each class are described as: 

{
𝑏 +𝑊𝑇 . 𝑋𝑖 = +1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑑𝑖 = +1

𝑏 +𝑊𝑇 . 𝑋𝑖 = −1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑑𝑖 = −1
 

 

(10) 

where 𝑑𝑖 shows the related class, i.e., 𝑑𝑖 = +1 of class A and 

𝑑𝑖 = −1 related to class B. 

In the SVM structure, the transfer of inseparable data to a 

high-dimensional linear space and their classification based on 

the linear hyperplane is possible using a vector mapping 

function 𝜑(𝑥). Finally, the implementation of the decision 

function is done as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑𝑎0,𝑖

𝑁

𝑖=1

(𝜑(𝑥)𝜑(𝑥𝑖)) + 𝑏) 
 
(11) 

The training process of the SVM network is based on 

different kernels. Various types of kernels such as linear, 

nonlinear, and polynomial can be used as SVM training 

algorithms. 

As mentioned in the literature, the SVM has been used 

extensively in recent years to identify faults related to PESs. 

However, its use is not limited to this topic and it has been 

utilized in other applications such as estimating the batteries 

state of charge, reliability, and control issues [133]–[136]. 

2) Extreme Learning Machine (ELM) 

The ELM was first introduced in 2006 as one of the machine 

learning applications and learning tool based on a modification 

of the traditional single hidden layer feed-forward neural 

network [137]. The ELM technique is mainly used for 

classification applications, regression-based forecasting in 

short-term intervals, and estimating the relationship between 

input and output variables. As Fig. 6 shows, the ELM structure 

is consisting of the input layer, hidden layer, and output layer 

[138]. Unlike the ANN algorithms and some machine learning 

techniques, the ELM has a very fast training process and  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

 
Fig. 6. Schematic diagram of a ELM network 

randomly selects hidden thresholds during the training period 

and analyzes the output weight without iterative calculations. 

The ELM as an efficient tool has unique advantages such as 

higher performance and suitability for kernel functions and 

nonlinear activation. The best feature of the ELM algorithm is 

its very high training speed, which is based on the simplicity of 

its structure [139], [140]. 

The gradient descent-based back-propagation training 

algorithm is most widely employed for the training of ELM 

[141]. In the first step of ELM, the network parameters are 

assigned randomly. Then, the output matrix related to the 

hidden layer calculation for the input weight vectors 𝑥𝑖 =

[𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁]
𝑇⁡is calculated as follows: 

∑𝛽𝑖𝑓𝑖(𝑥𝑖) =

𝑁̃

𝑖=1

∑𝛽𝑖𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗)

𝑁

𝑖=1

= 𝑡𝑗, 𝑗 = 1, … , 𝑁 

                     

(12) 

where 𝑏𝑖 denote the hidden layer bias and 𝑖 is the number of 

hidden layer neurons, and the hidden neurons are assigned as 

𝑁. The weight vectors which connect the input nodes and i-th 

hidden layer nodes are shows as 𝑎𝑖 = [𝑎𝑖1, 𝑎𝑖2 , … , 𝑎𝑖𝑛]
𝑇. The 

output weight vectors that connect output layer neurons with 

the i-th hidden neuron is demonstrated as 𝛽𝑖 =

[𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑛]
𝑇. In the ELM architecture 𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗) is the 

activation function and is represented as follow: 

𝑓(𝑎𝑖 . 𝑥𝑗 + 𝑏𝑗) =
1

1 + 𝑒−(𝑎𝑖.𝑥𝑗+𝑏𝑗)

−1

,⁡⁡⁡𝑖 = 1,… , 𝐿,

𝑗 = 1,… ,𝑁 

 

 

(13) 

The equation (12) can be written as follows [142]: 

𝐻𝛽 = 𝑇 (14) 

with 

𝐻 = [
𝑓(𝑎1. 𝑋1 + 𝑏1) ⋯ 𝑓(𝑎𝑁 . 𝑋1 + 𝑏𝑁̃)

⋮ ⋱ ⋮
𝑓(𝑎1. 𝑋𝑁 + 𝑏1) ⋯ 𝑓(𝑎𝑁 . 𝑋𝑁 + 𝑏𝑁)

]

𝑁×𝑁

 

𝛽 = [
𝛽1
𝑇

⋮
𝛽𝑁
𝑇
]

𝑁×𝑚

    𝑇 = [
𝑡1
𝑇

⋮
𝑇𝑁
𝑇
]

𝑁×𝑚

 

where 𝐻 is the hidden layer output matrix,  β and 𝑇 show the 

output weight matrix and the matrix of target output, 

respectively. Finally, the input weight and bias in the training 

stage are generated randomly, and the output weight can be 

calculated by using the Moore-Penrose generalized inverse of 

𝐻 as follow [142], [143]: 

𝛽 = 𝐻ϯ𝑇 (15) 

This technique has been used since 2013 to detect faults in 

PESs and has since been used in the power electronics industry 

for applications such as design, control, condition monitoring, 

and nonlinearity mitigation for light-emitting diode 

communications [144]–[147]. 

3) Decision Trees (DT) 

The decision tree is a type of inductive learning and is known 

through a systematic method known as recursive binary 

partition. This technique can be used in different application 

ranging from linear regression models, classification, and 

feature extraction, to pattern recognition [156], [157]. As Fig. 7 

shows, the structure of decision trees consists of tree-shaped 

diagrams [158]. Thus, this tree is formed from components 

called branches and three types of nodes called root node, 

internal node and leaf node. In this structure, the dataset is 

divided into a number of subsets through a series of 

dichotomous classifications. In the interconnected structure of 

the decision tree, nodes are the points in the tree where features 

are processed. Branches are also test results that form the next 

nodes. Among the nodes, the root node is the highest node, the 

internal nodes in the middle and the leaf nodes at the end are 

known as the end nodes. The decision tree training and testing 

process ends when a node reaches a certain predetermined class 

purity level and there is only one output type in that node [158], 

[159]. In some reviewed studies, the decision tree technique has 

been used to identify PESs anomalies. In some other valuable 

studies [151], [157], [160], [161], these techniques have been 

used in various applications of power electronics and industrial 

electronics. After introducing each of the machine learning 

techniques and introducing their various applications in power 

electronics, the classification of fault detection studies in PESs 

based on the machine learning algorithms is performed in Table 

II. 

D. Deep Learning 

The complexity and nonlinear behavior of PESs have increased 

the need for accurate and high-performance methods in fault 

detection operations. Although the ANN and machine learning  

 
Fig. 7. Schematic diagram of a decision tree 
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TABLE II 
STUDIES THAT HAVE IDENTIFIED FAULTS BASED ON MACHINE LEARNING TECHNIQUES 

Method Ref Year Fault type PES application Advantages Limitations 

SVM [30] 2009 OC switch fault PWM voltage fed power 
converter of brushless DC motor 

drive 

The high impact of this 
method on high-

dimensional data is a 

prominent feature. 
In data where the number 

of features is more than the 

number of rows of data, 
SVM can provide an 

acceptable application. 

High ability in 
classification applications 

even for multi-class data 

based on creating a hyper-
plain that separates the 

features of each class well. 

Generalizability for 
regression and estimation 

applications. 

Compared to ANN 
techniques, it uses much 

less memory to process 

data. 

The SVM algorithm is not 
suitable for large data sets. 

In the face of noise data 

that is closely correlated 
between target classes, it 

does not perform as well. 

In cases where the number 
of features of each data 

point exceeds the number 

of training data samples, 
SVM will perform poorer. 

Choosing an optimal kernel 

for SVM is one of the main 
problems of using this 

method. 

Improper performance in 
the face of time-series data 

is considered as one of the 

problems of this method. 

 [32] 2012 Faults in a single thyristor 
and the faults happening in 

two thyristors at the same 

time 

Three-phase full-bridge 
controlled rectifier 

 [34] 2013 valve SC, valve pulse loss, 
single-phase grounding, 

two-phase grounding, 

three-phase grounding, DC 
line grounding 

HVDC converter 

 [35] 2014 SC incipient fault Three-phase squirrel-cage 

induction motor fed by a 
sinusoidal PWM converter 

 [37] 2015 Switch OC Cascaded H-bridge multi-level 

(5-level) inverter 

 [40] 2015 thyristors OC fault Three-phase full-bridge rectifier 

 [162] 2016 Switch OC Three-level NPC inverter 

 [152] 2017 Diode OC Three-phase full-bridge rectifier 

 [155] 2017 Structural and functional 

faults 

Analog to digital converter 

 [7] 2018 OC, SC,  component 
degradation of power 

MOSFET, inductor, diode, 

and capacitor 

DC-DC Converter (closed-loop 
single-ended primary inductance 

converter) 

 [56] 2018 Eight kinds of faults related 

to DC bus capacitor and 

energy storage inductor 

Dual-buck bidirectional DC-AC 

converter 

 [59] 2018 Switch OC and SC MMC 

 [60] 2018 Switch OC MMC 

 [61] 2018 IGBT OC Traction inverters 

 [153] 2019 Multiple OC switch fault A back-to-back converter in 

doubly-fed induction generator-
based wind turbine systems 

ELM [33] 2013 Intern-turn SC Three-phase converter-fed 
induction motor 

The ELM has a very simple 
structure that minimizes 

computational complexity 

and speeds up the training 
process of this network. 

The selection of hidden 

thresholds is done 
randomly so that the output 

weight is evaluated without 

iterative calculations. 
ELM has high performance 

and stability in kernel 

functions and nonlinear 
activations. 

It performs very well in the 
processing of nonlinear 

systems. 

It does not provide 
acceptable performance in 

processing data whose 

number of features is more 
than the number of rows. 

Processing large data with 

this technique does not 
have good results. 

Modeling the time-series 

relationship of input data 
by ELM is not possible. 

The training process in the 

data that the output labels 
are close to each other has 

more problems. 

 [35] 2014 SC incipient fault Three-phase squirrel-cage 

induction motor fed by a 
sinusoidal PWM converter 

 [163] 2016 Closed-loop Single-ended primary inductance 

converter 

 [53] 2018 Soft and hard faults Super-buck converter circuit 

 [62] 2018 Switch OC Phase shifted full-bridge 
converter 

 [71] 2019 Switch OC Insulated gate bipolar transistor 

(IGBT) used in three-phase PWM 
converter 

DT [31] 2011 Rotor fault Converter-fed induction motor 

and changeable rotors 

Compared to other 

techniques, decision trees 

require less effort for data 
preparation during pre-

processing. 

In the face of noise data, 
there is no need for pre-

processing. 

They provide acceptable 
performance in the training 

process without the need 

for data scaling. 
After completing the 

training process, the test 

stage is performed at a very 
high speed by the saved 

network. 

The smallest changes in the 

data process cause large 

changes in the structure of 
the decision tree and cause 

network instability. 

In dealing with large and 
high-dimension data, they 

often involve a lot of 

computational complexity. 
The decision tree often 

takes more time to model 

training. 
They do not have 

acceptable generalizability 

for regression applications 
and estimation of 

insufficient continuous 

values. 

 [46] 2017 OC Voltage source inverter for 
induction motor drives 

 [151] 2018 Stator SC Three-phase induction motors 
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techniques have been widely used in PESs, increasing the value 

of monitored data from new smart systems has also reduced the 

accuracy and performance of these techniques. Today, deep 

learning techniques are employed as algorithms with high 

ability to extract features and accurately analyze and model the 

nonlinear behavior of PESs. Deep learning has various 

algorithms such as the CNN, RNN, LSTM, and Auto-encoders. 

In the continuation of this sub-section a complete introduction 

of such method together with its capabilities in fault detection 

and other applications of industrial and power electronics are 

outlined. 

1) Convolutional neural network (CNN) 

The CNN is one of the most prominent deep learning 

techniques, known as a powerful tool in feature extraction. This 

technique has been used in many scientific and industrial fields 

so far. Classification, feature extraction, and high volume data 

processing have been the most important applications of this 

technique [164], [165]. The CNN, by providing a layer-to-layer 

structure and in-deep training, has been able to cover many of 

the shortcomings of ANN and machine learning algorithms. 

Fig. 8 shows the structure of CNN which includes the input 

layer, convolution layers, pooling layers, fully-connected 

layers, and finally the classification layer (Soft Max) [166], 

[167]. Each layer in this structure offers a unique function until 

the ideal output is predicted. The input layer receives the input 

data and transmits it to the first convolution layer. Each 

convolution layer consists of kernels that act as filters on the 

data and extract their features. Convolution operations 

associated with each layer are done as follows [166]: 

𝑦𝑖𝑗 = 𝜎(∑∑𝑊𝑟𝑐𝑋(𝑟+𝑖×𝑆)(𝑐+𝑗×𝑆) + 𝑏

𝐹

𝑐=1

𝐹

𝑟=1

) 

0 ≤ 𝑖 ≤
𝐻𝑑 − 𝐹𝑑

𝑆
, 0 ≤ 𝑗 ≤

𝑊 − 𝐹𝑑

𝑆
 

 
 

(16) 

where 𝑦𝑖𝑗 represent the output of each node in the convolutional 

layer. 𝐻𝑑 and 𝐹𝑑 represent the length and height dimensions 

corresponding to the input variables, respectively. S stands for 

stride length. 𝑊𝑟𝑐 and b denotes the weight and bias associated 

with each node. The activation function in this layer is shown 

as term 𝜎. The activation function in each convolution layer of 

CNN is performed by the rectified linear unit (ReLU), as a 

nonlinear activator function, as follows [168]: 

𝐹(𝑥) = max⁡(0, 𝑥) (17) 

 
Fig. 8. Layer-to-layer structure diagram of CNN 

The extracted features by each filter are collected by the 

pooling layer in each convolution layer and transferred to the 

next convolution layer as a feature map. The pooling operation 

in each layer can be done on two bases, average pooling and 

Max pooling. The pooling operation is done in each 

convolution layer as follows [168]: 

𝑥𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥𝑗
𝑙−1) + 𝑏𝑗

𝑙) (18) 

where 𝑥𝑗
𝑙 is the output of the j-th filter in convolution layer l;  

𝑝𝑜𝑜𝑙𝑖𝑛𝑔⁡() denote the pooling operation and 𝛽 represent the 

pooling kernel. 

Studies have shown that Max pooling can be more efficient 

because it contains the highest value of extracted features. This 

run continues to the last convolution layer until the feature map 

extracted from the last convolution layer is considered as the 

input of fully-connected layers. The fully-connected layers are 

a type of feed forward-based neural networks that is responsible 

for determining the weight and bias of the nodes in the extracted 

features. The CNN training process is performed in fully 

connected layers using an MLP neural network. In the final 

stage of CNN, a SoftMax layer predicts and classifies the 

extracted features based on designated labels [169], [170]. 

In the evaluation of CNN applications, various studies show 

that this technique has been used not only in fault detection of 

PESs, but also in  estimating electric motor temperatures and 

SOC estimation of batteries [171], [172]. 

2) Recurrent neural network (RNN) 

The RNNs are a class of deep learning techniques based on 

artificial neural networks used to process sequential data. 

Estimating the correlation between input and output variables, 

processing large volume data, forecasting, and classification are 

the various applications of RNNs [173], [174]. As shown in Fig. 

9, the connections between nodes in an RNN form a guided 

graph along a time sequence. In addition, the RNNs in the 

training phase use recurrent units to store past information to 

use the stored information as input to subsequent layers. This 

recurrent process enables RNNs to perform excellently in 

identifying the behavioral pattern of the input data [175]. 

However, as the training process increases in length and the 

process becomes longer, training RNNs to obtain long-term 

data dependence becomes more difficult and requires more 

memory. As a result, the network encounters problems such as 

gradient vanishing or rarely, gradient explosion, which makes 

gradient-based learning methods impractical [175], [176]. To 

solve this problem and improve the training process for time-

series data and high-dimensions, two algorithms, LSTM [177] 

and gated recurrent unit (GRU) [178] have been introduced. 

In recent years, the RNN techniques have been widely used 

as a powerful tool for a variety of applications such as converter 

control, harmonic prediction at nonlinear loads, maximum 

power factor searching, and impedance measurement in PESs 

and industrial electronics [179]–[181]. 

The LSTM is one of the most prominent versions of RNNs, 

which was first proposed in 1997 to improve traditional RNN 
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performance and learn long-term features [177]. The main idea 

that LSTM pursues is the introduction of an adaptive gateway 

mechanism that determines the extent to which the memory unit 

retains the previous state while at the same time, it remembers 

the features of the current input data. This function is very 

suitable for processing and predicting events with long intervals 

and delays in time-series. Furthermore, the classification, 

forecasting, signal processing, and pattern recognition for high-

dimensional data are prominent applications of LSTM [182], 

[183]. As Fig. 10 shows, each LSTM unit is formed as an input 

gate, output gate, forget gate, and memory cell as the hidden 

layer. In addition, the LSTM network replaces neurons in the 

hidden RNN layer with a memory unit to realize the memory of 

past information [184]. 

Gradient descent and back-propagation through time are 

among the well-known algorithms used to training various 

types of RNN networks such as LSTM and Bidirectional 

LSTM. The back-propagation through time is a generalization 

of back-propagation for feed-forward networks. The 

mathematical formulation related to the LSTM architecture is 

as follows: 

𝑓𝑡 = 𝜎(𝑊𝑙𝑓𝑙𝑡 +𝑊𝑚𝑓𝑚𝑡−1 + 𝑏𝑓) (19) 

𝑖𝑡 = 𝜎(𝑊𝑙𝑖𝑙𝑡 +𝑊𝑚𝑖𝑚𝑡−1 + 𝑏𝑖) (20) 

𝑜𝑡 = 𝜎(𝑊𝑙𝑜𝑙𝑡 +𝑊𝑚𝑜𝑚𝑡−1 + 𝑏𝑜) (21) 

𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑙𝑎𝑙𝑡 +𝑊𝑚𝑎𝑚𝑡−1 + 𝑏𝑎) (22) 

𝑐𝑡 = 𝑐𝑡−1ɸ𝑓𝑡 + 𝑖𝑡ɸ𝑎𝑡 (23) 

𝑚𝑡 = 𝑜𝑡ɸ𝑡𝑎𝑛ℎ𝑐𝑡 (24) 

where σ shows the logistic sigmoid function, 𝑓𝑡 , 𝑖𝑡 , and 𝑜𝑡 
represent the forget, input, and output gates, respectively. 𝑐𝑡  
and 𝑎𝑡 are the memory cell and hidden vector, respectively. 

𝑊𝑙∗ = {𝑊𝑙𝑓 ,𝑊𝑙𝑖 ,𝑊𝑙𝑎 ,𝑊𝑙𝑜} and 𝑊𝑚∗ = {𝑊𝑚𝑓 ,𝑊𝑚𝑖 ,𝑊𝑚𝑎 ,𝑊𝑚𝑜} 

denote the trainable weights associated with respective gates. 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, and 𝑏𝑎 represent output biases for each gate. Finally, 

operator ɸ represent the Hadamard product. 

Each of these gates in the LSTM structure offers a unique 

function to predict the final output in the best possible way. 

Details on the structure and function of LSTM are introduced 

 

 
Fig. 9. Structural schematic diagram of RNN 

 
Fig. 10. Block diagram of a LSTM unit 

in [185]. As stated in the literature on the ability of the LSTM 

technique to detect PESs faults, it should be noted that this 

method is also used in a variety of issues such as pulsed load 

monitoring and tolerance control related to PESs [67], [186]. 

3) Autoencoders (AEs) 

An autoencoder (AE) is one of the deep learning applications 

that is often applied to reduce the dimension of the data and 

extract the data features with minimal reconstruction error. As 

Fig. 11 shows, an AE consists of an encoder and a decoder 

network, which also consists of an input layer, several hidden 

layers, and an output layer [187], [188]. The structure and 

function of AE is such that based on nonlinear layers it can 

retain the most data-related features and the most important 

information after dimensionally reduction. In the AE training 

phase, with proper retrieval of the input data, maximum 

information about the original input data is stored by hidden 

cells in the hidden layers [164].  

The encoding and decoding operations via AE for the input 

variable x is performed as follow: 

𝑓 = 𝑔(𝜔𝑥 ∗ 𝑥 + 𝑏𝑥) (25) 

𝑦 = 𝑔(𝜔𝑦 ∗ 𝑥 + 𝑏𝑦) (26) 

where 𝑦 is the output features and 𝑓 denote the network 

features. 𝜔𝑥, 𝜔𝑦, 𝑏𝑥, and 𝑏𝑦 represent the input-to-hidden 

weights, hidden-to-output weights, bias of hidden units, and 

bias of output units, respectively. 𝑔(. ) demonstrate the 

activation function. 

Minimizing reconstruction errors is one of the main 

objectives of AE training. To achieve this, the proximity 

between x and y must be expressed by computing the loss 

function (L) for n input samples as follows: 

𝐿𝐴𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

 

(27) 

Following this proceeding, the reconstruction error is computed 

as follows: 
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𝑅𝐸 =∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 
 

(28) 

AE is trained based on clean 𝑥 data. The test of the AE is 

performed using 𝑥-noise data obtained by adding noise to clean 

𝑥-data. Upon completion of this process, the reconstructed 

output becomes as 𝑦̂ and L_DAE is defined as follows: 

𝐿𝐷𝐴𝐸 =
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖̂)

2 +
𝜆

2
(‖𝑊1

2‖
𝐹

2
𝑛

𝑖=1

+ ‖𝑊2
2‖

𝐹

2
) 

 

(29) 

AEs are divided into different categories, each of which has 

been used in various applications in industrial electronics and 

power electronics [186], [189]. A review of the literature 

showed that in recent years, deep learning techniques have been 

very successful in various applications of the power electronics 

industry. So that these techniques were able to compensate for 

the shortcomings of ANN and machine learning methods and 

were considered a great success in identifying faults related to 

PESs. Table III lists the fault detection studies in PES based on 

deep learning techniques. 

It should be noted that the significant points that should be 

noted are the determination of the number of epochs and the 

determination of the amount of data to perform the training and 

test steps related to supervised techniques. In learning-based 

data mining techniques, part of the data is considered for 

training and another part for test or validation the network. The 

determination of each of these values is the responsibility of the 

user and it is commonly shown in various studies that 70% to 

80% of the data is selected for the training process and the rest 

for the test or validating the network. Determining the number 

of epochs or iterations related to each network can also be done 

in different ways. Thus, in many techniques, this process is 

based on the trial and error method and, in others, it is based on 

optimization algorithms. The most ideal number for epoch is 

achieved when the results of training and test processes are 

accompanied by the least amount of error values. 

 
Fig. 11. The structure diagram of a Autoencoder 

E. Unsupervised Techniques 

PES converters have the nonlinear behavior, and in the face 

of some anomalies, the behavior of these systems changes 

significantly. Any fault or anomaly that occurs on the PES 

converters induces effects on the system behavior, the 

extraction of these effects from the characteristic curves of the 

system starts the process of anomaly detection [38]. As noted 

in the literature, intelligent learning-based techniques have been 

used in most studies as a variety of fault detection tools. 

However, in most cases, these techniques have suffered from 

some problems in the face of complex systems and high 

dimension data that contain noise with abnormal behavior in the 

signals received from the system. 

Many studies have shown that different faults have different 

effects on voltage and current signals from electronic power 

converters, and using these signals as input to diagnostic 

methods requires a preprocessing operation. In signal 

preprocessing, the correlation between the variables is 

removed, the variables are reduced, and the most significant 

though components are extracted by weighing the various 

variables to somehow see the effects of the fault on the signal 

more clearly [73]. Unsupervised data mining applications have 

been used effectively to solve these problems and perform 

signal preprocessing to improve the anomaly detection process 

in PESs. Unsupervised techniques mainly include dimensional 

reduction techniques, which can be referred to as methods PCA 

[38], [73], kernel PCA [45], Kullback-Leibler [51], Isometric 

feature mapping [190], and feature learning [191]. In addition 

to fault detection in industrial electronic equipment and PESs, 

these techniques have been also used in other applications 

[165]. 

IV. ROUTINE OF FAULT DIAGNOSIS IN PESS 

The fault detection process in PESs is based on a step-by-step 

procedure. In the first stage, the signals related to the healthy 

and damaged state of the system are measured. In the second 

stage, the measured signals can be normalized, filtered or pre-

processed according to certain criteria in order to reduce the 

data dimension, and to use important parts of the signals. In the 

third stage, the selected diagnostic technique is designed and 

finally, the available signals are used as input to the desired 

procedure. Every PES has characteristics curves that show the 

performance of the system at a given time point. Each anomaly 

that occurs in PES has a special effect on the voltage and current 

signals, which most diagnostic methods used to identify faults 

by considering voltage and current signals as indicators. These 

signals are measured by sensors in the system and provided to 

the users. Sometimes signal measurement sensors in PESs can 

also be damaged while posing new problems to the system 

performance. Fault detection techniques must be exact and 

intelligent enough to detect the effects of system harmonics, 

sensor abnormalities, and hard and soft faults. Fault detection 

using voltage and current signals can also be done in the 

frequency domain. Thus, the signals measured in real-time are 

transmitted to the frequency domain using the fast Fourier 

transfer (FFT) to be used as input for diagnostic methods. Each 
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TABLE III 
STUDIES THAT HAVE IDENTIFIED FAULTS BASED ON DEEP LEARNING TECHNIQUES 

Method Ref Year Fault type PES application Advantages Limitations 

CNN [55] 2018 OC MMC Use local spatial coherence 
at the input (often images), 

which allows the CNN 

network to weigh less due 
to the sharing of some 

parameters. 

Benefiting from a layer-by-
layer structure makes them 

less computationally 

complex. 
Excellent performance in 

feature extraction and 

pattern recognition from 
input data and ideal for 

image processing 

applications. 
Contains a weight division 

in layers that increases the 

speed of training stage. 

In the face of noise data, 
various pre-processing 

steps must be used so that 

the accuracy of the results 
is not reduced. 

This method does not have 

sufficient capability in 
spatially invariant to input 

data. 

Using CNN requires a lot 
of training data. So that it 

does not have acceptable 

performance in the 
processing of low data. 

Time-series mode 

modeling of input data is 
also not possible using this 

method. 

 [59] 2018 Switch OC and SC  

 [68] 2019 Switch OC Back-to-back converter in 

permanent magnet synchronous 

generator-based wind generation 
system 

 [69] 2019 Switch SC 5-level neutral-point-clamped 

voltage source inverter connected 
to PV integrated microgrid 

system 

 [70] 2020 Switch OC Hybrid active NPC inverter 

 [74] 2021 Power tube double-
open faults and power 

tube triple-open faults 

Three-phase voltage inverter 
platform 

RNN [54] 2018 degradation fatigue 
modeling 

High-frequency Gallium Nitride 
(GaN) power dc-dc converter 

The RNN network 
remembers all the events 

reviewed in the training 

process. 
Performs data time-series 

modeling to an acceptable 

degree. 
It can easily provide a 

strong hybrid model with 

other conventional 
techniques based on ANN 

or deep learning. 

High-dimensional data 
processing is also a 

prominent feature of these 

networks. 

Suffers dramatically from 
the problems of gradient 

vanishing and exploding. 

RNN networks have a very 
difficult training process. 

No processing of long 

sequences data when using 
tanh or relu activation 

functions. 

The training process is 
very time-consuming and 

does not provide 

acceptable performance in 
processing noisy data. 

 [7] 2018 OC, SC,  component 

degradation of power 
MOSFET, inductor, 

diode, and capacitor 

DC-DC Converter (closed-loop 

single-ended primary inductance 
converter) 

LSTM [54] 2018 Degradation fatigue 

modeling 

High-frequency Gallium Nitride 

power dc-dc converter 

Completely solves and 

eliminates problems 

related to gradient 

vanishing and exploding in 
RNNs. 

Provide acceptable 

performance in large and 
sequential data. 

Modeling the time-series 

mode of the data and 
extracting the correlation 

between the input and 

output variables in this 
type of data. 

In time-series data when 

features are sequential, 

modeling input features is 

difficult and somewhat 
impossible. 

The selection of 

parameters related to the 
network structure is of 

great importance and the 

network output is highly 
dependent on the specified 

parameters. 

The training process is 
time-consuming. 

 [67] 2019 Switch SC and OC Five-level nested neutral-point-

pilot (NPP) topology 

 [153] 2019 Multiple OC switch 
fault 

A back-to-back converter in 
doubly-fed induction generator-

based wind turbine systems 

Autoencoder [52] 2017 Switch OC  Cascaded H-bridge seven-level 

converter 

They can be used as the 

supervised and 

unsupervised for a variety 
of data-based applications. 

Autoencoders have an 

acceptable ability to 
remove noise from data 

and is ideal for real-world 

data. 
For forecasting 

applications, they can 

easily provide a hybrid 
model with other deep 

learning techniques. 

Autoencoders provides 
acceptable performance for 

processing time-series data 

even when they contain 
noise. 

The choice of ideal model 

parameters is tedious and 

has a significant impact on 
network output. 

In unsupervised 

approaches and dimension 
reduction applications, 

some important data 

information can be 
removed. 

They have a high 

sensitivity in the training 
process and the output of 

the test phase is very 

effective from the training 
phase. 

Autoencoders have a high 

structural complexity and it 
is difficult to add or 

remove a layer. 

 [63] 2018 Switch OC  Three-phase full-bridge rectifier 
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of the introduced methods, based on a specific strategy, detect 

faults based on the measured voltage and current signals. The 

simplest possible case is related to ANN techniques. These 

techniques do not have the ability to extract features and process 

time-series data and only detect faults based on the 

determination of weight and bias on the input signals. The 

machine learning techniques have the ability to recognize 

complex patterns and modeling non-linear data, but have 

difficulty processing signals with high volumes and 

dimensions. Finally, deep learning techniques with the ability 

of feature extraction in a layer-by-layer structure, especially for 

high dimension and time-series data, have been successful in 

timely and accurate detection of PESs faults. Fig. 12 shows the 

fault detection routines in PESs based on the applications of 

ANN, machine learning, and deep learning techniques. 

V. SENSORS AND INSTRUMENTS NEEDED FOR SIGNALS 

MEASUREMENT 

Fault detection in PESs is based on voltage and current 

curves. Voltage and current measurement in PESs requires 

instruments and sensors that are used based on their unique 

accuracy and bandwidth. Sensors are devices that can sense or 

identify and react to certain types of electrical or optical signals. 

There are different types of sensors related to measuring voltage 

and current, which are classified based on their performance 

and method of measurement, which the continuation of this 

section introduces each of them. 

A. Current sensors 

Current sensors are typically classified into three categories: 

shunts (resistance), current transformers, and Hall effect 

sensors. Each of these sensor classes has a different 

performance in terms of accuracy and bandwidth, depending on 

their maximum measurable frequency. However, some special 

sensors, such as shunts, have significant direct current 

measurement capabilities. While current transformers are not 

very capable of performing such measurements. Current 

measurement using shunts has several major advantages such 

as high accuracy, low cost (but can be more expensive for high 

accuracy measures), robustness, and high bandwidth.  

However, this technique suffers from the lack of galvanic 

insulation between the power circuit and the control or 

monitoring circuit where the extracted signal is processed. 

B. Voltage sensors 

A voltage sensor is used to monitor and calculate the supply 

of voltage to a device. Voltage sensors have the ability to detect 

AC voltage or DC voltage level. The inputs of these sensors is 

voltage and can provide state of switches, analog current level, 

analog voltage signal, a current signal or an audible signal, and 

frequency as output. The output provided varies by type of 

sensor. Thus, in some of them the output can be sine or pulse 

trains and in others it can be presented as amplitude modulation, 

pulse width modulation, and frequency modulation output. 

Measurements in voltage sensors are based on voltage divider. 

Voltage sensors are classified into two types include capacitive 

type voltage sensors and resistive type voltage sensors. 

Small size and light weight, high safety for personnel's, very 

high degree of accuracy, non-saturable, very wide dynamic 

range, ability to combining the voltage and current 

measurements into a single physical device with small 

dimensions, and eco-friendly are the important advantages of 

voltage sensors over the conventional measuring methods. In 

addition to fault detection, voltage sensors have some other 

important applications such as power failure detection, 

temperature control, load sensing, power demand control, and 

safety switching. 

C. Feature extraction from measured signals 

Measured signals from the system are utilized as input to the 

fault detection method because they contain the system 

performance and the effects of the fault on the system circuit. 

Techniques used in a variety of ways analyze input signals to 

achieve abnormal effects of faults. However, the range of the 

measured signal must be within the standard range. Considering 

low sampling rate or sampling in low range for signal 

measurement loses significant information about system 

behavior, while considering more range and high sampling rate 

also causes obvious information to loss between 

incomprehensible information. After measuring the signal, 

choosing the appropriate method for analysis is considered the 

most important step in fault detection in PESs. Each method 

identifies and estimates the effects of different types of faults 

on the measured signal based on its ability. Among these, 

feature extraction from measured signals can be the best 

approach to analyze the types of fault effects and achieve the 

diagnostic goal. Simply put, in the feature extraction approach,

 
Fig. 12. Fault detection routines in PESs based on the applications of ANN, machine learning, and deep learning techniques 
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unnecessary values and parameters are excluded from the 

sampled signal, and the effects and pattern of anomalies 

occurring in the system are made available as obvious and 

valuable information for evaluation. This approach can 

dramatically speed up the fault detection process in PESs and 

increase detection accuracy. In general, the power electronic 

equipment used in the system carries the noise or harmonics in 

the measured signal, which most fault detection methods fail to 

distinguish these harmonics from the effects of faults. Using 

intelligent techniques that have the ability to extract features 

can easily solve this problem and can distinguish between 

harmonic behavior and fault effects. Accordingly, the use of 

feature extraction and pattern recognition techniques is 

significantly recommended for fault detection applications in 

PESs that always have natural system harmonics and noises. 

Among the introduced methods, ANN algorithms determine the 

relationship between input variables (signals measured from the 

system) and output (type, location, or intensity of faults) by 

determining the weight and bias in the hidden layers. These 

techniques require a long-time and high processor memory in 

the face of high dimension signals and suffer from other 

problems such as overfitting. Machine learning techniques have 

improved ANN problems in terms of speed and memory, but 

these techniques also require proper datasets and in most cases 

involve overfitting problems. In the meantime, deep learning 

techniques have been able to solve problems related to previous 

solutions with a layer-by-layer structure that provides a deep 

learning of input data. These techniques significantly benefit 

from the feature extraction block in their structure and based on 

the extraction of prominent features from the measured signals, 

they detect faults. Fig. 13 shows the feature extraction 

procedures of signals measured. It can be seen that the fault 

behavior pattern in voltage or current signals is extracted and 

used by removing large volumes of the signal.  

The penetration of deep learning techniques in power 

electronics applications has been able to solve major problems 

in this industry and on the other hand these techniques can be 

employed as a powerful tool in fault prognosis and online 

monitoring of PES. 

VI. FAULT-TOLERANT IN PESS 

Fault-tolerant is a prominent feature of each system so that 

the system can continue to operate and work in the event of 

failure of some of its components. Stability and uncertainty in 

PESs is one of the most important issues that has posed many 

challenges in recent years. Accordingly, fault-tolerant is one of 

the most important factors in PESs that must be addressed. A 

fault-resistant design enables the system to continue to operate 

at the desired level, possibly at a reduced level, if part of the 

system fails[192], [193]. In organizing a fault-tolerant system, 

the first step is to diagnose and, more importantly, to prognose 

the fault [194]. Timely fault detection and accurate protection 

can prevent the fault from progressing and its harmful 

consequences. The next step is the fault-tolerant function, 

which consists of fault separation and reconfiguration. The 

second step is always based on the design of the hardware 

plugin and the control of the relevant fault-tolerant [192]. To 

date, many solutions to fault-tolerant operations in PESs have 

been proposed and utilized in various studies. The presentation 

of fault tolerance methods relies mainly on the type of hardware 

redundancy and according to this, classified into three main 

categories as follows: 1) switch-level, 2) leg-level, 3) module-

level. Table IV classifies the fault tolerance methods in PESs 

based on these three categories. 

The use of fault tolerance methods in PESs makes the system 

able to continue to operate for a limited time after the fault 

occurs. However, the performance of the system and its 

efficiency decreases compared to the normal state, but the effect 

of the fault that occurred in the system is not clearly seen. 

Accordingly, fault tolerance methods make many conventional 

techniques in the early stages unable to detect faults and the 

system continues to behave in a damaged state. It should be 

noted that under these conditions, deep learning algorithms that 

have the ability to extract features from the system and are able 

to detect the smallest noise related to the system, can detect 

occurred faults in the early stages. 

VII. CONCLUSION 

Power electronic systems (PESs) are considered to be vital 

components in power/energy systems, and the stability of the 

power/energy systems mainly depends on the health of PESs. 

 
Fig. 13. Feature extraction routine of measured signals
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TABLE IV 
CLASSIFICATION OF STUDIES PERFORMED IN ORDER TO FAULT-TOLERANT IN PESS BASED ON THE METHOD USED 

Level type Method  Ref. PES application 

Switch-level Inherently redundant switching 
states 

[195] Three-level active NPC inverters 

[196] T-Type Three-Level Inverter 

[197] High-power active NPC three-level inverter 

[198] Single-phase MMC-based inverter 

[199] Interleaved DC–DC boost converters for homes and 

offices 

DC-bus midpoint connection [200] Five-phase permanent-magnet machine drives 

 [201] Six-phase permanent magnet synchronous motor 

  [202] A single field-programmable gate array chip 

 Redundant parallel or series 
switches installation 

[203] Matrix converter 

 [204] Two-level voltage source converter with IGBTs directly 

in series, Modular multi-level converter   

Leg-level Adding redundant legs in series 

or parallel connection to main 

legs 

[205] Open-end winding permanent magnet synchronous 

motor system based on winding reconnection 

 [206] Single dc-link dual inverters 

  [207] Three-level topology based on the NPC converter 

  [208] Three-phase permanent magnet synchronous motor 

  [209] modified topologies of NPC converter based on adding a 

fourth leg, which is based on the flying capacitor 

converter structure 

Module-level Neutral-shift [210] Cascaded H-bridge inverter 

  [211] MMC 

  [212] Cascaded H-bridge multilevel inverters based on level-

shifted pulse width modulation 

 DC-bus voltage reconfiguration [213] Modular medium-voltage drives 

  [214] Symmetrical and asymmetrical cascaded multilevel 

converters 

  [215] Static synchronous compensator based on cascaded H-

bridge multilevel converter 

 Redundant modules installation [216] Modular multilevel HVDC converter 

  [217] Multilevel modular capacitor-clamped DC–DC converter 

  [218] MMC 

A variety of factors cause anomalies in PESs that could threaten 

the system security and reliability. Such issues call for an urgent 

need of early fault detection in PES. In this paper, different 

types of faults related to PESs and various diagnostic methods 

were evaluated. Several literature has been reviewed since the 

beginning of the fault detection process in PESs. After 

introducing the types of faults related to PESs, a basic 

classification of fault detection methods based on data mining 

techniques and signal measurement sensors in PESs was 

presented and each method was introduced with a detailed 

description. The fault detection procedure was described by 

evaluating the performance of various model-based and data-

based methods such as artificial neural network (ANN), 

machine learning, and deep learning algorithms in the various 

studies. In a general evaluation, it was observed that model-

based techniques, due to the structural complexity and 

dependence on the physical model of the system, which causes 

significant problems in the fault detection process, are used in 

a limited number of cases. Among the extensive data-based 

techniques, deep-learning techniques due to their high 

capabilities in modeling the time-series state of real-time data, 

eliminating data-related noises which is caused by the working 

conditions of PES equipment, and the ideal performance in 

detecting the slightest correlation between the effects of the 

fault and detecting it, even among large volumes of data, has 

surpassed other data-based methods and is now commonly 

recommended to fault diagnosis in PESs. Given that feature 

extraction is considered as the key to the success of deep 

learning techniques in diagnostic applications, a brief 

description of the feature extraction process from the measured 

signals was presented. Finally, in a general evaluation, deep 

learning techniques were introduced and proposed as one of the 

applications of data mining for use in other areas of power 

electronics industry. 

It should be noted that the development of power systems has 

led to the introduction of modern systems based on the Internet 

of Things and the online use of most PESs and related 

equipment in power systems and industrial applications. This 

process causes PES devices, in addition to physical faults 

related to the system, to be attacked by cyber-attackers, which 

can lead to a variety of irreparable risks. Accordingly, for future 

studies and to maintain the security and stability of power and 

energy systems, develop methods that have the ability to 

prognosis faults or any failure in the system and can distinguish 

the effects of cyber-attacks from faults. In addition, it is 

recommended to use deep learning-based autoencoder 

approaches that can reconstruct false signals from cyber-attacks 

in online applications and send a clean communication signal 

to the user or equipment. 
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