

Aalborg Universitet

LSQB: A large-scale subgraph query benchmark

Mhedhbi, Amine; Lissandrini, Matteo; Kuiper, Laurens; Waudby, Jack; Szárnyas, Gábor

Published in:
GRADES-NDA '21: Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences and Systems and Network Data Analytics, GRADES-NDA 2021

DOI (link to publication from Publisher):
10.1145/3461837.3464516

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Mhedhbi, A., Lissandrini, M., Kuiper, L., Waudby, J., & Szárnyas, G. (2021). LSQB: A large-scale subgraph
query benchmark. In V. Kalavri, & N. Yakovets (Eds.), GRADES-NDA '21: Proceedings of the 4th ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences and Systems and Network Data
Analytics, GRADES-NDA 2021 (pp. 8:1-8:11). Article 8 Association for Computing Machinery.
https://doi.org/10.1145/3461837.3464516

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.1145/3461837.3464516
https://vbn.aau.dk/en/publications/d205a0ad-ae9c-4d64-9fd9-8237ed7f8619
https://doi.org/10.1145/3461837.3464516

LSQB: A Large-Scale SubgraphQuery Benchmark

Amine Mhedhbi
University of Waterloo

amine.mhedhbi@uwaterloo.ca

Matteo Lissandrini
Aalborg University

matteo@cs.aau.dk

Laurens Kuiper
CWI Amsterdam

laurens.kuiper@cwi.nl

Jack Waudby
Newcastle University

j.waudby2@newcastle.ac.uk

Gábor Szárnyas
CWI Amsterdam

gabor.szarnyas@cwi.nl

ABSTRACT

We introduce LSQB, a new large-scale subgraph query benchmark.

LSQB tests the performance of database management systems on an

important class of subgraph queries overlooked by existing bench-

marks. Matching a labelled structural graph pattern, referred to as

subgraph matching, is the focus of LSQB. In relational terms, the

benchmark tests DBMSs’ join performance as a choke-point since

subgraph matching is equivalent to multi-way joins between base

Vertex and base Edge tables on ID attributes. The benchmark fo-

cuses on read-heavy workloads by relying on global queries which

have been ignored by prior benchmarks. Global queries, also re-

ferred to as unseeded queries, are a type of queries that are only

constrained by labels on the query vertices and edges. LSQB con-

tains a total of nine queries and leverages the LDBC social network

data generator for scalability. The benchmark gained both academic

and industrial interest and is used internally by 5+ different vendors.

ACM Reference Format:

Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gá-

bor Szárnyas. 2021. LSQB: A Large-Scale Subgraph Query Benchmark. In

4th Joint International Workshop on Graph Data Management Experiences &

Systems (GRADES) and Network Data Analytics (NDA) (GRADES-NDA’21),

June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3461837.3464516

1 INTRODUCTION

Subgraph queries are a fundamental class of queries for applications

where graph patterns reveal valuable information. For example, bi-

ologists and sociologists identify communities in large networks

by finding dense subgraphs [17], Twitter searches for diamonds

in their users follower network to provide “whom-to-follow” rec-

ommendations [21], and Alibaba detects fraudulent activities by

finding cycles [43].

In the property graph data model [33], vertices represent enti-

ties, edges represent relationships, and arbitrary key-value pairs

represent properties on vertices and edges. Contemporary graph

DBMSs (GDBMSs), which use the property graph data model, sup-

port subgraph queries.

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8477-3/21/06.
https://doi.org/10.1145/3461837.3464516

As observed in prior work [1, 3, 32], a subgraph matching query

𝑄(V𝑄 ,E𝑄), which enumerates instances of 𝑄 in an input graph

𝐺(V,E), is equivalent to a select-project-join query contain-
ing multi-way joins between base Vertex and base Edge tables.

Therefore, provided a mapping from the graph schema to the rela-

tional schema, relational DBMSs (RDBMSs) also support subgraph

queries.

1.1 Subgraph Query Workloads Overview

Read-heavy analytical applications containing subgraph queries

keep gaining popularity [47]. Such applications obtain graph data

from social networks, web crawls, or from the integration of mul-

tiple datasets stored in transactional RDBMSs. These application

workloads differ from classical relational workloads in the abun-

dance of three operations:

(1) Many-to-many joins are prevalent since highly connected

graph data contains a very large number of many-to-many

relationships. Even a small number of input tuples to such

joins leads to an explosion in the size of intermediate and

output results.

(2) Cyclic joins are fundamental for applications such as social

network recommendation and fraud detection.

(3) Long acyclic joins are employed for path-finding use cases

possibly having great depths.

1.2 The Need for New Benchmarks

While GDBMSs, e.g., Neo4j [55], TigerGraph [12], and Graph-

flowDB [25] are specifically optimized for subgraph query work-

loads, RDBMSs, e.g., Db2 [53], SAP HANA [46], and Umbra [34]

are expanding their query processing and optimization techniques

to perform better on these workloads. An example of an effec-

tive query processing technique for subgraph queries in GDBMSs

and RDBMSs are the newly developed worst-case optimal joins

(WCOJs) [35] supported by GraphflowDB [32], SAP HANA [56],

and Umbra [19].

With any newly developed query processing or optimization

technique, we turn to benchmarks to quantify the promised im-

provements and inevitable tradeoffs. Micro-benchmarks demon-

strate that the design decisions are indeed responsible for success-

fully achieving runtime improvements [31]. End-to-end macro-

benchmarks showcase the overall system performance, identify

any cross-cutting issues, and help avoid regressions as systems

evolve [24, 27].

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas

The database community sees existing benchmarks for subgraph

queries as dispersed, ad-hoc, and lacking a principled suite of micro-

benchmarks [39, 48]. Specifically, prior work studying subgraph

query evaluation present highly divergent methodologies. In par-

ticular, current benchmarks do not contain a common suite of sub-

graph queries, rarely compare on the same datasets, and arbitrarily

use directed and undirected subgraph queries [1, 3, 19, 28, 32, 44].

Therefore, a well thought-out unified benchmark focusing on the

common operations mentioned in Section 1.1 is necessary. The

benchmark needs to identify common tradeoffs by varying query

structures and provide a consistent view of how techniques com-

pare over time.

1.3 The Landscape of Existing Benchmarks

1.3.1 Existing Benchmarks Overview. We classify subgraph query

workload benchmarks within a quadrant along two axes: (i) query

complexity denoting from a high level the number of joins and por-

tion of data accessed; and (ii) “structuredness” of data [13] defining

what assumptions can be made a-priori as to what type(s) of data

the system is going to handle. The quadrant is shown in Figure 1 and

contains existing major benchmarks such as WatDiv [2], SNB [4],

LinkBench [6], YCSB [11], SPB [27], and GMB [31].

Not accounting for “structuredness”, most of the existing bench-

marks consist of seeded queries, i.e., queries start from a given

vertex or set of vertices. The quadrant orders the benchmarks by

read-intensity from left to right with the SNB BI benchmark being

the most read-intensive.

1.3.2 An Overview of the LDBC SNB. The Linked Data Benchmark

Council (LDBC) developed a large scale macro-benchmark called the

Social Network Benchmark (SNB) [4]. LDBC developed the bench-

mark following a choke-point driven methodology leading to two

query sets of interest: Interactive (Int) and Business Intelligence

(BI). LDBC’s SNB is an effective benchmark since it is: (i) portable

between the relational and property graph data models; (ii) scalable

and representative of real workloads; and (iii) easy to understand

due to domain simplicity. The benchmark still has many shortcom-

ings however. SNB is rather intimidating as it requires too many

features and is hard to implement for research prototypes. Recent

academic research tends to use varied subsets of SNB queries fo-

cusing on a subset of choke-points [20, 28]. SNB is quite similar to

relational workloads, as it is heavily inspired by TPC-H [14], and

emphasizes complex filtering and aggregation operations.

1.4 Contributions

We introduce a new labelled subgraph query benchmark (LSQB),

to make progress on facilitating meaningful performance testing

while correcting for the shortcomings of prior work. We provide a

dataset generator that leverages the LDBC SNB prior generator to

produce labelled social network graphs. We generate the datasets at

different scale factors and make them and the benchmark available

online1. Our main contribution is proposing nine queries as the

core for a leaner and more focused subgraph query benchmark. In

building the benchmark, we focus on five desiderata:

1https://github.com/ldbc/lsqb

Figure 1: Landscape of DB benchmarks according to query

complexity and data structuredness. The benchmark pro-

posed in this paper, LSQB, is highlighted.

● Simple: contains a set of approachable queries that re-

searchers can understand and implement.

● Focused: does not test the entire DBMS functionality and

instead focuses on specific choke-points.

● Scalable: enables performance testing at the scale of billions

of edges.

● Portable: provides a specification that is easy to map to the

data models supported by different systems.

● Representative: contains a set of common use-cases found in

real-world applications as opposed to contrived ones.

1.5 Paper Outline

The rest of the paper is outlined as follows. In Section 2, we go over

the design goals and provide the specification of the benchmark. In

Section 3, we present preliminary performance numbers comparing

two RDBMSs, and we give a sense of difficulty of the proposed

queries. In Section 4, we review prior related work. Finally, in

Section 5, we provide the gists of our findings, present possible

extensions, along with our plan for future work.

2 BENCHMARK SPECIFICATION

In this section, we first describe the benchmark design and require-

ments allowing us to meet the desiderata mentioned in Section 1.4.

Second, we discuss the workflow to execute the benchmark. Finally,

we present the datasets and the queries.

2.1 Benchmark Design and Requirements

We start off with the need for the benchmark to be simple and fo-

cused. Subgraph queries contain a labelled structural graph pattern

to match and contain possibly further relational operations, such as

filtering, ordering, and aggregations. Matching a labelled structural

graph pattern is referred to as subgraph matching and is a core

part of subgraph queries. We make multi-way equi-joins, joining

LSQB: A Large-Scale SubgraphQuery Benchmark GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

(a) Graph schema visualized using a UML-style notation. Edge labels with many-to-many cardinal-

ity are depicted with thick lines. The knows edge labels represent undirected edges, while the rest

of the edges are directed. (b) Example graph.

Figure 2: Graph schema and example graph.

(a) Q1. (b) Q2. (c) Q3.

(d) Q4. (e) Q5. (f) Q6.

(g) Q7. (h) Q8. (i) Q9.

Figure 3: Visualization of the queries. Regular edges (joins) are denoted with solid black lines. Negative edges (antijoins) are

denotedwith dashed red lines and the «neg» keyword. Optional edges (left outer joins) are denotedwith dashed black lines, the

«opt» keyword, and the circle symbol ○ at the optional end of the edge. Thicker lines denote edge labels with many-to-many

cardinality.

vertex records with their neighbors, the focus of LSQB, given that

these operators are the most prominent in subgraph queries. This

allows the benchmark to be focused on one single choke-point [9]

and further allows us to limit the number of queries. In order for

the benchmark to challenge systems in terms of scalability, we

require at least one input data graph to be at the scale of at least

one billion edges. This is in-line with current findings on the size

of graphs analyzed in real workloads [47]. The queries are meant

to be portable and therefore we specify them using graph patterns

similar to LDBC SNB. Finally, the queries need to be representative

and hence are designed based on real-world use cases on the dataset

of choice.

2.2 Workflow

The benchmark consist of the following workflow: (i) the dataset

is loaded to the system; (ii) the subgraph queries are executed

sequentially; and (iii) two metrics are collected:

(1) The number of matches, i.e., the number of output tuples to

validate the correctness of the implementation.

(2) The query runtime (including parsing, compiling, and re-

turning results) for performance comparisons.

2.3 Datasets

2.3.1 Generator. We reuse the data generator of LDBC Datagen [4]

with modifications. LDBC Datagen is a scalable graph generator

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas

SF3 SF10 SF30 SF100

number of vertices 11.3M 35.4M 103.1M 326.0M

number of edges 66.2M 217.0M 650.5M 2.1B

compressed size 0.3GB 1GB 1.8GB 5.8GB

Table 1: Dataset sizes.

which can produce graphs in increasing scale factors (SFs) up to

2.7B vertices and 17B edges. The LDBC Datagen produces a social

network with a degree distribution of Person vertices similar to

that found in Facebook, and introduces correlations between at-

tributes [41], e.g., people are more likely to travel to neighbouring

countries and post messages there.

2.3.2 Schema. Contemporary GDBMs support the property graph

data model [45], which allows the use of properties (attributes) and

labels (types) on both the vertices and edges of the graph. In the

context of subgraph queries, properties are not a core focus, in fact,

the experiments in the literature on subgraph query algorithms

consistently omit using property-level data, which we explain in

Section 4. Therefore, our generator omits all property-level infor-

mation from the LDBC social graph except the vertex IDs. Our

simplified schema (shown in Figure 2a) consists of 9 vertex types

and 11 edge types. Figure 2b shows an example graph instance.

2.3.3 Datasets. We generated LDBC SNB datasets for scale factors

3, 10, 30, and 100. The key characteristics of the datasets are shown

in Table 1, while detailed degree distributions are visualized in Ap-

pendix A. As the datasets lack property values, they are compact,

with the size of SF100 being only 5.8GB in a compressed format.

2.3.4 Preprocessing Datasets. The datasets are provided as CSV

files. Implementations are allowed to preprocess the datasets to fit

their assumptions, e.g., they can assign new unique identifiers to

vertices. Additionally, they can change the edge labels to ensure they

are unique, for instance, the isLocatedIn edges between vertices of

different labels can be distinguished as Person_isLocatedIn_City

and Comment_isLocatedIn_Country.

2.4 Queries

2.4.1 Graph Patterns. We have defined 9 subgraph queries based

on the graph patterns occurring in the LDBC SNB BI workload [4].

The queries are visualized in Figure 3. The first 6 queries look

for matches of basic graph patterns [5], while the last 3 queries

extend Q4, Q5, and Q6, respectively, to complex graph patterns with

negative and optional edges. Subgraph queries can have different

pattern matching semantics [5]. All of our queries are evaluated

using homomorphism, i.e., repeated nodes and edges in thematching

subgraph are allowed unless an explicit filter (such as tag1 ≠ tag2
in Q5) is set. If a particular system requires testing isomorphic

pattern matching, adequate filters on edge IDs can be added. The

SQL and openCypher [18] specification of the queries is given in

Appendix B.

2.4.2 Query Operators. In all queries, the subgraph matching is

followed by a count(*) aggregation, thus returning a single value

with the total number of matches. This step is included to avoid

serializing a large number of results which would stress the client

protocol and not just the query engine which is the main focus of

LSQB.

In terms of relational algebra, the first 6 queries can be formulated

as SPJG (select-project-join-group by) queries. The last 3 queries

require antijoin or outer join operations (rendering them SPOJG

queries) which are often unsupported in early-stage systems. This

decision was made to render the benchmark suitable for prototype

systems by allowing them to focus on a contiguous block of queries

(Q1–Q6). At the same time, the benchmark can examine the level of

support for the more advanced operators (i.e., antijoins and outer

joins) through the remaining queries (Q7–Q9).

3 PERFORMANCE EXPERIMENTS

Wehave implemented LSQB onmultiple systems to study the bench-

mark’s portability. In this section, we present our results on the

two best performing systems. Along with the reported RDBMSs,

we have implemented LSQB for 7+ different DBMSs. Unfortunately,

our experiments showed significant performance limitations for all

of these systems which we do not report.

3.1 Benchmark Setup

3.1.1 Systems. We report results of the benchmark on the two

RDBMSs that managed to complete all or most of the workload

at all scales: (i) HyPer [26] (version 2019.2.6416), an HTAP RDBMS

with a compiled runtime; and (ii) Umbra [34] (version b273a006), a

research prototype HTAP RDBMS with a compiled runtime that

supports WCOJs [19].

3.1.2 Datasets. We generated four datasets, SF3, SF10, SF30, and

SF100 using the LDBC Datagen and serialized them using the “raw”

CSV layout. Next, we removed all attributes from the files and

created one CSV file for each ⟨source vertex label, edge label, target
vertex label⟩ triple (e.g., Post_isLocatedIn_Country).

3.1.3 Preprocessing and Loading. The RDBMSs loaded the data

with the SQL COPY command. No indexes, integrity constraints, or

uniqueness constrains were defined.

3.1.4 Environment. We executed the benchmark on a cloud virtual

machinewith 48 vCPU cores of an Intel Xeon Platinum 8272CL CPU,

384 GiB memory, 1.8 TB NVMe SSD disk (ext4 file system), Ubuntu

20.04 operating system with Linux kernel 5.4.0, and Docker 19.03.

Both HyPer and Umbra ran in Docker containers using their default

configuration and the queries were implemented in SQL.

3.1.5 Experiments. We ran HyPer and Umbra using all 48 available

vCPU cores. Each query execution had a timeout of 5 minutes. The

queries were executed in random order, with each query running

5 times for each scale factor.

3.2 Benchmark Results and Analysis

We executed the experiments and have cross-validated the results

derived with HyPer, Umbra, and GDBMS systems. We visualized

the query execution times in Figure 4. The figure contains a plot

with a horizontal axis showing the scale factors, while the vertical

axis shows the median query execution time (over 5 runs) using a

logarithmic scale.

LSQB: A Large-Scale SubgraphQuery Benchmark GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

Figure 4: Query execution times on scale factors 3, 10, 30, and

100 for HyPer and Umbra, the two best performing sytems

under benchmark.

3.2.1 Query Plans. We have investigated the query plans produced

by HyPer and Umbra. We found that on the SF100, Umbra uses

a multiway join operator [19] for all equi-join queries except Q2

where it uses binary joins for most scale factors. The multiway

join was used in the last step of the query plan before the group-

by aggregation. For the rest of the queries, Umbra used binary

hash joins and right outer joins. HyPer used binary joins for all its

queries.

3.2.2 Experimental Analysis. The query runtimes for scale factors

3, 10, 30, and 100 are shown in Figure 4. The results show that

Umbra is able to complete all queries on all scale factors, while

HyPer exhibits timeouts for Q1 and Q3.

Q1 and Q3 demonstrate the main difference of the execu-

tion engines of HyPer and Umbra: the latter supports multi-way

WCOJs [19], while the former only supports binary joins. For Q1,

Umbra consistently uses a multi-way join query plan, while HyPer

uses different binary join plans for different SFs. The results show

that the latter can result in suboptimal plans for this query: HyPer’s

evaluation of Q1 on SF3 is slower than SF10, and it times out for

SF30 and SF100. Q3 has a cyclic subgraph, which again showcases

the benefits of WCOJs. Umbra is already an order of magnitude

faster than HyPer on SF30 and can complete the execution on SF100

while HyPer times out.

For the rest of the queries, the differences are less significant

between the two systems. In particular, for queries Q4, Q5, and Q6,

the performance gap between the two systems is less than 2× on
large SFs. For Q2, Q7, Q8, and Q9, the differences are within an

order ofmagnitude. For Q2, Umbra shows non-monotonic execution

times with SF10 taking more time than SF30. We have found that for

SF10, Umbra’s optimizer switches to use a multi-way join, which

is more costly than using binary joins (even though Q2 captures a

cyclic pattern, it can be evaluated with binary joins optimally as it

only has a single many-to-many relation).

For both Umbra and HyPer, the most challenging queries are

Q6 and Q9 as these capture long cyclic patterns (two knows edges

and one hasTag edge). To support such queries efficiently, database

management systems would need to employ different techniques

such as list-based processing, a limited form of factorization [38],

which are currently not supported in the benchmarked systems.

Note that we do not benchmark GraphflowDB’s list-based process-

ing engine [20] because it does not contain an optimizer. The results

show that Q9, which uses an extra antijoin operator, is about 2− 4×
more expensive to compute than Q6.

3.2.3 Findings. We summarize the findings of our implementations

and performance experiments with the LSQB. We found that the

benchmark can be executed in a reasonable amount of time: a

complete execution of the multi-threaded benchmark (loading the

data running each query 5 times) for scale factors 3, 10, 30, and 100,

took less than 40 minutes with Umbra. This makes the benchmark

suitable for quick iterations when optimizing systems.

The results showed that Umbra has a slight advantage for the

majority of the queries. On Q3, the difference between the systems

highlighted that to perform well across the queries of this subgraph

query benchmark, systems need to have sufficiently sophisticated

query optimizers and optimize for cyclic queries (e.g., by support-

ing WCOJs). Additionally, the structure of Q6 and Q9 raises the

opportunity for employing factorized subgraph query processing

for improving the performance of RDBMSs in these cases.

4 RELATEDWORK

Table 2 summarizes the key experiment suites used for subgraph

queries. We discuss influential benchmarks and experimental evalu-

ation found in papers presenting subgraph isomorphism algorithms.

4.1 Benchmarks for DBMSs

Subgraph queries are frequently included in benchmarks targeting

graph processing systems as well as programming contests. In this

section, we summarize benchmarks where subgraph queries play a

key role. For a survey of graph processing benchmarks, we point

the reader to reference [10].

The LDBC Social Network Benchmark [4] defines two workloads.

The Interactive workload [16] defines 14 complex read and 7 short

read queries, all using subgraph matching. However, all queries

are seeded, i.e., start from a given Person node, a pair of Person

nodes, or a Message node, making their complexity limited. This is

different from LSQB which relies on global, i.e., unseeded queries.

The Business Intelligence (BI) [51] workload consists of 20 complex

read queries, focusing on pattern matching with aggregation. BI

queries include both cyclic and long acyclic graph queries, and

while its queries are seeded, they touch a large portion of the graph.

LSQB in comparison takes the position of being simpler and more

focused and therefore only contains join operations with no ag-

gregations other than count(*). Recall that count(*) is added to

avoid stressing client code and keeping the benchmark’s stress only

on the query processing engine.

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas

name v
e
rt
e
x
la
b
e
ls

e
d
g
e
la
b
e
ls

d
ir
e
ct
e
d
e
d
g
e
s

p
ro
p
e
rt
ie
s

a
n
ti
jo
in
s

o
u
te
r
jo
in
s

cy
cl
ic

su
b
g
ra
p
h
s

co
m
p
le
x
p
a
th
s

a
g
g
re
g
a
ti
o
n

g
lo
b
a
l
q
u
e
ri
e
s

#queries comment

LDBC SNB Interactive [16] ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊘ ⊗ ⊗ ◯ 14 + 7 point queries starting in 1–2 vertices

LDBC SNB BI [4, 51] ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊘ ⊗ ⊗ ⊘ 20 queries touch on a large portion of the graph

SIGMOD’14 Programming Contest [15] ⊗ ⊗ ⊗ ⊗ ◯ ◯ ⊘ ⊗ ⊗ ◯ 4 analytics on induced subgraphs

TTC’14 Movie Database case [23] ⊗ ⊗ ⊗ ⊗ ◯ ◯ ⊗ ◯ ⊘ ⊗ 6 queries are part of a graph transformation

gMark [7] ⊗ ⊗ ⊗ ⊗ ◯ ◯ ⊘ ⊗ ⊘ ◯ ⍟ has a configurable graph & query generator

Train Benchmark [52] ⊗ ⊗ ⊗ ⊗ ⊗ ◯ ⊘ ◯ ◯ ⊗ 6 query results sets are small

GMB (Graph Micro Benchmark) [31] ⊗ ⊗ ⊗ ⊗ ◯ ◯ ⊘ ⊗ ◯ ⊘ 22 focuses on transactional workloads

DBMSs for pattern matching study [42] ⊗ ⊗ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ⊗ 14 × 20

subgraph isomorphism survey [29] ⊗ ⊗ ◯ ◯ ◯ ◯ ⊘ ◯ ◯ ⊗ 6 × 1000

subgraph matching survey [49] ⊗ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ⊗ 12 × 9 × 200

Core-Forest-Leaf decomposition [8] ⊗ ◯ ⊗ ◯ ◯ ◯ ⊗ ◯ ◯ ⊗ 8 × 100

RapidMatch [50] ⊗ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ⊘ ⊗ 7 + 2 × 200 small and large query sets

worst-case optimal joins [36] ◯ ⊗ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ⊗ − theoretical paper

graph pattern matching with joins [37] ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ⊘ ⊗ 10

EmptyHeaded [1] ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ⊘ 3 + 14 3 subgraph queries + LUBM

mix of multi-way and binary joins [32] ◯ ⊗ ⊗ ◯ ◯ ◯ ⊗ ◯ ⊗ ⊗ 14 uses random labels in its experiments

Labelled Subgraph Query Benchmark (LSQB) ⊗ ⊗ ⊗ ◯ ⊘ ⊘ ⊘ ◯ ⊘ ⊗ 9

Table 2: Experiments defined by papers presenting (1) graph benchmark specifications, (2) subgraphmatching algorithms, and

(3) worst-cast optimal join algorithms. For benchmarks, the columns vertex labels, edge labels, directed edges, and attributes

denote whether the feature is used in the queries of the benchmark. For the rest of the entries, they denote whether the

proposed algorithm is designed to handle a certain data model feature. Notation – ⊗: yes, ◯: no, ⊘: to some extent (cyclic

subgraphs: the benchmark defines only a few/simple cyclic queries, aggregation: only count(*) is used, global queries: some

queries touch a large portion of the graph);⍟: the benchmark provides a query generator.

The Train Benchmark (TB) [52] captures a validation scenario

for imposed constraints, often complex, during the development of

safety-critical systems. The data and constraints follow the prop-

erty graph model where the validation process matches absent

graph patterns which captures constraint violations. TB executes

global subgraph queries with a few results but potentially large

intermediate results. LSQB and TB differ primarily in their use cases

and targeted queries. LSQB processes one-time queries for social

network analysis while TB processes continuous queries.

Many transactional graph processing benchmarks exist, e.g.,

the Graph Micro Benchmark [31] defines a comprehensive micro-

benchmark of 35 operations. It focuses on transactional GDBMSs,

that is, it includes also inserts, updates, and deletes. Moreover,

instead of considering queries with a complex structure, it opts for

a broader set of primitive operators. LSQB on the other hand focuses

specifically on read-intensive subgraph matching and contains no

updates.

Other than the benchmarks mentioned above, experimental stud-

ies have also defined their own set of queries. For instance, a study

on Graph Pattern Matching [42] benchmarked subgraph queries

on four DMBSs, including both relational and graph systems. Their

largest graph contained 10K vertices and 0.5M edges, while their

most complex schema used 5 vertex labels and 5 edge labels. They

concluded that (as of 2014) none of the benchmarked systems were

suitable for graph pattern matching workloads. With exception

of this last study, no previous paper explicitly focused on testing

DBMSs for the task of graph pattern matching. Moreover, our work

is the first to propose a benchmark for this type of workload at the

scale of billion edges and containing more vertex and edge labels.

4.2 Subgraph Matching Experiments

Due to the lack of simple benchmarks that focus on graph pat-

tern matching, experimental evaluation in the literature for tech-

niques targeting subgraph query processing contain a fragmented

panorama of benchmarks. Such benchmarks follow one of two

types of workloads that are prominent in the literature as observed

in prior work [50]: (i) full enumeration workloads on datasets with

millions or even billions of edges and queries with few query ver-

tices, and requiring exhaustive tuple enumeration, such as fraud

detection; and (ii) exploration-based workloads on datasets with few

thousand edges and tens of query vertices. LSQB focuses on the

former category, i.e., on full enumeration subgraph query workloads.

Jinsoo Lee et al. have reimplemented and compared five state-

of-the-art subgraph matching algorithms [29]. They used undi-

rected graphs with vertex and edge labels, and ran experiments

on 6 datasets with 1000 randomly generated queries for each. A

more recent similar study [49] compares a mix of old and recent

subgraph matching algorithms for a total of seven algorithms and

proposes proposes an algorithm that combines the best approaches

LSQB: A Large-Scale SubgraphQuery Benchmark GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

of each of the studied algorithms. In both studies, as well as in many

proposed subgraph query algorithms evaluations, e.g., CFL [8], the

workload is an exploration-based workload. A notable exception

is RapidMatch [50], which uses two sets of queries: 2 × 200 large
queries (for graph exploration) and 7 small queries (similar in size

to LSQB queries). RapidMatch’s evaluation however does not use

directed edges and contains uniformly generated labels for 5 out of

7 graphs used.

A number of implementations have recently adopted worst-case

optimal join (WCOJs) algorithms [36] for subgraph matching [1, 37].

In these papers, the experiments employ rather simple graphs. The

proposed dynamic programming optimizer for subgraph queries

focusing on mixing binary and multi-way join operators in ref-

erence [32], is evaluated using randomly labelled data and query

graphs.

4.3 Join Ordering

In an RDBMS, LSQB’s main choke-point is translated into a number

of joins. Therefore, a crucial challenge is that of picking a good

join order, referred to as a query vertex order or a query edge order

in graph terms. The Join Order Benchmark (JOB) [30], which de-

fines a set of 113 analytical SPJ queries over an IMDB dataset, each

containing 3 to 16 joins per query, provides a similar challenge for

RDBMSs. On JOB, cardinality misestimation of 3+ orders of magni-

tude were routinely observed in all systems that were benchmarked.

Since JOB was introduced, a wide variety of techniques have been

proposed to address the problem of join ordering [22, 40]. LSQB

also poses a hard cardinality estimation problem since it contains

many joins and skewed distributions.

5 SUMMARY

Conclusion. By examining the existing literature and bench-

marks, we found that there is a significant gap between the experi-

ments currently used on subgraph queries and the requirements

posed by graph processing benchmarks. Our benchmark, LSQB,

intends to provide a simple and portable benchmark suite that

can be used by both academic researchers and industry database

engineers. LSQB has already seen some adoption and is used by

5+ triplestore/GDBMS vendors for internal performance tests.

Potential Extensions. While we designed the benchmark to be

simple, we expect that users targeting more mature systems will

want to extend it to include common DBMS features such as update

operations. Building on the LDBC Datagen allows users to make

such extensions with a reasonable development effort, e.g., updates

can be supported by using the temporal attributes produced by

Datagen [54].

Future Work. As a continuation of this work, we plan to design

a complementary micro-benchmark that focuses on path queries.

Defining path queries with predictable runtimes raises unique

challenges, as these queries are sensitive to the selected start

vertices. The focus would be in particular on long acyclic patterns,

unweighted/weighted shortest paths, and regular path queries.

ACKNOWLEDGMENTS

We would like to thank Michael Freitag for providing us assistance

in using Umbra. Matteo Lissandrini is supported by the European

Union’s Horizon 2020 research and innovation programme under

the Marie Skłodowska-Curie grant agreement No 838216. Gábor

Szárnyas is supported by the SQIREL-GRAPHS NWO project.

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-

tun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph
Processing. ACM Trans. Database Syst. 42, 4 (2017), 20:1–20:44. https://doi.org/
10.1145/3129246

[2] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Diversi-
fied Stress Testing of RDF Data Management Systems. In ISWC. Springer, 197–212.
https://doi.org/10.1007/978-3-319-11964-9_13

[3] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. 2018.
Distributed Evaluation of Subgraph Queries Using Worst-case Optimal and Low-
Memory Dataflows. Proc. VLDB Endow. 11, 6 (2018), 691–704. https://doi.org/10.
14778/3184470.3184473

[4] Renzo Angles et al. 2020. The LDBC Social Network Benchmark. CoRR
abs/2001.02299 (2020). http://arxiv.org/abs/2001.02299

[5] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40. https://doi.org/10.1145/
3104031

[6] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A database benchmark based on the Facebook
social graph. In SIGMOD. 1185–1196. https://doi.org/10.1145/2463676.2465296

[7] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien
Lemay, and Nicky Advokaat. 2017. gMark: Schema-Driven Generation of Graphs
and Queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869. https://doi.org/
10.1109/TKDE.2016.2633993

[8] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient
Subgraph Matching by Postponing Cartesian Products. In SIGMOD. ACM, 1199–
1214. https://doi.org/10.1145/2882903.2915236

[9] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC.
Springer, 61–76. https://doi.org/10.1007/978-3-319-04936-6_5

[10] Angela Bonifati, George H. L. Fletcher, Jan Hidders, and Alexandru Iosup.
2018. A Survey of Benchmarks for Graph-Processing Systems. In Graph Data
Management, Fundamental Issues and Recent Developments. Springer, 163–186.
https://doi.org/10.1007/978-3-319-96193-4_6

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. ACM,
143–154. https://doi.org/10.1145/1807128.1807152

[12] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native
MPP Graph Database. CoRR abs/1901.08248 (2019). http://arxiv.org/abs/1901.
08248

[13] SongyunDuan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
2011. Apples and oranges: A comparison of RDF benchmarks and real RDF
datasets. In SIGMOD. ACM, 145–156. https://doi.org/10.1145/1989323.1989340

[14] Márton Elekes, János Benjamin Antal, and Gábor Szárnyas. 2020. An analysis
of the SIGMOD 2014 Programming Contest: Complex queries on the LDBC
social network graph. CoRR abs/2010.12243 (2020). arXiv:2010.12243 https:
//arxiv.org/abs/2010.12243

[15] Márton Elekes, János Benjamin Antal, and Gábor Szárnyas. 2020. An analysis of
the SIGMOD 2014 Programming Contest: Complex queries on the LDBC social
network graph. CoRR abs/2010.12243 (2020). https://arxiv.org/abs/2010.12243

[16] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In SIGMOD. ACM, 619–630.
https://doi.org/10.1145/2723372.2742786

[17] Santo Fortunato. 2009. Community detection in graphs. CoRR abs/0906.0612
(2009). http://arxiv.org/abs/0906.0612

[18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD. ACM, 1433–1445. https://doi.org/10.1145/3183713.3190657

[19] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational
Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891–1904. http://www.vldb.
org/pvldb/vol13/p1891-freitag.pdf

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas

[20] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Integrating Column-
Oriented Storage and Query Processing Techniques Into Graph Database Man-
agement Systems. CoRR abs/2103.02284 (2021). https://arxiv.org/abs/2103.02284

[21] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy J. Lin. 2014. Real-Time Twitter Recommenda-
tion: Online Motif Detection in Large Dynamic Graphs. Proc. VLDB Endow. 7, 13
(2014), 1379–1380. https://doi.org/10.14778/2733004.2733010

[22] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2021.
Simplicity Done Right for Join Ordering. In CIDR. http://cidrdb.org/cidr2021/
papers/cidr2021_paper01.pdf

[23] Tassilo Horn, Christian Krause, and Matthias Tichy. 2014. The TTC 2014 Movie
Database Case. In Transformation Tool Contest at STAF, Vol. 1305. 93–97. http:
//ceur-ws.org/Vol-1305/paper2.pdf

[24] Alexandru Iosup et al. 2020. The LDBC Graphalytics Benchmark. CoRR
abs/2011.15028 (2020). https://arxiv.org/abs/2011.15028

[25] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graphflow: An Active Graph Database. In SIGMOD. ACM,
1695–1698. https://doi.org/10.1145/3035918.3056445

[26] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE.
IEEE Computer Society, 195–206. https://doi.org/10.1109/ICDE.2011.5767867

[27] Venelin Kotsev, Nikos Minadakis, Vassilis Papakonstantinou, Orri Erling, Irini
Fundulaki, and Atanas Kiryakov. 2016. Benchmarking RDF Query Engines:
The LDBC Semantic Publishing Benchmark. In BLINK at ISWC. http://ceur-
ws.org/Vol-1700/paper-01.pdf

[28] Longbin Lai et al. 2019. Distributed Subgraph Matching on Timely Dataflow. Proc.
VLDB Endow. 12, 10 (2019), 1099–1112. https://doi.org/10.14778/3339490.3339494

[29] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An
In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases.
Proc. VLDB Endow. 6, 2 (2012), 133–144. https://doi.org/10.14778/2535568.2448946

[30] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[31] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond
Macrobenchmarks: Microbenchmark-based Graph Database Evaluation. Proc.
VLDB Endow. 12, 4 (2018), 390–403. https://doi.org/10.14778/3297753.3297759

[32] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by
Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11
(2019), 1692–1704. https://doi.org/10.14778/3342263.3342643

[33] Neo4j. 2021. Property Graph Model. https://neo4j.com/developer/graph-
database.

[34] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. http://cidrdb.org/cidr2020/papers/p29-
neumann-cidr20.pdf

[35] HungQ. Ngo, Ely Porat, Christopher Ré, andAtri Rudra. 2018. Worst-case Optimal
Join Algorithms. J. ACM 65, 3 (2018), 16:1–16:40. https://doi.org/10.1145/3180143

[36] Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: New
developments in the theory of join algorithms. SIGMOD Rec. 42, 4 (2013), 5–16.
https://doi.org/10.1145/2590989.2590991

[37] Dung T. Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q.
Ngo, Christopher Ré, and Atri Rudra. 2015. Join Processing for Graph Patterns:
An Old Dog with New Tricks. In GRADES at SIGMOD. ACM, 2:1–2:8. https:
//doi.org/10.1145/2764947.2764948

[38] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec.
45, 2 (2016), 5–16. https://doi.org/10.1145/3003665.3003667

[39] M. Tamer Özsu. 2019. Graph Processing: A Panoramic View and Some Open
Problems. https://vldb2019.github.io/files/VLDB19-keynote-1-slides.pdf.

[40] Matthew Perron, Zeyuan Shang, TimKraska, andMichael Stonebraker. 2019. How
I Learned to Stop Worrying and Love Re-optimization. In ICDE. IEEE, 1758–1761.
https://doi.org/10.1109/ICDE.2019.00191

[41] Minh-Duc Pham, Peter A. Boncz, andOrri Erling. 2012. S3G2: A Scalable Structure-
Correlated Social Graph Generator. In TPCTC. Springer, 156–172. https://doi.
org/10.1007/978-3-642-36727-4_11

[42] Nataliia Pobiedina, Stefan Rümmele, Sebastian Skritek, and Hannes Werthner.
2014. Benchmarking Database Systems for Graph Pattern Matching. In Database
and Expert Systems Applications (DEXA). Springer, 226–241. https://doi.org/10.
1007/978-3-319-10073-9_18

[43] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic
Graphs. Proc. VLDB Endow. 11, 12 (2018), 1876–1888. https://doi.org/10.14778/
3229863.3229874

[44] Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi,
and Jay Banerjee. 2014. PGX.ISO: Parallel and Efficient In-Memory Engine for

Subgraph Isomorphism. In GRADES at SIGMOD. ACM, 5:1–5:6. https://doi.org/
10.1145/2621934.2621939

[45] Marko A. Rodriguez and Peter Neubauer. 2010. Constructions from dots and
lines. Bulletin of the American Society for Information Science and Technology 36,
6 (2010), 35–41. https://doi.org/10.1002/bult.2010.1720360610

[46] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. 2013.
The Graph Story of the SAP HANA Database. In BTW. GI, 403–420. https:
//dl.gi.de/20.500.12116/17334

[47] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph
processing: Extended survey. VLDB J. 29, 2 (2020), 595–618. https://doi.org/10.
1007/s00778-019-00548-x

[48] Sherif Sakr et al. 2020. The Future is Big Graphs! A Community View on Graph
Processing Systems. CoRR abs/2012.06171 (2020). https://arxiv.org/abs/2012.
06171

[49] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-depth
Study. In SIGMOD. ACM, 1083–1098. https://doi.org/10.1145/3318464.3380581

[50] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-
Match: A Holistic Approach to Subgraph Query Processing. VLDB (2020).
https://doi.org/10.14778/3425879.3425888

[51] Gábor Szárnyas et al. 2018. An early look at the LDBC Social Network Bench-
mark’s Business Intelligence workload. In GRADES-NDA at SIGMOD/PODS. ACM,
9:1–9:11. https://doi.org/10.1145/3210259.3210268

[52] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2018. The Train
Benchmark: Cross-technology performance evaluation of continuous model
queries. Softw. Syst. Model. 17, 4 (2018), 1365–1393. https://doi.org/10.1007/s10270-
016-0571-8

[53] Yuanyuan Tian, En Liang Xu, Wei Zhao, Mir Hamid Pirahesh, Suijun Tong, Wen
Sun, Thomas Kolanko, Md. Shahidul Haque Apu, and Huijuan Peng. 2020. IBM
Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside IBM
Db2. In SIGMOD. ACM, 345–359. https://doi.org/10.1145/3318464.3386138

[54] Jack Waudby, Benjamin A. Steer, Arnau Prat-Pérez, and Gábor Szárnyas. 2020.
Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC Social
Network Benchmark’s Data Generator. In GRADES-NDA at SIGMOD. ACM, 8:1–
8:8. https://doi.org/10.1145/3398682.3399165

[55] Jim Webber. 2012. A programmatic introduction to Neo4j. In SPLASH. ACM,
217–218. https://doi.org/10.1145/2384716.2384777

[56] Sungheun Wi, Wook-Shin Han, Chu-Ho Chang, and Kihong Kim. 2020. Towards
Multi-way Join Aware Optimizer in SAP HANA. Proc. VLDB Endow. 13, 12 (2020),
3019–3031. http://www.vldb.org/pvldb/vol13/p3019-wi.pdf

A DEGREE DISTRIBUTIONS

The degree distributions of the SF10 graph are shown in Figure 5.

B QUERY SPECIFICATIONS

We present the specification of the queries in Cypher [18] and in

SQL.

MATCH (:Country)<-[:IS_PART_OF]-(:City)<-[:IS_LOCATED_IN]-(:

Person)<-[:HAS_MEMBER]-(:Forum)-[:CONTAINER_OF]->(:Post

)<-[:REPLY_OF]-(:Comment)-[:HAS_TAG]->(:Tag)-[:HAS_TYPE

]->(:TagClass)

RETURN count(*) AS count

Cypher implementation of Q1.

MATCH
(person1:Person)-[:KNOWS]-(person2:Person),

(person1)<-[:HAS_CREATOR]-(comment:Comment)-[:REPLY_OF]->(

post:Post)-[:HAS_CREATOR]->(person2)

RETURN count(*) AS count

Cypher implementation of Q2.

LSQB: A Large-Scale SubgraphQuery Benchmark GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

1

10

100

1000

10000

0 5000 10000 15000 20000
degree

co
un

t

SF10

(a) Degree distribution of Persons.

1

10

100

1000

10000

0 10000 20000 30000
degree

co
un

t

SF10

(b) Degree distribution of Tags.

1

10

100

5 10 15 20
degree

co
un

t

SF10

(c) Degree distribution of Citys.

1e+01

1e+03

1e+05

0 500 1000 1500 2000
degree

co
un

t

SF10

(d) Degree distribution of Forums.

1e+01

1e+03

1e+05

0 250 500 750
degree

co
un

t

SF10

(e) Degree distribution of Comments.

1e+01

1e+03

1e+05

0 200 400 600 800
degree

co
un

t

SF10

(f) Degree distribution of Posts.

Figure 5: Degree distributions for vertices with a given label.

MATCH (country:Country)

MATCH (person1:Person)-[:IS_LOCATED_IN]->(city1:City)-[:

IS_PART_OF]->(country)

MATCH (person2:Person)-[:IS_LOCATED_IN]->(city2:City)-[:

IS_PART_OF]->(country)

MATCH (person3:Person)-[:IS_LOCATED_IN]->(city3:City)-[:

IS_PART_OF]->(country)

MATCH (person1)-[:KNOWS]-(person2)-[:KNOWS]-(person3)-[:

KNOWS]-(person1)

RETURN count(*) AS count

Cypher implementation of Q3.

MATCH (:Tag)<-[:HAS_TAG]-(message:Message)-[:HAS_CREATOR]-(

creator:Person),

(message)<-[:LIKES]-(liker:Person),

(message)<-[:REPLY_OF]-(comment:Comment)

RETURN count(*) AS count

Cypher implementation of Q4.

MATCH (tag1:Tag)<-[:HAS_TAG]-(message:Message)<-[:REPLY_OF

]-(comment:Comment)-[:HAS_TAG]->(tag2:Tag)

WHERE tag1 <> tag2

RETURN count(*) AS count

Cypher implementation of Q5.

MATCH (person1:Person)-[:KNOWS]-(person2:Person)-[:KNOWS]-(

person3:Person)-[:HAS_INTEREST]->(tag:Tag)

WHERE person1 <> person3

RETURN count(*) AS count

Cypher implementation of Q6.

MATCH (:Tag)<-[:HAS_TAG]-(message:Message)-[:HAS_CREATOR]-(

creator:Person)

OPTIONAL MATCH (message)<-[:LIKES]-(liker:Person)

OPTIONAL MATCH (message)<-[:REPLY_OF]-(comment:Comment)

RETURN count(*) AS count

Cypher implementation of Q7.

MATCH (tag1:Tag)<-[:HAS_TAG]-(message:Message)<-[:REPLY_OF

]-(comment:Comment)-[:HAS_TAG]->(tag2:Tag)

WHERE NOT (comment)-[:HAS_TAG]->(tag1)

AND tag1 <> tag2

RETURN count(*) AS count

Cypher implementation of Q8.

GRADES-NDA’21, June 20–25, 2021, Virtual Event, China Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas

MATCH (person1:Person)-[:KNOWS]-(person2:Person)-[:KNOWS]-(

person3:Person)-[:HAS_INTEREST]->(tag:Tag)

WHERE NOT (person1)-[:KNOWS]-(person3)

AND person1 <> person3

RETURN count(*) AS count

Cypher implementation of Q9.

SELECT count(*)
FROM Country

JOIN City ON City.isPartOf_Country = Country.id

JOIN Person ON Person.isLocatedIn_City = City.id

JOIN Forum_hasMember_Person ON Forum_hasMember_Person.

hasMember_Person = Person.id

JOIN Forum ON Forum.id = Forum_hasMember_Person.id

JOIN Post ON Post.Forum_containerOf = Forum.id

JOIN Comment ON Comment.replyOf_Post = Post.id

JOIN Comment_hasTag_Tag ON Comment_hasTag_Tag.id = Comment.

id

JOIN Tag ON Tag.id = Comment_hasTag_Tag.hasTag_Tag

JOIN TagClass ON Tag.hasType_TagClass = TagClass.id;

SQL implementation of Q1.

SELECT count(*)
FROM Person_knows_Person

JOIN Comment ON Person_knows_Person.Person1Id = Comment.

hasCreator_Person

JOIN Post ON Person_knows_Person.Person2Id = Post.

hasCreator_Person

AND Comment.replyOf_Post = Post.id;

SQL implementation of Q2.

SELECT count(*)
FROM Country

JOIN City AS CityA

ON CityA.isPartOf_Country = Country.id

JOIN City AS CityB

ON CityB.isPartOf_Country = Country.id

JOIN City AS CityC

ON CityC.isPartOf_Country = Country.id

JOIN Person AS PersonA

ON PersonA.isLocatedIn_City = CityA.id

JOIN Person AS PersonB

ON PersonB.isLocatedIn_City = CityB.id

JOIN Person AS PersonC

ON PersonC.isLocatedIn_City = CityC.id

JOIN Person_knows_Person AS pkp1

ON pkp1.Person1Id = personA.id

AND pkp1.Person2Id = personB.id

JOIN Person_knows_Person AS pkp2

ON pkp2.Person1Id = personB.id

AND pkp2.Person2Id = personC.id

JOIN Person_knows_person AS pkp3

ON pkp3.Person1Id = personC.id

AND pkp3.Person2Id = personA.id;

SQL implementation of Q3.

SELECT count(*)
FROM Message_hasTag_Tag

JOIN Message_hasCreator_Person

ON Message_hasTag_Tag.MessageId =

Message_hasCreator_Person.MessageId

JOIN Comment_replyOf_Message

ON Comment_replyOf_Message.ParentMessageId =

Message_hasTag_Tag.MessageId

JOIN Person_likes_Message

ON Person_likes_Message.MessageId = Message_hasTag_Tag.

MessageId;

SQL implementation of Q4.

SELECT count(*)
FROM Message_hasTag_Tag

JOIN Comment_replyOf_Message

ON Message_hasTag_Tag.MessageId = Comment_replyOf_Message.

ParentMessageId

JOIN Comment_hasTag_Tag AS cht

ON Comment_replyOf_Message.CommentId = cht.id

WHERE Message_hasTag_Tag.hasTag_Tag != cht.hasTag_Tag;

SQL implementation of Q5.

SELECT count(*)
FROM Person_knows_Person pkp1

JOIN Person_knows_Person pkp2

ON pkp1.Person2Id = pkp2.Person1Id

AND pkp1.Person1Id != pkp2.Person2Id

JOIN Person_hasInterest_Tag

ON pkp2.Person2Id = Person_hasInterest_Tag.id;

SQL implementation of Q6.

SELECT count(*)
FROM Message_hasTag_Tag

JOIN Message_hasCreator_Person

ON Message_hasTag_Tag.MessageId =

Message_hasCreator_Person.MessageId

LEFT JOIN Comment_replyOf_Message

ON Comment_replyOf_Message.ParentMessageId =

Message_hasTag_Tag.MessageId

LEFT JOIN Person_likes_Message

ON Person_likes_Message.MessageId = Message_hasTag_Tag.

MessageId;

SQL implementation of Q7.

SELECT count(*)
FROM Message_hasTag_Tag

JOIN Comment_replyOf_Message

ON Message_hasTag_Tag.MessageId = Comment_replyOf_Message.

ParentMessageId

JOIN Comment_hasTag_Tag AS cht1

ON Comment_replyOf_Message.CommentId = cht1.id

LEFT JOIN Comment_hasTag_Tag AS cht2

ON Message_hasTag_Tag.hasTag_Tag = cht2.hasTag_Tag

AND Comment_replyOf_Message.CommentId = cht2.id

WHERE Message_hasTag_Tag.hasTag_Tag != cht1.hasTag_Tag

AND cht2.hasTag_Tag IS NULL;

SQL implementation of Q8.

LSQB: A Large-Scale SubgraphQuery Benchmark GRADES-NDA’21, June 20–25, 2021, Virtual Event, China

SELECT count(*)
FROM Person_knows_Person pkp1

JOIN Person_knows_Person pkp2

ON pkp1.Person2Id = pkp2.Person1Id

AND pkp1.Person1Id != pkp2.Person2Id

JOIN Person_hasInterest_Tag

ON pkp2.Person2Id = Person_hasInterest_Tag.id

LEFT JOIN Person_knows_Person pkp3

ON pkp3.Person1Id = pkp1.Person1Id

AND pkp3.Person2Id = pkp2.Person2Id

WHERE pkp3.Person1Id IS NULL;

SQL implementation of Q9.

C NUMBER OF MATCHES

query SF3 SF10 SF30 SF100

Q1 817.1M 3.1B 10.5B 38.3B

Q2 3.3M 11.4M 34.9M 115.4M

Q3 3.2M 15.0M 60.7M 255.7M

Q4 50.0M 191.2M 654.5M 2.4B

Q5 41.6M 141.7M 432.7M 1.4B

Q6 6.3B 23.7B 79.9B 291.4B

Q7 85.2M 312.8M 1.0B 3.7B

Q8 20.8M 70.8M 216.2M 710.8M

Q9 6.0B 22.9B 76.9B 280.0B

Table 3: Number of matching subgraphs per query.

The number of matches for each query–scale factor pair is shown

in Table 3.

