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Chapter 64

On Bringing Interdisciplinary Ideas to Gifted Education

Bharath Sriraman and Bettina Dahl

Abstract This chapter is based on the premise that the
utopian goal of education is to unify various strands of
knowledge as opposed to dividing it. Ideally education
should nurture talent in the classroom and create well-
rounded individuals akin to the great thinkers of the
Renaissance. That is, individuals who are able to pur-
sue multiple fields of research and appreciate both the
aesthetic and the structural/scientific connections be-
tween mathematics, arts, and the sciences. We will ex-
plore an under addressed aspect of giftedness, namely
the role of interdisciplinary activities and problems to
foster talent in and across the disciplines of mathemat-
ics, science and humanities, increasingly important for
emerging professions in the twenty-first century. Ex-
amples from the history of mathematics, science and
arts will be used to argue for the value of such activ-
ities to foster polymathic traits in gifted individuals,
particularly the questioning of paradigms. Recent find-
ings from classroom studies will be used to illustrate
the value of such an approach to gifted education.

Keywords Interdisciplinary ideas in gifted education ·
Domain general creativity · Domain general giftedness
· History of science · Interdisciplinarity

Introduction: Why Interdisciplinarity?

Interdisciplinarity is a topic on which one finds
scant literature in the field of education, particularly
in gifted education. Although we live in an age
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where knowledge is increasingly being integrated in
emerging domains such as mathematical genetics;
bio-informatics; nanotechnology; modeling; ethics
in genetics and medicine; ecology and economics
in the age of globalization, the curriculum in most
parts of the world is typically administered in discrete
packages. The analogy of mice in a maze appropri-
ately characterizes a day in the life of students, with
mutually exclusive class periods for math, science,
literature, languages, social studies etc. Yet reality
does not function in this discrete manner. Although
critical thinking, problem solving and communication
are real world skills that cut across the aforementioned
disciplines (Sriraman, 2003a, 2004a, 2004b; Sriraman
& Adrian 2004a, 2004b) students are led to believe
that these skills are context dependent. For instance
teachers encourage critical thinking in debate, history,
and literature, whereas problem solving is encouraged
in the sciences and communication is traditionally
valued in language classes. Even Mathematics is in-
creasingly viewed as a highly specialized field in spite
of its intricate connections to the arts and sciences.
This being said, within the field of mathematics itself,
a Danish project (Niss & Jensen, 2002) describes
mathematics, not solely as various areas of content
knowledge but also discusses eight mathematical
competencies that comprise intuition and creativity
across educational levels and topic areas throughout
the education system. The thinking behind the Danish
project1 has influenced the mathematical domain of
OECD’s PISA project (OECD, 1999).

The thinkers of the Renaissance did not view
themselves simply as mathematicians, or inventors

1 Niss & Jensen (2002) see two groups of competencies, each
comprising four competencies: (a) the ability to ask and answer
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or painters, or philosophers or political theorists,
but thought of themselves as seekers of Knowledge,
Truth and Beauty. In other words there was a Gestalt
worldview that unified the arts and sciences as opposed
to dividing it. An example of such thinkers is Sir Isaac
Newton (1643–1727) who not only excelled in mathe-
matics but did also in-depth and ground-breaking work
in optics, physics, astronomy, and theology. His book
entitled Quaestiones Quaedam Philosophicae was
headed with a statement meaning “Plato is my friend,
Aristotle is my friend, but my best friend is truth.”
Newton also did alchemy experiments. Alchemy
(Holmyard, 1990) is both an early form of chemical
technology exploring the nature of substances and
a philosophy and spiritual discipline, combining
elements of chemistry, metallurgy, physics, medicine,
astrology, semiotics, mysticism, spiritualism and art.,
i.e., it was interdisciplinary in nature and builds on
the assumption that everything is connected. Western
alchemy became the forerunner of modern science
and significant for the development of experimental
sciences, and until the eighteenth century alchemy was
considered a serious science.

Another example is René Descartes (1596–1650),
a philosopher, mathematician, scientist, and lawyer.
After crawling into a wall stove, Descartes had a vi-
sion and three dreams on the unification of science on
November 10, 1619:

He was possessed by a Genius, and the answers were re-
vealed in a dazzling, unendurable light. Later, in a state
of exhaustion, he went to bed and dreamed three dreams
that had been predicted by this Genius. . . . He tells us that
his third dream pointed to no less than the unification and
the illumination of the whole of science, even the whole
of knowledge, by one and the same method: the method
of reason (Davis & Hersh, 1988, pp. 3–4).

Akin to this thinking is Gottfried Wilhelm von Leib-
niz (1646–1716), a philosopher, mathematician, and
lawyer:

The vision of Descartes became the new spirit. Two gen-
erations later, the mathematician and philosopher Leib-
niz talked about the ‘characteristica universalis’. This
was the dream of a universal method whereby all human
problems, whether of science, law, or politics, could be

question in and with mathematics: (1) mathematical thinking
competency, (2) problem-handling competency, (3) modeling
competency, (4) reasoning competency. (b) The ability to deal
with mathematical language and tools: (5) representation com-
petency, (6) symbol and formalism competency, (7) communica-
tion competency, (8) aids and tools competence.

worked out rationally, systematically, by logical computa-
tion. In our generation, the visions of Descartes and Leib-
niz are implemented on every hand (Davis & Hersh, 1988,
pp. 7–8).

An earlier example is Girolamo Cardano (1501–1576),
a mathematician and a medical doctor who wrote on
a diversity of topics such as medicine, philosophy, as-
tronomy, theology, and mathematics. He also published
two encyclopedias of natural science, where we, as
above, see an attempt to unity these various fields un-
der the heading of science. Gliozzi (1970) comments
about these encyclopedias that they essentially contain
everything from cosmology and machine construction
principles to the influence of demons. In other words,
these encyclopedias were an amalgamation of fact and
fiction, of science and imagination, of the real, and the
occult.

The question for education, particularly gifted ed-
ucation, then is how do we re-create this worldview in
the mathematics classroom? How can we create the ex-
periences for students that lead to the realization and
appreciation of the underlying unity of the arts and sci-
ences? Is this even possible in the classroom? As math-
ematicians and mathematics educators our view of in-
terdisciplinarity for gifted education is skewed toward
the use of mathematics to develop interdisciplinary ac-
tivities for students. This view is justified by the de-
velopment of mathematics itself as a result of work in
art, astronomy, natural and physical sciences, and the-
ology. Our chapter will reveal that much of this histor-
ical work was conducted by eminently gifted individu-
als who were polymaths of the highest order.

In order to convey a unified view of knowledge to
students who are used to viewing the arts and sciences
through the “discrete” lens of disjoint school subjects
unrelated to each other, one would almost have to
create a paradigmatic shift in their mind sets. The
unique nature of mathematics and philosophy and their
intricate connections to the arts and sciences makes
them the ideal bridge to unify the fragmented nature
of students’ curricular experiences. In this chapter,
we demonstrate the possibility for students to create
and challenge paradigms arising from fundamental
philosophical questions common to both the arts and
the sciences that lead to the consideration of a unified
view of Knowledge. In today’s world the urgency
of preparing today’s students adequately for future-
oriented fields is increasingly being emphasized at the
university level. Steen (2005) wrote that “as a science
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biology depends increasingly on data, algorithms and
models; in virtually every respect it is becoming. . .

more mathematical” (xi). Both the National Research
Council (NRC) and the National Science Foundation
(NSF) in the United States is increasingly funding uni-
versities to initiate interdisciplinary doctoral programs
between mathematics and the other sciences with the
goal of producing scientists who are adept at “mod-
eling reality.” Yet many institutions find it difficult
to recruit students capable of graduate level work in
interdisciplinary fields such as mathematical biology
and bio-informatics. This suggests that undergraduates
feel under prepared to pursue careers in these emerging
fields. Any educator with a sense of history foresees
the snowball effect or the cycle of blaming inadequate
preparation to high school onto middle school onto
the very elementary grades, which suggests we work
bottom up (Lesh & Sriraman, 2005a). That is, initiate
and study school subjects from an interdisciplinary
point of view; engage in the mathematics modeling
of complex systems that occur in real-life situations
from the early grades; and encourage the presentation
of data and models through multimedias (Lesh,
Hamilton, & Kaput, 2007; Lesh & Sriraman, 2005a,
2005b). Another objective of this chapter is to il-
lustrate how students are capable of constructing a
paradigm based on ontological, epistemological, and
methodological assumptions (Sriraman, 2005a). In
particular, we will demonstrate the value of and argue
that the use of classical and contextual mathemat-
ics problems, mathematics fiction (literature), and
paradoxes in mathematics classrooms can lead to
desirable holistic outcomes such as broader student
perspective, which is characterized by creativity
(originality in thinking), critical thinking (philosophy),
and problem solving. These outcomes create a poten-
tial for students to realize the unity of the arts and
sciences.

Our preamble begs the question as to whether cre-
ativity is domain general or domain specific? We oper-
ate on the premise that creativity is domain general and
that individuals are capable to making creative contri-
butions across domains. Root-Bernstein (this volume)
presents both sides of the issue and argues that cre-
ativity is domain general and that polymathy fosters
creativity. He argues that “the observation that creativ-
ity is associated with polymathic ability has been val-
idated by historians as well”. We construct a working
definition for interdisciplinary creativity based on the

domain-specific and domain general arguments found
in the literature.

In the general literature on creativity numerous def-
initions can be found. Craft (2002) used the term “life
wide creativity” to describe the numerous contexts of
day to day life in which the phenomenon of creativity
manifests. Other researchers have described creativity
as a natural “survival” or “adaptive” response of hu-
mans in an ever-changing environment (Gruber, 1989;
Ripple, 1989). Craft (2003) has pointed out that it is
essential we distinguish “everyday creativity” such as
improvising on a recipe from “extraordinary creativ-
ity” which causes paradigm shifts in a specific body of
knowledge. It is generally accepted that works of “ex-
traordinary creativity” can be judged only by experts
within a specific domain of knowledge (Csikszentmi-
halyi, 1988, 2000; Craft, 2003). For instance, Andrew
Wiles’ proof of Fermat’s Last Theorem could only be
judged by a handful of mathematicians within a very
specific sub-domain of number theory. In the realm of
educational psychology, one can also find a variety of
definitions of creativity. For example, Weisberg (1993)
suggested that creativity entails the use of ordinary
cognitive processes and results in original and extraor-
dinary products. Further, Sternberg & Lubart (2000)
defined creativity as the ability to produce unexpected
original work, which is useful and adaptive. Other def-
initions usually impose the requirement of novelty, in-
novation or unusualness of a response to a given prob-
lem (Torrance, 1974). Rather similar to this, Krutet-
skii (1976) stated that creative thinking is indicated by
the product of mental activity having novelty and value
both subjectively and objectively, that the thinking pro-
cess requires a transformation of previously accepted
ideas or a denial of them, and that the thinking pro-
cess is characterized by the presence of strong motiva-
tion and stability. “A thorough, independent, and cre-
ative study of mathematics is a prerequisite for devel-
oping an ability for creative mathematical ability—for
the independent formulation and solution of problems
that have new and socially significant content” (Krutet-
skii, 1976, p. 69). Numerous confluence theories of
creativity define creativity as a convergence of knowl-
edge, ability, thinking style, motivational, and environ-
mental variables (Sternberg & Lubart, 1996, 2000), an
evolution of domain-specific ideas resulting in a cre-
ative outcome (Gruber & Wallace, 2000). For example,
Csikszentmihalyi (2000) suggests creativity is one of
several mutations resulting from a favorable interaction
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between an individual, domain, and field. Most re-
cently, Plucker and Beghetto (2004) offered an empir-
ical definition of creativity based on a survey and syn-
thesis of numerous empirical studies in the field. They
defined creativity as “the interplay between ability and
process by which an individual or group produces an
outcome or product that is both novel and useful as de-
fined within some social context” (p. 156). The defi-
nition of Plucker and Beghetto is easily applicable to
interdisciplinary creativity with the addition that pro-
cesses and outcomes need not be domain specific.

Philosophers define a paradigm as the assumptions,
concepts, and practices that create a view of reality in
an intellectual discipline (Sriraman, 2004b, 2004c).
Students naturally have an underlying (intuitive) but
disjointed notion of what constitutes a paradigm in
the liberal arts or mathematics or science based on
observed practices in these disciplines during their
schooling experiences. The question then is how
we can use mathematics to change the disjointed
assumptions students may have of the various disci-
plines. In other words how can we create experiences
that eventually lead students to pose the ontological,
epistemological, and methodological questions that
constitute a paradigm? In doing so the approach to any
content naturally takes on an interdisciplinary stance.
We first present a historical perspective which suggests
that an interdisciplinary outlook toward scholarship
was more the norm than the exception. Our historical
analysis will examine significant paradigmatic shifts
which are didactically replicable particularly in the
classroom with gifted students.

History of Connections
in the Renaissance

The Intrinsic Connection Between
Theology–Art–Science and Mathematics

The history and development of mathematics, science
and arts are intricately connected to the rise and fall
of ancient and modern civilizations. The progression
of humanity from hunter-gather societies onto soci-
eties with sophisticated astronomical calendars, visu-
ally pleasing architectural forms (temples, mosques,
cathedrals, etc.) reveals our quest to understand the

cosmos, our attempts to represent and symbolize it via
patterns, symmetries and structure. A common charac-
teristic of many civilizations (both ancient and modern)
is the quest to answer three basic philosophical ques-
tions:

(1) What is reality? Or what is the nature of the world
around us? This is linked to the general ontologi-
cal question of distinguishing objects (real versus
imagined, concrete versus abstract, existent versus
non-existent, independent versus dependent and so
forth).

(2) How do we go about knowing the world around
us? [the methodological question, which presents
possibilities to various disciplines to develop
methodological paradigms] and,

(3) How can we be certain in the “truth” of what we
know? [the epistemological question].

The interplay of mathematics, arts and sciences is
found in the attempts to answer these fundamental
philosophical questions. In this sense philosophy can
be viewed as the foundational bridge unifying mathe-
matics, arts and the sciences. We will first focus on the
attempts of the thinkers of the Renaissance, who did
not view themselves simply as theologians or mathe-
maticians or inventors or painters or philosophers or
political theorists, but who thought of themselves as
philosophers in the pursuit of Knowledge, Truth and
Beauty. Then we will try to pinpoint the thinking char-
acteristics of these natural philosophers, particularly
the trait of polymathy (Root-Bernstein, 2003) which
explains innovative behavior across numerous subject
specific domains. Finally we will examine the implica-
tions of these findings for present day gifted education
at the school and university levels. Given the dearth of
literature on interdisciplinary approaches in gifted ed-
ucation, our goal is to use history and the limited num-
ber of interdisciplinary studies involving the innova-
tive use of mathematics (content and pedagogy) within
the realm of gifted education to bring interdisciplinary
ideas to the field of gifted education.

Revisiting the Renaissance

The great intellectual gifts of the Renaissance can be
viewed as the influence of Theology on Art and Sci-
ence resulting in powerful mathematics as a conse-
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quence. The great works of Art during the Renais-
sance, particularly those of Italian painters (Massacio,
Brunelleschi, Leonardo da Vinci, Michelangelo, Titian,
Giotto, Raphael, etc.) immediately reveal the interplay
of church doctrine with art in that these painters in-
spired devotion in people by painting divine Chris-
tian icons. In this process of trying to convey these
divine images as realistically and beautifully as pos-
sible, these painters moved away from the medieval
style of painting (very two dimensional) and essentially
created the rules of perspectivity that allowed three-
dimensional images to be projected onto a flat surface.
This suggests that art was instrumental in initiating the
mathematical foundations of the true rules of perspec-
tive. Geometrical optics also played a major role in
how artists experimentally arrived at the mathematical
rules of perspectivity.

Calter (1998) traces a rich lineage of the interac-
tion of optics with art: Euclid’s Optica (300 BC), Vit-
ruvius’ Ten Books on Architecture, Ptolemy’s Optica
(c. AD 140), (the Islamic) Alhazen’s Perspectiva (c.
AD 1000), Roger Bacon’s Opus Majus (c. AD 1260),
with sections on optics, “whose geometric laws, he
maintained, reflected God’s manner of spreading his
grace throughout the universe—onto John Pecham’s
Perspectiva communis” (c. AD 1270). The amalgama-
tion of mathematical ideas proposed in this lineage was
formalized by Desargues (1593–1662) which is today
studied in courses on projective geometry. Today the
visual-artistic side of mathematics is completely lost
under the rubble of formalization in most places al-
though for instance the Danish compulsory education
grades 3–9 has perspectivity included in the mathemat-
ics curriculum (Danish Ministry of Education, 2001).
The visual side of mathematics has seen a revival in
the twentieth century in the area of fractal geometry
due to the work of Benoit Mandelbrot. This is explored
further at a later junction in this chapter.

The Scientists-Mathematicians-
Theologians of the Renaissance–Post-
Renaissance

The relationship between science and theology can be
traced back to the pre-Socratic Greeks. Pre-Socratic
Greek society evolved from the typical “Sky-God” ex-
planation of creation/reality onto a society that devel-

oped a rigorous and systematic philosophy to answer
the three aforementioned questions (Sriraman & Be-
nesch, 2005). The Pythagorean School (c. 500 BC) de-
veloped a mystical numeric system to designate and
describe everything in the universe. They even went so
far as to claim that numerical attributes could be used
to describe everything in the universe. Numbers were
designated abstract attributes: one, the number of rea-
son; two, the first even or female number (the num-
ber of opinion); three, the first true male number (the
number of harmony); four, the number of justice or ret-
ribution; five, marriage; six, creation; and so on. Ac-
cording to Brumbaugh (1981) each number had its own
personality—masculine or feminine, perfect or incom-
plete, beautiful or ugly, which modern mathematics has
deliberately eliminated, but we still find overtones of it
in fiction and poetry. Further the motion of planets and
musical notes was expressed as ratios of numbers. The
Pythagorean School developed an elaborate numerical
system consisting of even and odd numbers to describe
the world around them. However Plato (429–327 BC)
and Aristotle (384–322 BC) deviated from the mysti-
cism of the Pythagoreans and instead attempted to un-
derstand the universe via reason. Plato suggested that
the universe consisted of two realms, the visible realm
which was deceptive because of its changing nature
and an abstract realm which he believed was eternal
and unchanging (Sriraman, 2004a). Within this “dual-
istic” ontology of reality, Plato answered the episte-
mological question by suggesting that knowledge de-
rived empirically from the changing world was fallible,
whereas knowledge derived from the abstract realm
was infallible or absolute. Plato accorded a special
place for mathematics in this pursuit of absolute knowl-
edge by claiming that mathematics was derivable inde-
pendent of the physical senses. Thus the purest form of
“thought” was mathematical thought as it was deemed
capable of deriving “eternal truths” or absolute knowl-
edge. In spite of the alleged motto of the academy,
Plato distinguished “numbers as ideas” from “numbers
as mathematical objects.” Unfortunately over time this
important distinction faded and Platonism approached
Pythagoreanism, which in turn influenced Renaissance
philosophers, then modern natural science and thereby
again modern philosophy.

Aristotle on the other hand was an empiricist whose
prodigious work left a lasting impression until the thir-
teenth century (namely the dawn of the Renaissance).
The Aristotelian approach to science was empirical
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and placed a heavy emphasis on perception through
the senses. Aristotle rejected the Platonic notion of the
mind’s capacity to intuit/discern a priori reality and in-
stead proposed an a posteriori or empirical methodol-
ogy whereby knowledge is acquired by the mind. Aris-
totelian science was axiomatic and deductive in nature
with the aim of explaining natural phenomenon. The
underlying assumption of Aristotelian science was that
all natural objects were fulfilling a potential determined
by an actual prior natural object. For instance, a seed
becomes a plant because it is merely fulfilling its po-
tential of becoming a plant. Science historians today
agree that Aristotle was an empiricist, who believed
that knowledge is gained via observation, experimenta-
tion, and experience (Sriraman & Adrian, 2004a; Srira-
man & Benesch, 2005). The question of whether or not
Aristotelian science was the origin of dualism is still
a matter of present day debate.2 Recent scholarship on
post-Renaissance science and natural philosophy traces
a rich intellectual lineage centered on “scholasticized
Aristotelianism” from seventeenth century natural phi-
losophy onto medieval thinkers like Aquinas onto Aris-
totle (Sriraman & Benesch, 2005, p. 42).

Thomas Aquinas (1225–1274) synthesized “all that
had been argued in Western thought up to his time and
he showed it to be compatible with Christian beliefs”
(Sharp, 2003, p. 346). His argument is superbly sum-
marized by Sharp (2003) as follows:

. . .Aquinas argued that all our rational knowledge of this
world is acquired through sensory experience, on which
our minds then reflect. When children are born, their
minds are like a clean slate (tabula rasa). Aquinas devel-
oped a theory of knowledge which is uncompromisingly
empirical. The world through which we gain our knowl-
edge is God’s creation, and therefore it is impossible for
this gained knowledge to conflict with religious revelation
(p. 346).

The Greek philosophers also stumbled upon the idea
of the “infinite”, a sophisticated mathematical abstrac-
tion, as evidenced in Zeno’s paradoxes.3 Bertrand Rus-
sell (1872–1970) observed that scholastic theology was

2 One could argue that Aristotle drew a distinction in the natural
world between the animate and the inanimate, whereas Descartes
was more focused on the human. Descartes’ dualism dominated
physics for a substantial period of time.
3 Zeno (born around 495 BC) was a Greek philosopher and lo-
gician, and a student of the philosopher Parmenides. Zeno is re-
membered for paradoxes that stumped mathematicians for cen-
turies. Zeno’s paradoxes evolved from Parmenides’ ideas about
the illusory nature of motion, change, and time.

one of the outcomes of mathematical abstraction (Rus-
sell, 1945, p. 37). His claim is supported by numer-
ous historical examples, a handful of which are pre-
sented here. Sa’id ibn Yusuf (Saadia Gaon), a tenth
century theologian and leader of the Babylonian Jews
wrote a theological treatise called Kitab al-Amanat
wa-al Itiqadat (the Book of Beliefs and Opinions) in
which extensive use is made of mathematical argu-
ments to answer cosmological questions, such as the
existence of a creator. Gaon (1948) also cleverly re-
versed Zeno’s paradox of Achilles and the tortoise4

to prove that Creation occurred by arguing that if the
world were uncreated, then time would be infinite.
But infinite time could not be traversed. This implied
that present moment could not have come about. But
since the present moment exists, this implies that the
world had a beginning. The ideas of the Greeks also
had a profound influence on post-Renaissance mathe-
maticians like Descartes (1596–1650), Pascal (1623–
1662) and Leibniz (1646–1716) among others. One
routinely comes across the use of mathematical analo-
gies to prove the existence of God in the theological
works of Descartes, Leibniz, and Pascal. For example,
Descartes in the Fifth Meditation states,

Certainly the idea of God, or a supremely perfect being is
one which I find within me, just as surely the idea of any
shape or number. And my understanding that it belongs
to his nature that he always exists is no less clear and dis-
tinct than is the case when I prove of any shape or number
that some property belongs to its nature. Hence, even if it
turned out that not everything on which I have meditated
in these past days is true, I ought still to regard the exis-
tence of God as having at least the same level of certainty
as I have hitherto attributed to the truths in mathematics
(Descartes, 1996, p. 45).

Leibniz in Theodicy argued that faith and reason were
compatible:

Theologians of all parties, I believe (fanatics alone ex-
cepted), agree that no article of faith must imply contra-
diction or contravene proofs as exact as those of math-
ematics, where the opposite of the conclusion can be
reached ad absurdum, that is, to contradiction. It follows
thence that certain writers have been too ready to grant
that the Holy Trinity is contrary to that great principle,
which states that two things, which are the same as the

4 Achilles and the tortoise: The running Achilles can never catch
a crawling tortoise ahead of him because he must first reach
where the tortoise started. However, when he reaches there, the
tortoise has moved ahead, and Achilles must now run to the new
position, which by the time he reaches the tortoise has moved
ahead, etc. Hence the tortoise will always be ahead.
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third, are also the same as each other. For this principle is
a direct consequence of that of contradiction, and forms
the basis of all logic; and if it ceases, we can no longer
reason with certainty (Leibniz, 1985, p. 87).

Leibniz’s dissertation on the conformity of faith and
reason can be interpreted to mean that it is logically
contingent and intelligible for a human being to ask
why an eternal being exists (Craig & Smith, 1995).
Blaise Pascal, perhaps the most intriguing mathemat-
ical mystic argued for the use of “infinitesimal reason-
ing”5 (or reasoning in infinitely small quantities) by
proclaiming that the infinitely large and the infinitely
small were mysteries of nature that man stumbled on
by divine inspiration. Pascal is also remembered for his
famous wager, where he argued that if God’s existence
has a probability of 0.5 (50/50 chance), then it is only
rational for us to believe he does exist. Popkin (1989)
paraphrasing Pascal writes that if you gain, you gain
all; if you lose, you lose nothing!

The aforementioned historical examples, viz., the
number mysticism of the Pythagoreans, the paradoxes
of Zeno that brought forth the abstraction of the infi-
nite, the attempts of medieval theologians like Saadia
Gaon to systematize theology by constructing unique-
ness proofs to theological theorems, and the use of
mathematical arguments to prove the existence of a
Creator by post-Renaissance mathematicians, illustrate
that there has been a rich interplay between mathe-
matics and theology (Sriraman, 2004a). While these
aforementioned thinkers of the Renaissance and post-
Renaissance who strongly believed in the existence of a
creator invoked mathematical arguments to prove their
beliefs in their philosophical writings, others such as
Copernicus and Galileo, who were professed believers
of the Catholic Church, found it increasingly difficult
to believe in the prescribed view of the world (earth)
as the center of the universe. Their model building dur-
ing this time period reveals the interplay as well as the
conflict between theology and science with mathemat-

5 An infinitesimal is a number that is infinitely small but greater
than zero. Infinitesimal arguments have historically been viewed
as self-contradictory by mathematicians in the area of analysis.
The infinitesimal Calculus of Newton and Leibniz was reformu-
lated by Karl Weierstrass in the nineteenth century for the sole
purpose of eliminating the use of infinitesimals. In the twentieth
century Abraham Robinson revived the notion of infinitesimals
and founded the subject of non-standard analysis to resolve the
contradictions posed by infinitesimals within Calculus. Robin-
son attempted to use logical concepts and methods to provide a
suitable framework for differential and integral Calculus.

ics replacing Aristotilean logic as the language of de-
scription.

Modeling the Universe: Copernicus–
Galileo–Kepler

The Ptolemaic model (c. AD 87–150) of astronomy
was based on the assumption that the earth was
the center of the universe which was accepted by
the Catholic Church as being compatible with its
teachings. However this geocentric view of the world
could not explain the curious planetary phenomenon
observed by Nicholaus Copernicus (1473–1543). That
is the retrograde motion (moving backwards and then
forward) of Mars, Jupiter and Saturn, in addition
to nearly invariant times that Venus and Mercury
appeared in the sky which is shortly before sunrise
and after sunset. However these queer motions were
perfectly reasonable if one viewed the sun as the
center of the “universe” as opposed to the earth. In
such a model the peculiarities of the inner planets
(Mercury and Venus) as well as the outer planets
(Mars, Jupiter, and Saturn) in relation to the earth
make perfect sense. The retrograde motion of outer
planets is due to the fact that they get overtaken
by the earth in its orbitary motion. Similarly Venus
and Mercury appear static and only before sunrise
and after sunset because their orbitary motions do
not allow them to get behind the earth and manifest
in the night sky. It is amazing what a little change
in perspective does to our perceptions! However
the conflicts of Copernicus’ findings with Church
dictum prevented a wider dissemination of his simpler
planetary model until his death. Centuries later, the
great German philosopher, writer, scientist Goethe
(1749–1832) reflected on Copernicus’ new perspective
of our reality:

Of all discoveries and opinions, none may have exerted
a greater effect on the human spirit than the doctrine
of Copernicus. The world had scarcely become known
as round and complete in itself when it was asked to
waive the tremendous privilege of being the center of
the universe. Never, perhaps, was a greater demand made
on mankind—for by this admission so many things van-
ished in mist and smoke! What became of our Eden, our
world of innocence, piety and poetry; the testimony of
the senses; the conviction of a poetic—religious faith? No
wonder his contemporaries did not wish to let all this go
and offered every possible resistance to a doctrine which
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in its converts authorized and demanded a freedom of
view and greatness of thought so far unknown, indeed not
even dreamed of.6

Galileo Galilei (1564–1642) pushed things further
by using mathematics to explain interplanetary motion.
In fact many science historians claim that Galileo was
the first person to systematically use mathematics as
the language of science instead of Aristotilean logic.
Aristotle’s conceptions of motion had several flaws
which were rectified by Galileo by determining that ve-
locity and acceleration were distinct. More importantly
the question that vexed Copernicus of why the motion
of the Earth was unfelt (if in fact it was moving) was
answered by Galileo by suggesting that only acceler-
ation is felt, whereas velocity is unfelt and invariant
except when acted on by an external force (the notion
of inertia). Thus, Galileo suggested that the Earth in
addition to orbiting around the sun was also rotating
on its own axis. Needless to say, his attempt to make
his model public met with fierce resistance from the
Church and led to his condemnation by the Inquisition.

During this same time period the German as-
tronomer Johannes Kepler (1571–1630) confirmed
and supported many of Galileo’s well-formulated
theories. Johannes Kepler was born in Weil der Stadt,
Württemburg. While studying for Lutheran ministry at
the University of Tübingen, he became familiar with
the Copernican model, which he defended explicitly
in the Mysterium Cosmographicum. The political
forces of that time period with his unique personal
circumstances, namely his strong adherence to the
Augsburg Confession but rejection of several key
Lutheran tenets, the use of the calendar introduced
by Pope Gregory XIII, his rejection of the Formula
of Concord, and finally his snub to Catholicism led
to him to exile in Prague where he worked for the
Danish astronomer Tycho Brahe. With the help of
Brahe’s data, Kepler made several seminal discoveries
published in Astronomia Nova. The beauty of this
work lies in the fact that Kepler arrived at the first
two laws of planetary motion by working with incom-
plete/imperfect data (we must remember that this data
was obtained before the invention of the telescope!).
The first two laws were (1) planets move in ellipses
with the Sun at one focus and (2) the radius vector
describes equal areas in equal times. Finally the third

6 Quote retrieved April 24, 2005, from http://www.blupete.com/
Literature/Biographies/Science/Copernicus.htm

law was published by Harmonices Mundi in 1619. The
third law states that the squares of the periodic times
are to each other as the cubes of the mean distances.
Incidentally Newton’s theory of gravitation grew
out of Kepler’s third law (and not a fallen apple as
suggested by myth). Szpiro (2003) recently suggested
that among the forces driving Kepler’s work during
his turbulent Tübingen years was to seek a theological
explanation to his questions:

Since God had created a perfect world, he thought it
should be possible to discover and understand the geo-
metric principles that govern the universe. After much de-
liberation Kepler believed he had found God’s principles
in the regular solids. . ..His explanations of the universe
were based on an imaginary system of cubes, spheres
and other solids that he thought were fitted between the
sun and other planets. . .published in Mysterium Cosmo-
graphicum. This tome did not unveil any mysteries of
the planetary system. . .since no solids exist that are sus-
pended in the universe. But the book came to the attention
of Tycho Brahe (Szpiro, 2003, p. 13).

And the rest is history. . .

Isaac Newton’s (1642–1727) prodigious work
included a mathematical model of the planetary
system, in a sense suggesting that the universe was
governed by certain laws, expressible via mathematics
and discernible by humans (Sharp, 2003). This led to
the development of natural philosophy as an answer to
the ontological, methodological, and epistemological
questions with mathematics becoming the medium
of establishing truth. One consequence of Aristotle’s
empiricist tradition was the acceptance of the notion
that knowledge of the external world was derived
by an active soul,7 which was in essence separate
from that world (Polkinghorne, 1998). Salmon (1990)
comments,

It is illuminating to recognize that Cartesian dualism of-
fered a way of resolving the conflict between science
and religion—which had brought such great troubles to
Galileo—by providing each with its own separate do-
main. Physical science could deal with matter, while reli-
gion could handle whatever pertains to the soul (p. 236).

This led to a growing acceptance among seventeenth
century natural philosophers in the notion of duality
(or dualism). René Descartes (1596–1650) is consid-

7 Polkinghorne comments that Aristotle’s view of the soul as the
underlying “form” or pattern of the body was then taken up by
Thomas Aquinas who rejected Platonic dualism that had domi-
nated Western Christian thinking since Augustine. This view is
corroborated by extant histories on the philosophy of dualism.
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ered the founder of this belief system since he initiated
the mind–body problem. Cartesian dualism essentially
proclaims that we are composed of two distinct and ba-
sic substances, namely the mind (soul) and the matter.
Matter was the material substance that extended into
the world and took up space, whereas the mind (soul)
was a thinking substance, which was not “localizable”
in space. “If these two aspects (mind-matter) are to be
held in equal balance, it seems that it will have to be in
some way more subtle than mere juxtaposition” (Polk-
inghorne, 1998, p. 54). The problem of dualism can be
reformulated as follows: One can think of subject and
object as two unique and separate natures, neither of
which is reducible to each other. The question of course
in such a dualistic assumption is how do these two na-
tures relate to each other? (Sriraman & Benesch, 2005).

The Modern Day Renaissance: Shifts
in Perspective

Scientists in the twentieth and twenty-first centuries
have developed the technical tools and the analytic and
theoretical maturity necessary for analyzing nature at
unprecedented micro and macrocosmic levels. By do-
ing so, they have reaffirmed the dynamic nature of the
whole that was reflected in the paradoxes of the an-
cients. The result is a view of nature in which pro-
cesses have supplanted “things” in descriptions and ex-
planations. By the end of the nineteenth century, lim-
itations of the classical Newtonian/Euclidean world-
view had become increasingly problematic as physi-
cists began exploring nature at the subatomic level. The
paradoxes posed by uncertainty, incompleteness, non-
locality, and wavicles, etc. let it seem apparent that in
the subatomic world observations and observers are as-
pects of a whole. The physicist John Wheeler com-
mented,

. . .In the quantum principle we’re instructed that the ac-
tual act of making an observation changes what it is that
one looks at. To me, this is a perfectly marvelous fea-
ture of nature. . .. So the old word observer simply has
to be crossed off the books, and we must put in the
new word participator. In this way we’ve come to real-
ize that the universe is a participatory universe (Buckley
& David, 1979, pp. 53–54).

Biologists have found that methodological reduction-
ism, i.e., going to the parts to understand the whole,

which was central to the classical physical sciences,
is less applicable when dealing with living systems.
Such an approach may lead to a study not of the “liv-
ing” but of the “dead” because in the examination of
highly complex living systems “only by ripping apart
the network at some point can we analyze life. We
are therefore limited to the study of ‘dead’ things”
(Cramer, 1993, p. 214). One of the most important
shifts in the natural sciences in the modern period has
been away from the view of a simple and complete sep-
aration between observer and observed to an awareness
that an observer also represents a living aspect of that
which is being observed—both as a product of nature
and as the mental possibility in nature of observing,
as in the notion of the “participatory universe” coined
by John Wheeler. A synthesis of “product” and “pro-
cess” are at the heart of the puzzles and paradoxes that
we associate with ideas of “indeterminacy” in physics
and with genes in biology. The very concept of “ob-
jectivity” maintains that the observed and observer are
separate does not hold in the study of “highly complex
biological processes such as evolution or the function-
ing of the central nervous system . . . we cannot dis-
tance ourselves from the object being considered; in-
deed, this is so at the very moment we start to think”
(Cramer, 1993, p. 212). It is amazing how close in
understanding, and that across six centuries, modern
physics and biology are to the Neo-Confucian Philoso-
pher, Wang Yang-Ming’s continuum view of “innate
knowledge”:

The innate knowledge of man is the same as that of plants
and trees, tiles and stones. . .Heaven, Earth, the myriad
things, and man form one body. The point at which this
unity is manifested in its most refined and excellent form
is the clear intelligence of the human mind (Chan, 1973,
p. 221).

The very process of generalizing implies a belief in the
unity of the world: “if the different parts of the uni-
verse were not like the members of one body, they
would not act on one another. . .know nothing of one
another, and we. . .would know only one of these parts.
We do not ask if nature is one, but how it is one”
(Poincaré, 1946, p. 130). The position on mind and
nature of theoretical physicists seems consistent with
that of the neo-Confucian philosopher. Another physi-
cist suggests that the heliocentric universe is again be-
coming geo or human centered in that it is “form-
less potentia. . .and becomes manifest only when ob-
served by conscious beings. . .Of course, we are not the
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geographical center, but that is not the issue. We are
the center of the universe because we are its meaning”
(Goswami, 1993, p. 141). This is yet another amazing
shift in perspective.

Benoit Mandelbrot (1924–), a very recognizable
name in twentieth century mathematics because of his
seminal contributions to the development of fractal
geometry, has repeatedly emphasized the need to re-
orient our perspectives to better understand the world
around us. He has often very humbly characterized
himself as an “accidental” mathematician. In spite of
his early interest and precocity in the study of geom-
etry he was “encouraged” by the French university
establishment to embrace formalization which led him
to leave the École Normale Supériere. He writes,

I spent several years doing all kinds of things and be-
came, in a certain sense, a specialist of odd and isolated
phenomena. . .I did not know or care in which field I was
playing. I wanted to find a place, a new field, where I
could be the first person to introduce mathematics. For-
malization had gone too far for my taste, in the mathemat-
ics favored by the establishment. . . (Mandelbrot, 2001,
p. 192).

Mandelbrot made his astonishing mathematical discov-
ery when working on an economics problem acciden-
tally handed to him by a friend. Economists had long
attempted to make sense of (and predict) stock market
fluctuations and had proposed theories based on exist-
ing data which did not hold up when tested with primi-
tive computers. Mandelbrot viewed fluctuations from
the perspective of changing scales. That is the time
scale can be in days or months or years. He suggested
that the interchangeable nature of the time scales was
the key to understanding the fluctuations:

I cooked up the simplest mathematical formula I thought
could explain this phenomenon. . .[making] no assump-
tions about people, markets or anything in the real world.
It was based on a ‘principle of invariance’,—the hypoth-
esis that, somehow economics is a world in which things
are the same in the small as they are in the large except, of
course for a suitable change of scale (Mandelbrot, 2001).

In 1960, Edward Lorenz, who was modeling the earth’s
atmosphere with non-linear equations at MIT, switched
from rounding his equations to the sixth decimal point
to doing so to the third. What emerged was a totally dif-
ferent system! He attributed the difference to a combi-
nation of the iteration of his equations plus the sensitiv-
ity of the system to initial conditions—in this case, the
changes in the terminal decimal points. Lorenz named
this randomness within his non-random weather mod-

els the “butterfly effect” in a paper he wrote entitled
“Can the flap of a butterfly’s wing stir up a tornado in
Texas?” The discovery of “sensitive dependency on ini-
tial conditions” coupled with the “iteration of patterns
or data” which produce random irregularities in deter-
ministic systems is the beginning of the contemporary
science of “deterministic chaos” (Peitgen, Juergens, &
Saupe, 1992, p. 48).

The term “fractal” was coined from Latin fractua
“irregular,” to refer to the results of this combination
of iteration and sensitivity. And it was Mandelbrot
who provided the pictures of this deterministic chaos
in his computer generated fractal images—what is de-
scribed as “. . .a way of seeing infinity” (Gleick, 1987,
p. 98). We discover these irregular non-linear fractal
structures and patterns throughout nature, in the itera-
tions of buds in Romanesco broccoli, the arterial and
venous systems of kidneys, lungs, brains, coast lines,
mountain ranges, root systems, and turbulences in flu-
ids. For example, one might ask the length of a head
of cauliflower or a coastline. At one level, the answer
might be 8 in. or 580 miles. However, at the frac-
tal level of iteration of growth patterns and/or ocean
forces, both can be seen as infinite. In most, perhaps all
of nature, we encounter a kind of deterministic chaos
in a world described by “fractal geometries” which
have “. . .become a way of measuring qualities that oth-
erwise have no clear definition: the degree of rough-
ness or brokenness or irregularity in an object” (Gle-
ick, 1987, p. 98). This is the heterogeneous and non-
linear world of the branching of buds in the cauliflower
head, the spongy tissue of the lungs, and the indenta-
tion on the beach. “Chaos is more like the rule in na-
ture, while order (=predictability) is more like the ex-
ception” (Peitgen, Juergens, & Saupe, 1992, p. 48).

An unpredictable consequence of fractal geome-
try coupled with advances in computer graphics was
that it was now possible for machines to produce ge-
ometric “art” based on very simple formulae which
“shows surprising kinship to Old Masters paintings,
Cubist paintings,8 or Beaux Arts architecture. An ob-

8 Cubism is a more modern art movement in which forms are ab-
stracted by using an analytical approach to the object and paint-
ing the basic geometric solid of the subject. Cubism is a backlash
to the impressionist period in which there is more of an emphasis
of light and color. Cubism itself follows Paul Cezanne’s state-
ment that “Everything in nature takes its form from the sphere,
the cone, and the cylinder” in which these three shapes are used
to depict the object of the painting. Another way that the cu-
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Fig. 64.1 Anklets of Krishna

vious reason is that classical visual arts, like fractals,
involve very many scales of length and favor self-
similarity (Mandelbrot, 1981, 1989). The discovery
that self-similarity was an inherent property of nature
as mathematically conceptualized by Mandelbrot was
long written about and expressed by poets, satirists,
writers, philosophers, and numerous religious tradi-
tions. For instance, in Southern India, Kolam is an art
form used by women to decorate the entrance to homes
and courtyards (see Fig. 64.1). These art forms go back
over 6,000 years and consist of self-similar patterns re-
peated in different scales in very sophisticated fashion.
Architecture in Hindu temples also reveals that the no-
tion of self-similarity was used to create visually stun-
ning forms.

Polymathy

The numerous examples of thinkers given thus far
represent a unique sample of gifted individuals who
made remarkable contributions to the arts, sciences,
and mathematics, and who also happened to be
philosophers. These individuals are best characterized
as polymaths. The term polymath is in fact quite old
and synonymous with the German term “Renaissance-
mensch.” Although this term occurs abundantly in

bist expressed their painting was by showing different views of
an object put together in a way that you cannot actually see in
real life. The Cubism period stated in Paris in 1908, reached its
peak in 1914, and continued into the 1920s. Major cubists were
Pablo Picasso and Georges Braque. For more information visit
http://abstractart.20m.com/cubism.htm

the literature in the humanities, very few (if any)
attempts have been made to isolate the qualitative
aspects of thinking that adequately describe this term.
Most cognitive theorists believe that skills are domain
specific and typically non-transferable across domains.
This implicitly assumes that “skills” are that which
one learns as a student within a particular discipline.
However such an assumption begs the question as to
why polymathy occurs in the first place. Although
the numerous historic and contemporary examples
presented are of eminent individuals, it has been found
that polymathy as a thinking trait occurs frequently in
non-eminent samples (such as high school students)
when presented with the opportunities to engage in
trans-disciplinary behavior. In particular the use of un-
solved classical problems and mathematics literature
has been found to be particularly effective in foster-
ing interdisciplinary thinking (see Sriraman, 2003a,
2003b, 2004b, 2004c). These are explored further in a
subsequent section of the chapter.

Thinking Traits of Polymaths

Root-Bernstein (2003) has been instrumental in rekin-
dling an interest in mainstream psychology in a sys-
tematic investigation of polymathy. That is the study of
individuals, both historical and contemporary, and their
trans-disciplinary thinking traits which enabled them
to contribute to a variety of disciplines. His analysis
of the works and biographies of numerous innovators
both historical and contemporary reveals that arts ad-
vance the sciences and scientists are inspired by the
arts (Fig. 64.2).

One recent example provided by Root-
Bernstein (2003) is the effect of Escher’s drawings on a
young Roger Penrose, the mathematical physicist, who
visited one of Escher’s exhibitions in 1954. Stimulated
by the seemingly impossible perspectives conveyed by
Escher in two dimensions, Penrose began creating his
own impossible objects such as the famous Penrose
“impossible” tribar which shows a three-dimensional
triangle that twists both forward and backward in two
dimensions. Root-Bernstein writes,

Roger Penrose showed his tribar to his father L.S. Pen-
rose, a biologist who dabbled in art. . .[who] invented
the impossible staircase in which stairs appear to spiral
both up and down simultaneously. . .[and] sent Escher a
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Fig. 64.2 The impossible Penrose Tribar9

copy. . .[who] then developed artistic possibilities of the
impossible staircase in ways that have since become fa-
mous (p. 274).

Another well-known consequence of Escher’s artis-
tic influence on mathematicians is the investigation of
tiling problems (both periodic and aperiodic) popular-
ized by both Roger Penrose and Martin Gardner, which
helped crystallographers understand the structure of
many metal alloys which are aperiodic (Peterson, 1985
as quoted by Root-Bernstein, 2003, p. 274).

Common thinking traits of the polymaths described
in this chapter in conjunction with the thousands of
polymaths (historical and contemporary) as analyzed
by Root-Bernstein (1989, 1996, 2000, 2001, 2003)
and reported in various chapters in Shavinina and
Ferrari (2004) among others are (1) visual geometric
thinking and/or thinking in terms of geometric prin-
ciples, (2) frequent shifts in perspective, (3) thinking
in analogies, (4) nepistemological awareness (that is,
an awareness of domain limitations), (5) interest in
investigating paradoxes (which often reveal interplay
between language, mathematics, and science), (6)
belief in Occam’s Razor [simple ideas are preferable to
complicated ones], (7) acknowledgment of Serendipity
and the role of chance, and (8) the drive to influence
the Agenda of the times.

A Model of Interdisciplinarity

In this section we present five overarching principles to
maximize interdisciplinary creativity and general gift-
edness (see Fig. 64.3). In order to maximize the poten-

9 More information on the Penrose Tribar is found
http://mathworld.wolfram.com/PenroseTriangle.html

tial for creativity to manifest in the mathematics class-
room, teachers can encourage mathematically creative
students to share their synthetic insights on connections
between seemingly diverse problems with the other
students in the class (Sriraman, 2004e). Historic exam-
ples of synthetic thinking in mathematics, which con-
nect seemingly diverse ideas/concepts can be used in
the classroom to further illustrate the power and value
of such insights. The scholarly, free market and aes-
thetic principles contain aspects of Sternberg’s (1997)
triachic view of giftedness. The five principles also en-
compass notions of polymathy which can foster cre-
ativity in general by connecting notions from the arts
and sciences to mathematics and vice versa. These
five overarching principles emerge from a synthesis
and analysis of the historical literature which reveals
the interdisciplinary creativity of individuals, particu-
larly mathematicians (Sriraman, 2005b). The five prin-
ciples are labeled as follows: (a) the Gestalt principle,
(b) the Aesthetic principle, (c) the free market princi-
ple, (d) the scholarly principle, and (e) the uncertainty
principle.

The Gestalt Principle

The eminent French mathematicians Hadamard (1945)
and Poincaré (1948) viewed creativity as a process
by which the mathematician makes choices between
questions that lead to fruition as opposed to those that
lead to nothing new. These mathematicians also viewed
the act of creation as a combination of disparate la-
tent ideas within the unconscious. Their conceptions
of creativity were influenced by the Gestalt psychol-
ogy of their time and they characterized mathemat-
ical creativity as a four-stage process consisting of
preparation, incubation, illumination, and verification
(Wallas, 1926; Hadamard, 1945). This combinatorial
view of idea generation was also proposed by Hilbert,
which unfortunately has been construed as a formalist
view of mathematics. Both Poincaré and Hilbert were
polymaths who had worked on numerous problems
in physics, particularly the class equation. Hadamard
made numerous forays into Gestalt psychology and
his book was instrumental in popularizing Gestalt psy-
chology from beyond the domain of psychology to the
arenas of mathematics and cognition. Although psy-
chologists have criticized the Gestalt model of cre-
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THE UNCERTAINTY 
PRINCIPLE 
Open-ended and/or ill posed 
problems. Tolerating 
ambiguity 

THE GESTALT 
PRINCIPLE 
Freedom of time 
and movement 

Interdisciplinary
Creativity 

Giftedness 

THE FREE MARKET 
PRINCIPLE 
Encouraging risk taking and 
atypical thinking 

THE AESTHETIC 
PRINCIPLE 
Appreciating the beauty of 
unusual solutions /connections 
to the Arts and Sciences 

THE SCHOLARLY 
PRINCIPLE 
View creativity as 
contributing to, challenging 
known paradigms and
extending the existing body 
of knowledge 

Fig. 64.3 Harmonizing interdisciplinary creativity and general giftedness

ativity because it attributes a large “unknown” part
of creativity to unconscious drives during incubation,
numerous studies with scientists and mathematicians
(i.e., Burton, 1999a, 1999b; Davis & Hersh, 1981;
Shaw, 1994; Sriraman, 2004d) have consistently val-
idated this model. In all these studies after one has
worked on a problem for a considerable time (prepa-
ration) without making a breakthrough, one puts the
problem aside and other interests occupy the mind.
Also Polya argued for the importance of the uncon-
scious when stating that “conscious effort and tension
seem to be necessary to set the subconscious work go-
ing” (Polya, 1971, p. 198). Hadamard put forth two hy-
potheses regarding the incubation phase: (1) the “rest-
hypothesis” holds that a fresh brain in a new state of
mind makes illumination possible. (2) The “forgetting-
hypothesis” states that the incubation phase gets rid
of false leads and makes it possible to approach the
problem with an open mind (Hadamard, 1945, p. 33).
Tall (1991) also argues that “working sufficiently hard
on the problems to stimulate mental activity, and then

relaxing . . . allow the processing to carry on subcon-
sciously” (p. 15). Krutetskii explains that what is ex-
perienced as sudden inspiration “despite the apparent
absence of a connection with his former experience,
is the result of previous protracted thinking, of pre-
viously acquired experience, skills, and knowledge; it
entails the processes and use of information the per-
son amassed earlier” (Krutetskii, 1976, p. 305). Also
Dahl (2004) has the unconscious as one of six essential
themes in her CULTIS model [U for “unconscious”]
of the psychology of learning mathematics. This pe-
riod of incubation eventually leads to an insight on the
problem, to the “Eureka” or the “Aha!” moment of il-
lumination. Most of us have experienced this magical
moment. Yet the value of this archaic Gestalt construct
is ignored in the classroom. This implies that it is im-
portant that teachers encourage the gifted to engage in
suitably challenging problems over a protracted time
period thereby creating the opportunities for the dis-
covery of an insight and to experience the euphoria of
the “Aha!” moment.
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The Aesthetic Principle

Many eminent creators (particularly mathematicians)
have often reported the aesthetic appeal of creating a
“beautiful” theorem that ties together seemingly dis-
parate ideas, combines ideas from different areas of
mathematics, or utilizes an atypical proof technique
(Birkhoff, 1956, 1969; Dreyfus & Eisenberg, 1986;
Hardy, 1940). Wedderburn’s theorem that a finite di-
vision ring as a field is one instance of a unification
of apparently random ideas because the proof involves
algebra, complex analysis, and number theory. Can-
tor’s argument about the uncountability of the set of
real numbers is an often quoted example of a bril-
liant and atypical mathematical proof technique (Nick-
erson, 2000). The eminent English mathematician G.H.
Hardy (1940) compared the professional mathemati-
cian to an artist, because like an artist, a mathematician
was a maker of patterns in the realm of abstract ideas.
Hardy (1940) said,

A mathematician, like a painter or a poet, is a maker of
patterns. If his patterns are more permanent than theirs,
it is because they are made with ideas. . . . The mathe-
matician’s patterns, like the painter’s or the poet’s, must
be beautiful; the ideas, like the colors or the words, must
fit together in a harmonious way. Beauty is the first test:
there is no permanent place in the world for ugly mathe-
matics (p. 13).

Also Krutetskii states that capable students often try
to solve the problem in a more simple way or im-
prove the solution. They do not show satisfaction be-
fore the solution is economical, rational, and elegant
(Krutetskii, 1976, p. 285). Recent studies in Australia
(Barnes, 2000) and Germany (Brinkmann, 2004) with
middle and high school students revealed that students
were capable of appreciating the “aesthetic beauty” of
a simple solution to a complex mathematical problem.

The Free Market Principle

Scientists in an academic setting take a huge risk when
they announce a new theory or medical breakthrough
or proof to a long-standing unsolved problem. Often
the reputation of the person is put to risk if a major
flaw or refutation is discovered in their findings. For
instance in mathematical folklore, Louis De Branges’

announcement of a proof to the Riemann hypothesis10

fell through upon scrutiny by the experts. This led to
subsequent ignorance of his claim to a brilliant proof
for the Bieberbach Conjecture.11 The western mathe-
matical community took notice of Louis De Brange’s
proof of the Bieberbach conjecture only after a promi-
nent Soviet group of mathematicians supported his
proof. On the other hand, Ramanujan’s numerous intu-
itive claims, which lacked proof, were widely accepted
by the community because of the backing of giants
like G.H. Hardy and J.E. Littlewood. The implication
of these anecdotes from professional mathematics for
the classroom is that teachers should encourage stu-
dents to take risks. In particular they should encour-
age the gifted/creative students to pursue and present
their solutions to contest or open problems at appropri-
ate regional and state math student meetings, allowing
them to gain experience at defending their ideas upon
scrutiny from their peers (Sriraman, 2005b).

The Scholarly Principle

K-12 teachers should embrace the idea of “creative
deviance” as contributing to the body of mathematical
knowledge, and they should be flexible and open to
alternative student approaches to problems. In addi-
tion, they should nurture a classroom environment in
which students are encouraged to debate and question
the validity of both the teachers’ and other students’
approaches to problems. Gifted students should also
be encouraged to generalize the problem and/or the
solution as well as pose a class of analogous problems
in other contexts. Enhancing students’ ability to
work with analogical problems has historically been

10 The Riemann hypothesis states that the zeros of Riemann’s
zeta function all have a real part of one half. Conjectured by Rie-
mann in 1859 and since then has neither been proved nor dis-
proved. This is currently the most outstanding unsolved problem
in mathematics.
11 The Bieberbach conjecture is easily understood by under-
graduate students with some exposure to complex analysis be-
cause of the elementary nature of its statement. A univalent func-
tion f transforms a point in the unit disk into the point repre-
sented by the complex number f(z) given by an infinite series
f(z) = z + a2z2 + a3z3 + a4z4 + . . . where the coefficients a2,
a3, a4, . . . are fixed complex numbers, which specify f. In 1916
Bieberbach conjectured that no matter which such f we consider
|an| ≤ n. Loius de Branges proved this in 1985.
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proposed by Polya (1954). Allowing students problem
posing opportunities and understanding of problem
design helps them to differentiate mathematical prob-
lems from non-mathematical problems, good problems
from poor, and solvable from non-solvable problems.
In addition, independent thinking can be cultivated by
offering students the opportunity to explore problem
situations without any explicit instruction. This is also
supported by Carlson (1999) who found that one of
the non-cognitive factors that play a major role in
the high-achieving mathematics graduate students’
success and further mathematical study is that they
“enjoy the challenge of attempting complex mathe-
matical tasks and believe that they possess abilities and
strategies that facilitate their problem solving success”
(Carlson, 1999, p. 242). Their teachers created a
non-intimidating environment where students were
encouraged to pose questions until they acquired
understanding (Carlson, 1999, p. 244).

As Root-Bernstein (this volume) puts it,

From the polymathy perspective, giftedness is the ability
to combine disparate (or even apparently contradictory)
ideas, sets of problems, skills, talents, and knowledge in
novel and useful ways. Polymathy is therefore the main
source of any individual’s creative potential. The question
of “who is creative” must then be reexamined in light of
what is necessary for creative thinking. In light of this dis-
tinction, Santiago Ramon y Cajal, one of the first Nobel
laureates in Medicine of Physiology, argued that it is not
the precocious or monomaniacal student who is first in his
class who we should expect to be creative, but the second
tier of students who excel in breadth: “A good deal more
worthy of preference by the clear-sighted teacher will be
those students who are somewhat headstrong, contemptu-
ous of first place, insensible to the inducements of vanity,
and who being endowed with an abundance of restless
imagination, spend their energy in the pursuit of litera-
ture, art, philosophy, and all the recreations of mind and
body.

Teachers are also encouraged to engage in curriculum
acceleration and compaction to lead gifted students
into advanced concepts quickly to promote indepen-
dent scholarly activity not simply from the point of
depth but also from that of breadth. The longitudinal
Study of Mathematically Precocious Youth (SMPY)
started by Julian Stanley at the Johns Hopkins Univer-
sity in 1971 generated a vast amount of empirical data
gathered over the last 30 years, and has resulted in
many findings about the types of curricular and affec-
tive interventions that foster the pursuit of advanced
coursework in mathematics. More than 250 papers
have been produced in its wake, and they provide
excellent empirical support for the effectiveness of

curriculum acceleration and compaction in mathe-
matics (Benbow, Lubinski, & Sushy, 1996). But the
point we are making here is that many mathematical
problems can be historically researched by students to
find out the analogous problems tacked by individuals
in history in order to make a breakthrough on the
given problem. Kepler’s conjecture is one outstanding
example of such a problem and there is no shortage of
such problems.

The Uncertainty Principle

Real-world problems are full of uncertainty and
ambiguity as indicated in our analysis so far. Creating,
as opposed to learning, requires that students be
exposed to the uncertainty as well as the difficulty of
creating original ideas in mathematics, science, and
other disciplines. This ability requires the teacher to
provide affective support to students who experience
frustration over being unable to solve a difficult
problem. Students should periodically be exposed to
ideas from the history of mathematics and science that
evolved over centuries and took the efforts of gener-
ations of mathematicians to finally solve (Einstein &
Inheld, 1938; Kuhn, 1962). Cultivating this trait will
ultimately serve the mathematically gifted student in
the professional realm. Kiesswetter (1992) developed
the so-called Hamburg Model in Germany, which is
more focused on allowing gifted students to engage
in problem-posing activities, followed by time for
exploring viable and non-viable strategies to solve the
posed problems. This approach captures an essence
of the nature of professional mathematics, where the
most difficult task is often to correctly formulate the
problem (theorem). Conversely, some extant models
within the United States, such as those used in the
Center for Talented Youth (CTY), tend to focus on
accelerating the learning of concepts and processes
from the regular curriculum, thus preparing students
for advanced coursework within mathematics (Barnett
& Corazza, 1993). Having presented five principles
that can maximize the interdisciplinary creativity we
present examples from classroom studies12 at the

12 The classroom studies reported here were conducted by Srira-
man with secondary students in the 1999–2002 time period. The
study with pre-service teachers was conducted by Sriraman in
the 2002–2005 time period.
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secondary school and university level that illustrate
these principles at work in a practical settings.

Can Paradigm Shifts Be Didactically
Engineered?

The Value of Unsolved Classical Problems

The use of unsolved classical problems both conveys
a sense of perspective on the origins of the problems
and presents a natural opportunity to grapple with the
question of allowable tools to tackle a given problem.
Let us explain. Most students with even just a basic
background in middle school mathematics would view
most historical problems through the lens and the “re-
sources” of the twenty-first century. One resource that
many twenty-first century students rely on are calcula-
tors with powerful graphing and computing capabilities
including computer algebra systems, not to mention
freely available computing software and web-based ap-
plets. The didactic goal was to make students realize
the limited nature of modern computing tools! Elemen-
tary number theoretic concepts such as prime numbers
and tests for divisibility are introduced in most mid-
dle school curricula. However, in many parts of the
world, particularly in the United States, at the high
school level, the curriculum offers students very little
opportunity to tackle number theoretic problems (Sri-
raman, 2003b). A famous example of one such un-
solved problem would be Goldbach’s conjecture. Gold-
bach (1742) casually wrote in a letter to Euler that
numbers greater than 2 could be expressed as the sum
of three primes, which Euler restated as follows: all
even integers ≥4 could be expressed as the sum of two
primes. Other good candidates are Catalan’s conjecture
(which was only resolved two years ago!). Catalan’s
conjecture asks whether 8 and 9 are the only consecu-
tive powers? More generally it asks for all integer solu-
tions to xa–yb = 1 in integers. Another beautiful prob-
lem is the Four Squares problem (resolved by Lagrange
a long time ago), which states that every natural num-
ber n can be expressed as the sum of four squares. In
other words x2 + y2 + z2 + w2 = n is solvable for all
integers n.

One problem used by Sriraman (2003b) with 13-
to 15-year-old students is called the 5-tuple diophan-

tine problem purportedly posed by Diophantus him-
self. In general a diophantine n-tuple is defined as a
set of n positive integers such that the product of any
two is one less than a perfect square. For instance
(1,3,8) is a diophantine 3-tuple since the product of
any integers is always one less than a perfect square.
Over the course of the school year ninth-grade stu-
dents tried to answer if a diophantine 5-tuple exists?
This problem was tackled in parallel with the regu-
lar curriculum. The Lakatosian (1976) methodology
of conjecture–proof–refutation was emphasized as stu-
dents tackled this problem. The limitations of modern
computing tools became obvious very quickly as we
were working over the field of integers. The unimag-
ined difficulties that arose from generating the general
forms of the 4-tuples and the “futile” exhausting search
for a 5-tuple led students to question the ontological
status of the set of integers and more importantly their
properties. It should be noted that this was a natural
function of realizing the fallibility of all their known
methodological tools, which were to a large extent that
of trial and error before an insight occurred. Since the
students did not have the mathematical sophistication
to create number theoretic tools, a natural consequence
was to question the question itself. In other words, it
led to questions such as (1) why do positive integers
have this strange property? (2) Does it matter if we are
unable to find a 5-tuple? (3) Does a 5-tuple exist even
if we are not able to find it? (4) Is this search real? The
four aforementioned questions are philosophical in na-
ture and pose the challenge of examining the ontologi-
cal status of mathematics. In other words, Is mathemat-
ics real or imagined?

Mathematics and Literature

One could easily bias the students’ natural line of
philosophical questioning by pointing to the numerous
connections and applications of mathematics to the
arts and sciences. A better didactic approach is of
course to let students make up their own minds. The
question then was to find a didactic tool that would
allow the teacher to scaffold this process. Mathematics
fiction serves as the ideal tool to both awaken the
imagination and explore more deeply philosophical
questions.

Flatland (Abbot, 1984 reprint of 1884 edition) a
book of mathematical fiction is the unusual marriage of
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literature and mathematics. Sriraman (2003a) used this
book as a didactic tool to provide the ideal scaffold-
ing for 13- to 15-year-old students to critically exam-
ine societal norms and biases in addition to exposing
students to some very advanced mathematical ideas
such as dimension. It also created the perfect setting
to expose students to non-Euclidean geometries such
as the Minkowskian space–time geometry and Fractal
geometry. One purpose of introducing non-Euclidean
geometries was to expose students to relatively modern
ideas that were instrumental in the subsequent founda-
tional problems that plagued mathematics in the early
part of the twentieth century. The hope was that this
exposure to non-intuitive mathematics would lead stu-
dents to form a basis for an ontological and epis-
temological standpoint. A follow-up teaching experi-
ment (Sriraman, 2004b) consisted of reading the first
five chapters of Flatterland, a sequel to Flatland, in
which Stewart (2001) brilliantly makes numerous non-
Euclidean geometries accessible to the lay person in
addition to introducing ideas such as encryption on
the Internet, the taxi-cab metric, and fractal geometry.
These readings further exposed students to the non-
intuitive aspect of mathematics. For instance Stew-
art (2001) describes the non-intuitive possibility of fit-
ting a cube of side length 1.06 into a unit cube, which
some students did not accept as being possible in spite
of the sound mathematical argument in the book:

Mathematics is imagined by the human mind because you
cannot physically create mathematics. There are many
things that can be proven mathematically such as the
larger cube in a smaller one but you cannot physically
push a larger cube in a smaller one – Student comment

The origins of this mathematical problem of fitting
a larger cube into a smaller one was a wager made and
won by Prince Rupert in the late seventeenth century
(Jerrard & Wetzel, 2004) about this bizarre possibility.
The non-intuitive aspect of mathematics brought alive
by Flatterland led students in Sriraman’s studies to
take an ontological position on the nature of mathemat-
ics. Eventually students also asked the epistemological
question “How does one know truth in mathematics?”
In other words students were questioning the nature of
the truth of the non-intuitive possibilities of mathemat-
ics. The specific ontological question was whether the
protagonist of Flatterland was discovering geometries
that were present a priori or were the different geome-
tries a figment of imagination made real via the use of
a virtual reality device in the book (Sriraman, 2004b).

The specific epistemological question was whether one
could believe in the truth of these new geometries? For
some students that were interested in science fiction,
these questions also coincided with questions about
the nature of reality and truth raised by the film The
Matrix in which reality as is was quite different from
reality experienced through a virtual interface (Srira-
man, 2004b, 2004c). In other words, students were not
only posing the analogous question for mathematics
but were also willing to consider this question indepen-
dent of the context of a specific intellectual discipline.

Conveying the Applied Nature of the Field
of Mathematics

Another important aspect of this discussion is the ques-
tion of the balance between pure and applied mathe-
matics. The literature suggests that the nature of math-
ematics relevant for today’s world has also changed.
In spite of the rich and antiquated roots of mathemat-
ics, Steen (2001) suggested that mathematician’s today
should acknowledge the contributions of researchers in
external disciplines like biology, physics, finance, in-
formation sciences, economics, education, medicine,
and so on who successfully use mathematics to cre-
ate models with far reaching and profound applications
in today’s world. These interdisciplinary and emergent
applications have resulted in the field of mathematics
thriving at the dawn of the twenty-first century. This
wide range of application can also be seen in the TV se-
ries “Numb3rs” where a university professor in math-
ematics helps his brother who is an FBI agent solving
crimes.

However, problem solving as it is implemented in
the classroom does not contain this interdisciplinary
approach and modeling of what is happening in the real
world. Secondary mathematics is usually the gateway
for an exposure to both breadth and depth of mathe-
matical topics. However, most traditional mathematics
curricula are still anchored in the traditional treatment
of mathematics, as opposed to an interdisciplinary and
modeling-based approach of mathematics used in the
real world. The traditional treatment of mathematics
has little or no emphasis on modeling-based activi-
ties, which require team work and communication. Ad-
ditionally, the traditional mathematics has historically
kept gifted girls from pursuing 4 years of high school
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mathematics. This deficit is difficult to remediate at
the undergraduate level and results in the effect of low
numbers of students capable of graduate level work
in interdisciplinary fields such as mathematical biol-
ogy and bio-informatics (see Steen, 2005). To reme-
diate this deficit is also in line with UNESCO’s Sala-
manca Statement that declares that “schools should ac-
commodate all children regardless of their physical,
intellectual, social, emotional, linguistic or other con-
dition. This should include disabled and gifted chil-
dren, street and working children, children from re-
mote or nomadic populations, children from linguistic,
ethnic or cultural minorities and children from other
disadvantaged or marginalized areas or groups” (UN-
ESCO, 1994, p. 6):

Any educator with a sense of history should fore-
see the snowball effect or the cycle of blaming inad-
equate preparation to high school onto middle school
onto the very elementary grades, which suggests we
work bottom up. That is, we should initiate and study
the modeling of complex systems that occur in real-life
situations from the very early grades. Lesh, Hamilton,
& Kaput, (2007) reported that in projects such as Pur-
due University’s Gender Equity in Engineering Project,
when students’ abilities and achievements were as-
sessed using tasks that were designed to be simula-
tions of real-life problem solving situations, the un-
derstandings and abilities that emerged as being crit-
ical for success included many that are not emphasized
in traditional textbooks or tests. Thus, the importance
of a broader range of deeper understandings and abili-
ties and a broader range of students naturally emerged
as having extraordinary potential. This finding coheres
with the recommendations outlined by Renzulli and
Reis (this volume). Surprisingly enough, these stu-
dents also came from populations, specifically female
and minority, that are highly underrepresented in fields
that emphasize mathematics, science, and technology,
and they were underrepresented because their abili-
ties had been previously unrecognized (Lesh & Srira-
man, 2005a, 2005b; Sriraman, 2005a, 2005b).

Thus it may be more fruitful to engage students in
model-eliciting activities, which expose them to com-
plex real-life systems, as opposed to contrived problem
solving. The mathematical conceptual systems arising
from such investigations have great potential for be-
ing pursued by mathematically gifted students purely
in terms of their implications and because they cre-
ate axiomatic structures through which theorems can

be discovered that are analogous to what a pure math-
ematician does.

The Use of Paradoxes in Teacher Training

Given the lack of teacher training in interdisciplinarity,
a vital component to promulgate in interdisciplinary
approach in the curriculum is to initiate interdisci-
plinary thinking in the training of prospective teach-
ers. In order to investigate whether prospective elemen-
tary school mathematics teachers display some of the
thinking traits of polymaths, the first author conducted
a 3-year study with approximately (Sriraman, 2009a,
2009b)120 prospective elementary school mathemat-
ics teachers enrolled in a year long mathematics con-
tent sequence required of elementary teachers for el-
ementary certification. Students were presented with
several set theoretic paradoxes in a linguistic form. For
instance one of the tasks was

The town barber shaves all those males, and only those
males, who do not shave themselves. Assuming the barber
is a male who shaves, who shaves the barber?

First explain in your own words what this question
is asking you? When you construct your response to the
question, you must justify using clear language why you
think your answer is valid?

If you are unable to answer the question who shaves
the barber?. . .you must again justify using clear language
why you think the question cannot be answered.

This task is the well-known linguistic version of
Russell’s paradox, appropriately called the Barber
Paradox. Students were given about 10 days to con-
struct a written response to this task. The purpose
of this task was to investigate whether students with
no prior exposure to the paradox would be able to
decipher the contradictions in the linguistic version
of Russell’s paradox, and whether they would be
able to then construct their own set theoretic version
of the paradox. All the students were also asked to
complete the following affective tasks parallel to the
mathematical task:

Write one paragraph (200–300 words) about your
impressions of a given question after you have read it, if
possible while tackling it, and after you’ve finished it. In
particular record things such as:

a. The immediate feeling/mood about the question. (con-
fidence, in confidence, ambivalence, happiness, tenseness
etc.)
b. After you’ve finished the question record the feel-
ing/mood about the question (if you are confident about
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your solution; why you are confident? Are you satis-
fied/unsatisfied? Are you elated/not elated? Are you frus-
trated? If so why?
c. Did you refer to the book, notes? Did you spend a lot of
time thinking about what you were doing? Or was the so-
lution procedural (and you simply went through the mo-
tions so to speak)
d. Was the question difficult, if so why? If not, why not?
e. Did you experience any sense of beauty in the question
and/or your solution?

In this study besides the written responses of the stu-
dents to the aforementioned tasks, the first author in-
terviewed 20 students from the 120 students. These
students were purposefully selected on the basis of
whether they were able to unravel the paradox and for-
mulate its set theoretic equivalent and those that were
unsuccessful in their attempts to do so. During the in-
terview clarifications were sought on the written solu-
tion and their affective responses. Students were al-
lowed to speak at length on the nature of the prob-
lem and their struggles with it. The written artifacts
(student solution and affective responses) and inter-
view data were analyzed using a phenomenological-
hermeneutic approach (Merleau-Ponty, 1962; Romme
& Escher, 1993) with the purpose of re-creating the
voice of the students. In addition, the constant com-
parative method from grounded theory was applied
for the purposes of triangulating the categories which
emerged from the phenomenological approach (e.g.,
Annells, 2006). The qualitative analysis of student so-
lutions, affective responses, and interview transcripts
indicated that nearly that 40% of the students displayed
polymathic traits when engaged with the paradox. In
particular students reported (1) frequent shifts in per-
spective (2) thinking with analogies, and (3) tendency
toward nepistemology (i.e., questioning the validity of
the question and its place in the domain of mathe-
matics). The pre-service teachers also reported an in-
creased interest in the place of paradoxes in mathemat-
ics, which they had believed as an infallible or abso-
lutist science (Sriraman, 2009a, 2009b).

There have been recent attempts to classify works
of mathematics fiction suitable for use by K-12 teach-
ers in conjunction with science and humanities teachers
to broaden student learning. Padula (2005) argues that
although good elementary teachers have historically
known the value of mathematical fiction, mainly pic-
ture books, through which children could be engaged in
mathematical learning, such an approach also has con-

siderable value at the secondary level. Padula (2005)
provides a small classification of books appropriate for
use at the middle and high school levels, which inte-
grate paradoxes, art, history, literature, and science to
“stimulate the interest of reluctant mathematics learn-
ers, reinforce the motivation of the student who is al-
ready intrigued by mathematics, introduce topics, sup-
ply interesting applications, and provide mathematical
ideas in a literary and at times, highly visual context”
(p. 13).

Concluding Thoughts

The tension between the disciplines that came out
of the Renaissance, namely natural philosophy–
art–alchemy–theology during the post-Renaissance
continues today in the modern day antipathy between
the ever increasing subdisciplines within arts, science,
mathematics, and philosophy. Many of the thinking
processes of polymaths who unified disciplines are
commonly invoked by artists, scientists, mathemati-
cians, and philosophers in their craft albeit the end
products are invariably different. These disciplines
explore our world for new knowledge. Literature
is an excellent medium to create frequent shifts in
perspective. Paradoxes can be easily investigated by
exploring geometry motivated by Art. After all Art
suggests new possibilities and pushes the limits of
our imagination, whereas science verifies the actual
limitations of these possibilities using mathematics.
Both are driven by the need to understand reality
with philosophy (and theology) often serving as the
underlying framework linking the three. Models and
Theory building lie at the intersection of art–science–
mathematics. The history of model building in science
conveys epistemological awareness of domain limita-
tions. Arts imagine possibilities, science attempts to
generate models to test possibilities, and mathematics
serves as the tool. The implications for education
today are to move away from the post-Renaissance
snobbery rampant within individual disciplines at
the school and university levels. By building bridges
today between disciplines, the greatest benefactors
are today’s gifted children, the potential innovators of
tomorrow.
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