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A B S T R A C T   

Several global and regional efforts have been undertaken to map human-made settlements and their charac-
teristics, including building material, area, volume, and population. However, given the unprecedented amount 
of Earth observation data and processing power available, there is a timely need for developing novel approaches 
for mapping these characteristics at higher spatial and temporal resolution. Such information is key to effectively 
answering questions related to population growth, pollution, disaster management, risk assessments, spatial 
planning, and even generating business cases in peri-urban and rural areas. While such data is available from 
mapping agencies or commercial companies in some countries, there are many countries where this is not the 
case. The main objective of this study is to propose an Inception-ResNet inspired deep learning approach to 
estimate the characteristics and location of human-made structures, including estimates of population, based on 
Earth observation data from the Copernicus Programme. The study investigates the effects on prediction accu-
racy using data from different orbital directions and interferometric coherence from Sentinel 1 data and different 
band combinations of Sentinel 2 data as model input variables. The model is trained and evaluated on a 
nationwide Danish case study, where the national mapping agency provides high-quality open data on human- 
made structures, which serves as the ground truth data for the study. Our findings reveal that it is possible to 
design models that, on average, perform within 2.6% total absolute percentage error for area predictions, 7.7% 
for volume and 17% for population at 10 by 10 m scale using only Copernicus data and deep learning models. 
The models achieved 98.68% binary accuracy for extracting structural area when all test sites were merged. 
Combining Sentinel 1 and 2 input variables yielded the best results, while adding interferometric coherence did 
not significantly improve accuracy. Furthermore, including data from both orbital directions of the Sentinel 1 
constellation significantly improved model performance.   

1. Introduction 

Monitoring and planning for urbanisation, estimating the local 
population in intercensal years, improving financial inclusion by map-
ping under-served communities, and organising disaster responses are 
examples of endeavours that benefit from reliable data on the area, 
volume, population and location of building infrastructure (Fibæk et al., 
2021). However, access to quality data varies significantly across the 
globe. Some countries provide structural data from LIDAR surveys, large 
scale national topographic mapping projects, and detailed building 
registries. A similar amount of quality data are not available in many 

countries, especially data-poor countries in the Global South (Woon 
2013). Moreover, these countries often face complex planning issues, 
including significant urban expansion, which is projected to continue for 
the next decades (Jiang and O’Neill 2017). This study shows that it is 
possible to generate estimates of structural characteristics using data 
from the Copernicus programme. The novelty of this study comes from 
the temporal and spatial resolution made possible by the proposed 
methodology, the sole reliance on data from the Sentinel satellites, and 
predictions of area, volume and population at the individual structure 
scale. 

A model to map the characteristics of human-made structures that 
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use open data policy satellites can lower costs and barriers to continuous 
monitoring of structures and populations. For countries with existing 
data infrastructure on structures, an Earth Observation-based model 
could increase the temporal resolution of existing datasets. The high 
temporal resolution of the Sentinel satellites can make large-scale, high- 
resolution mapping more affordable by enabling targeted topographic 
updates. Synthetic Aperture Radar (SAR) data from the Sentinel 1 sat-
ellite make models more resistant to weather effects in time-critical 
scenarios and enable mapping in areas with perpetual cloud cover 
(Khabbazan et al. 2019). Mapping the characteristics of buildings helps 
describe and estimate dynamics in cities, such as greenhouse gas emis-
sions, urban heat islands, storage inventory, floor area, and energy 
consumption (Frantz et al. 2021). 

Earth observation and deep transfer learning can help alleviate the 
impact of the global data disparity (Jasper et al. 2021). However, a great 
amount of ground truth data is usually needed to train the base models 
(Herfort et al. 2021). This study, therefore, proposes training deep 
learning models on the data available in Denmark, both to show the 
feasibility of the approach and to enable future deep transfer learning to 
other geographical regions for mapping building characteristics. The 
models developed can be used as an input layer in other related geo-
spatial tasks, such as classifying urban settlement types or structure 
types. Combining structural information with census data and land 
cover classification makes it possible to create population density esti-
mates for places where ground truth, similar to the Danish population 
ground truth dataset, is not available (Leasure et al. 2020; Tatem 2017). 

Using Denmark as a testing location ensures a controlled environ-
ment where complete ground truth data coverage is available. The 
location allows a focus on the design of the model and input variables. 
The models are beneficial for Denmark to conduct targeted topographic 
updates, extract historical and current structures, and assess local pop-
ulation density. The proposed methodology’s predictions at 10 by 10 m 
resolution are lower than what is achievable using satellite imagery with 
submeter spatial resolution. There are, however, significant benefits to 
approaches based on data from the Copernicus programme: No satellite 
tasking is required, high temporal resolution is available for most of the 
globe, it is free of charge, and it requires less processing power and 
storage capabilities than higher-resolution methods. The combination of 
active and passive sensors and the use of a broad range of the electro-
magnetic spectrum ensures high robustness in the predictions versus 
methods based solely on passive sensors capturing the visible spectrum. 

Data from the Sentinel satellites are well suited to form the basis of 
these models. The Sentinel 1 constellation provides C-Band SAR data, 
and the Sentinel 2 constellation provides high-resolution multi-spectral 
data. Together, they have been proven highly effective at mapping and 
classifying urban clusters and settlement types (Qiu et al. 2020; 
Semenzato et al. 2020). 

Hence, this study aims to: 

• Investigate the possibility of mapping structures and their charac-
teristics at a 10 by 10 m spatial resolution using publicly available 
satellite data.  

• Investigate the effect of using different input variables on a multi- 
sensor approach using an Inception-ResNet inspired Convolutional 
Neural Network and determine the effects of using different tile sizes 
on the models’ accuracy. 

The remainder of this paper is structured as follows: Section 2 pre-
sents related work to the study and background context. Section 3 de-
scribes the study area, followed by Section 4, depicting the methodology 
behind the analysis. Section 5 presents the achieved results, while Sec-
tion 6 and 7 present the discussion and conclusions of the paper. 

2. Related work 

This study investigates the use of the Sentinel 1 and 2 satellites to 

create datasets on structural characteristics – their area, volume, and 
human population. Weijia Li et al. (2019) and Microsoft (2021) showed 
examples of extracting building footprints from very high-resolution 
imagery, either from satellites or aerial imagery. The two approaches 
presented are different from the one applied in this study, in both the 
sensors chosen and the geospatial scale, but the goal of mapping the 
location and characteristics of structures is similar. The models applied 
in the two studies were trained on data from the visible spectrum, 
whereas this study uses all the 10 and 20 m bands available from 
Sentinel 2 satellites, which includes Near Infra-Red (NIR) and Short 
Wave Infra-Red (SWIR) bands, as well as both backscatter and coherence 
from the Sentinel 1 satellite in VV and VH polarisations. Weijia Li et al. 
(2019) and Microsoft (2021) produced vectorised building footprints, 
which is not done in this study, as the Sentinel data is of a spatially 
coarser resolution. Through their programme “AI for Humanitarian 
Action” (Microsoft 2021), Microsoft has published building footprints 
generated for Uganda and Tanzania built upon the deep learning model 
specified in Tan and Le (2019). The project was conducted in collabo-
ration with the Humanitarian OpenStreetMap Team. The data provided 
by the project can be used as part of the ground truth dataset for the 
models’ proposed here. Google has released building footprints for 64% 
of Africa built upon modified U-Net and ResNet models and 50 cm sat-
ellite imagery using the visible spectrum (Sirko et al. 2021). The general 
approach described in Sirko et al. (2021) is similar to Weijia Li et al. 
(2019) and Microsoft (2021). However, they introduced noisy student 
learning iterations to improve their results further (Xie et al. 2020). This 
study focuses on a multi-sensor approach for data of a significantly 
spatially coarser character than Microsoft (2021) and Sirko et al. (2021) 
while using the additional information offered by expanding the breadth 
of the utilised parts of the electromagnetic spectrum and combining 
passive and active sensors. 

Gao and Cui (2020) suggested using transfer learning to lessen 
healthcare disparity, which arises from the data inequality between 
ethnic groups. This study proposes that a similar approach could apply 
to global mapping efforts. Up-to-date maps and topographic data are 
essential for urban planning and disaster management. OpenStreetMap 
is a data source heavily used in the humanitarian sector, but data 
inequality is also present here. While 28 % of the mapped buildings are 
located in low and medium development index countries, the countries 
are home to 46 % of the global population (Herfort et al. 2021). Deep 
learning models trained on areas with high data availability can be 
applied to lessen the data inequality. 

Frantz et al. (2021) investigated the use of Sentinel 1 and 2 data time 
series to map the building heights of structures in Germany using a 
Support Vector Machine (SVM) regression model. Their general 
approach is similar to the proposed method for predicting structural 
volume. However, this study relies on deep learning, terrain models, and 
public structure footprints instead of 3D building datasets and SVM 
regression. The focus of this study is not establishing the building height 
but the structural area, volume, and population on a given 10 by 10 m 
pixel. Frantz et al. (2021) suggested using both orbital directions for 
Sentinel 1 to lessen the effect of building orientation, and this finding is 
incorporated into the methodologies presented in this study. Xuecao Li 
et al. (2020) investigated a problem of estimating building heights using 
single orbital direction Sentinel 1 over the United States at the 500 by 
500 m scale and saw good results, which along with Frantz et al. (2021), 
show that using sentinel imagery to estimate building volume is feasible. 

Xinghua Li et al. (2021) used a modified U-Net model called U- 
Net++ (Zhou et al. 2018) and a process called Deep Translation based 
Change Detection Network, which combines SAR and optical imagery 
into the same feature domain before feeding it to a change detection 
network. This study also investigates how to combine the active and 
passive sensors, taking a different approach by using the inception 
module approaches presented in Szegedy et al. (2017) and designing a 
neural network to incorporate the data from different sensors in 
different branches and merging them before the upsampling blocks. 
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Global maps of population density and building footprints exist, such 
as WorldPop and Ecopia (Ecopia 2021; Esch et al. 2017; Tatem 2017). 
WorldPop combines multiple data sources, such as night lights, health 
facilities and Landsat imagery, into their population estimates made 
using a random forest model presented in Stevens et al. (2015). This 
study contributes to the research gap by using only data from the 
Copernicus programme and deep learning approaches to map several 
structural characteristics through regression models. 

3. Study area 

The study area is the whole of Denmark shown in Fig. 1, excluding 
the island of Bornholm in the Baltic Sea, which serves as one of the 
testing areas excluded from the training material. Denmark contains 
urban clusters, heathland, coastal areas, large scale agriculture and 
lakes. The country contains several cities with large industrial zones, 
dense residential neighbourhoods, holiday homes, and extensive sub-
urbs. Denmark is home to 5.8 million people, and there are 5.7 million 
registered buildings. The land area of Denmark is 42,933 km2, and all of 
it is included in the study area, either for testing or training. 

Most of Denmark has been recently scanned in a national update of 
the LiDAR-based national terrain model. The availability of recently 
updated data means that it is possible to do up-to-date structural volume 
calculations for most of the country. 

The major cities in the country are predominantly located along the 
coastal regions and fjords. The buildings are mostly one to two-floor 
detached housing in suburban areas with clusters of 6–8 floor build-
ings in the urban centres. The tallest building in Denmark is Herlev 

Hospital at 120 m in the Copenhagen metropolitan area. Frequent cloud- 
free Sentinel 2 images are sparse outside of the summer months (Danish 
Meteorological Institute 2019). 

Five test areas were excluded from the training material and used to 
test the accuracy of the developed models. Table 1 and Fig. 2 show the 
test areas. 

The five test areas chosen contain a mix of different structure types, 
from the urban areas of Aarhus and Odense to the mixed urban/agri-
cultural area of Holstebro and the rural islands of Bornholm and Samsoe, 
which are popular vacation destinations home to many vacation homes 
and campsites. 

4. Methodology 

Three different models were trained to predict three levels of char-
acteristics about human-made structures: Area, volume, and the number 
of inhabitants. Separate ground truth datasets were created for each 
model, and Sentinel 1 and 2 data serve as the input variables. Table 2 

Fig. 1. Denmark, without the Island of Bornholm. Sentinel 2 Mosaic from Spring 2020 to early Summer 2020.  

Table 1 
Subset areas used for testing the models.  

Test Area Type Size km2 Population 

Holstebro Mixed  216.44 41,991 
Aarhus Urban  103.29 140,454 
Samsoe Rural  344.26 3456 
Odense Urban  298.37 203,377 
Bornholm Rural  588.77 39,523  
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shows the different data sources used to generate the ground truth and 
input variables. 

4.1. Ground truth 

The datasets that serve as the ground truth have increasing concep-
tual complexity. First is the sum of the area (2D) of structures inter-
secting a given 10 by 10 m pixel, second is the volume (3D), and third is 
the number of humans living in structures within each pixel. An example 
of the ground truth data used in this study is shown in Fig. 3. 

4.1.1. Area 
Data from GeoDanmark – a collaboration between the Danish Min-

istry of Data Supply and Efficiency and the 98 Danish municipalities – 
provides the ground truth for building footprints. GeoDenmark is 
responsible for maintaining up-to-date and accurate standardised geo-
spatial vector data of Denmark (GeoDenmark 2021). The used footprints 
do not contain windmills, bridges and other large infrastructure 

elements, and the accuracy of the building vector dataset is considered 
very high (Flatman et al. 2016). Both OpenStreetMap and GeoDenmark 
have comparable datasets available for buildings in Denmark, as shown 
in Table 3. 

GeoDenmark was chosen due to the higher coverage. In many 
countries, OpenStreetMap will be the best provider of free and up to date 
on buildings (Panek and Netek 2019). 

Denmark was divided into a grid of 10 by 10 km tiles to distribute the 
processing. The grid was aligned with the Sentinel 1 and 2 mosaics 
before rasterisation. The building vectors were rasterised to 40 cm res-
olution with the value one for buildings and zero otherwise. Each tile 
was then resampled using the sum to 10 by 10 m resolution. The result is 
an aligned raster with values ranging from 0 to 100 corresponding to the 
structural area present on each pixel. 

4.1.2. Volume 
The volume of structures on each pixel was calculated using the 

national LiDAR-derived surface and terrain models in their native 40 cm 
resolution and the GeoDenmark building dataset. The digital elevation 
models of Denmark are updated on a rolling basis, with data in some 
cases being up to five years old. The temporal difference between the 
building vector layers, which are updated annually, and the elevation 
models, means that volume calculations for some municipalities are 
significantly out of sync. The errors are primarily due to the construction 
of new structures, captured in the GeoDenmark building dataset but not 
yet captured by the elevation models. An example of the two datasets 
being out of sync is shown in Fig. 4. Buildings captured by the terrain 
models but not the GeoDenmark dataset were not validated. 

The volume of the structures was calculated using the difference 
between the surface and the terrain model rasterised and clipped to the 

Fig. 2. The areas used for testing, Sentinel 2, 2021. From the top left: Holstebro, Aarhus, Samsoe Island, Odense and Bornholm Island. Not all of Aarhus Municipality 
was part of the testing area. 

Table 2 
Overview of data sources used.  

Dataset Source Purpose 

Sentinel 1 GRD and SLC ESA SciHub Training 
Sentinel 2 Level 2A ESA SciHub Training 
GeoDenmark Buildings Danish Map Supply Labels 
GeoDenmark Surface Model Danish Map Supply Labels 
GeoDenmark Terrain Model Danish Map Supply Labels 
Denmark Addresses WebAPI DAWA Labels 
Danish Population Data Danish Statistics Labels 
Danish Administrative Boundaries DAGI Labels  
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GeoDenmark building footprints. The resulting layer was then resam-
pled and aligned to match the Sentinel imagery as the area layer. In some 
cases, as seen in Fig. 4, the footprints were not in sync with the terrain 
models or trees partially covered the structure. 

A multilayer perceptron artificial neural network was trained to 
predict the volume of out of sync buildings based on the area, perimeter, 
and the isoperimetric quotient measure (IPQ) of compactness (Li et al., 
2013). 

IPQ =
4*π*area
perimeter2 

Buildings that were not in sync with the terrain models are defined in 
this study as “Spatially dissolved structures with an area to volume ratio 
of less than one and area above one.” 7.5 per cent of the buildings 
matched this criterion and were selected for volume estimation using the 
neural network model. The data was split into training, test, and vali-
dation sets to train the neural network. The model accuracy assessment 
used five stratified shuffle splits of 50 % of the dataset with a 10 % test 
set. The results are shown in Table 4. The resulting estimates from the 
fully trained network were used in the rest of the study as part of the 
ground truth for volume estimations. 

The estimates for building volumes enabled the use of the entire 
building footprint dataset from GeoDenmark. 

4.1.3. Population 
The number of people living in structures within each pixel was 

estimated using a combination of four datasets: The GeoDenmark 
buildings dataset, the Danish parish boundaries, the Danish address 
registry, and population statistics from the National Statistics Office. The 

population statistics come at the parish level, which was then spatially 
joined to the parish boundaries. All addresses in Denmark are geocoded 
and generally located within a building. A building that houses multiple 
families has multiple addresses. All the buildings were dissolved and 
filtered based on the intersection with a valid address point. The pop-
ulation of each parish was distributed equally amongst the access point 
addresses located within the parish and the intersecting building. The 
population per building was then distributed amongst each covered 
pixel and resampled, similar to the area and volume ground truth 
process. 

The population dataset combines daytime and nighttime pop-
ulations, as businesses and organisations’ addresses are also included 
(Qi et al. 2015). In most cases, non-residential buildings will only have 
one “access point address” attached and therefore get a minimal share of 
the distributed population. If the spatial extent of the analysis is larger 
than the parish level, the sum of the population within each parish will 
always correspond to the National Statistics Office numbers. 

4.2. Sentinel 1 

Sentinel 1 imagery has been proven useful for urban land cover 
classification (Abdikan et al. 2016). SAR is subject to a double bounce 
effect in sensing scenarios where walls face the sensor. Utilising the 
double bounce effect of SAR data in urban areas is effective for mapping 
structures, and Semenzato et al. (2020) and Frantz et al. (2021) have 
shown that Sentinel 1 can be used for estimating the height of structures. 
Over some areas of the globe, Sentinel 1 data is only available from one 
orbital direction (European Space Agency 2015). This study tests the 
impact of having access to only one orbital direction on the accuracy of 
the model estimates. 

All available Ground Range Detected (GRD) data over Denmark was 
collected from spring to early summer 2020, and 2021 and Single Look 
Complex (SLC) data was collected from 15 March to 31 March 2020 over 
the Central Denmark Region. The data were preprocessed using the 
Graph Processing command-line Tool (GPT), part of the SNAP toolbox 
(Agency European Space 2021). The GRD files were processed using a 
standard GRD preprocessing toolchain, as illustrated in Fig. 5. 

Signals from different orbital directions are impacted by different 
corner reflectors. Fig. 6 shows the difference between the two orbital 

Fig. 3. Ground truth used in the study shown for the urban area of Aarhus.  

Table 3 
Building data provider comparison for Denmark. Data collected August 2021.  

Dataset Source Buildings Covering 
Area 

License 

GeoDenmark Danish Map 
Supply 

5.69 
million 

738.52 km2 Free 

OpenStreetMap GeoFabrik 3.51 
million 

690.69 km2 Free & 
Open  
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directions on backscatter intensity in the ascending and descending di-
rection and the difference and average between them. Notice the 
example of the significant differences in the Northeast of Aarhus high-
lighted with a white circle. 

Interferometric coherence between Sentinel 1 SLC data pairs was 
calculated as defined in Jacob et al. (2020) described in Fig. 7 and 
visualised in Fig. 8. Interferometric coherence generally decreases faster 
in vegetated or flooded areas than in urban built-up areas (Koppel et al. 
2015). 

Processing SLC data is a data-heavy and time-consuming process 
compared to analysing the level 2 GRD data. Only the VV polarisation 
was used for the coherence calculations. All of the SLC images were 
matched with their closest baseline. 

After processing coherence and backscatter data for the downloaded 
scenes, the data were multi temporally filtered using the median values 

in a 3D ellipsoidal temporal distance weighted kernel with the images 
sorted by date for overlapping points to reduce the speckle noise in the 
final imagery (Trouvé et al. 2003) and then processed to decibels. 

4.3. Sentinel 2 

Multi-spectral atmospherically corrected imagery from Sentinel 2 
was collected for Denmark captured during spring to early summer 2020 
and 2021. The project area of Denmark covers 17 Sentinel 2 100 by 100 
km tiles, and 156 scenes were used to generate the two mosaics. 

The Sentinel 2 mosaics were created using a custom Sentinel 2 pro-
cessing toolchain, which uses a novel methodology for generating mo-
saics inspired by Sen2Mosaic (Bowers 2021) and Sen2Three (Mueller- 
Wilm 2021). The toolchain evaluates the quality of each tile and its 
pixels and creates a mosaic composed of as few source images as possible 
while fulfilling a predetermined quality threshold. Spectral harmo-
nisation is done through MAD-matching (Leys et al. 2013). 

4.4. Data preprocessing 

The input imagery was cut into tiles as input variables for the CNN 
architecture. The following tile sizes in 10 by 10 m pixels were inves-
tigated: 16 × 16, 32 × 32, 64 × 64, and 128 × 128. For each tile, the 20 
m resolution Sentinel 2 bands were tiled at half the size of the 10 m 
inputs. The patches were extracted with overlaps offset at half the tile 

Fig. 4. Left: GeoDenmark Orthophoto and Buildings, Right: GeoDenmark buildings and the height over terrain.  

Table 4 
Results from the volume estimation of structures using their area, perimeter, and 
circularity.  

Metric Result 1 σ 

Mean Absolute Error (MAE) 128.7 m3 1.4 m3 

Mean Absolute Percentage Error (MAPE) 25.1 % 0.4 % 
Median Absolute Error (MeAE) 29.3 m3 0.6 m3 

Median Absolute Percentage Error (MeAPE) 17.8 % 0.1 %  

Fig. 5. Sentinel 1 GRD Preprocessing toolchain.  
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resolution; that is an additional 8 × 8 offset for the 16 × 16 patches, as 
shown in Table 5. The larger tile sizes could reduce the amount of border 
noise in the joined rasters but come at a much larger memory footprint – 
meaning smaller batch sizes are required to train the model. Smaller tiles 
increase flexibility in the model design but are likely to increase border 
noise. 

After patch generation, the datasets were normalised. The Sentinel, 1 
backscatter bands, were clipped to between − 30 dB and 15 dB and the 
Sentinel 2 bands between zero and 8000, before they were normalised to 
values between zero and one. 

4.5. Model design 

The model works by predicting a combination of physical charac-
teristics and image recognition. The double bounce effect, captured by 
the Sentinel 1 satellites, and the shadows cast by the structures, captured 
by the Sentinel 2 satellites, enable the prediction of structural area and 
volume, while context and texture clues from the imagery allow the 
model to further qualify the predictions (Frantz et al. 2021). The model 
architecture is a modified version of the Inception-ResNet architecture 
described in Szegedy et al. (2017). Rectified Linear Unit (ReLU) was 
selected as the output activation function as the three ground truth 

Fig. 6. Sentinel – Effect of Orbital Direction on the backscatter intensity (Aarhus, Sentinel 1). Significant difference highlighted with a circle.  

Fig. 7. SLC Preprocessing toolchain.  
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datasets can only be positive and because it has been proven to perform 
well (Xu et al. 2015). The optimiser uses the lookahead optimiser 
approach with the Adam optimiser and stepwise learning rate decay 
(Kingma and Ba 2015; Zhang et al. 2019). The models were fitted three 
times to different batch sizes while also decaying the learning rate. 
While the batch sizes were decreased rather than increased, as proposed 
in Smith et al. (2018), decreasing the batch sizes yielded the best results. 
The Mean Square Error (MSE) loss function was used for all the models. 
While other loss functions were explored, MSE consistently produced 
the smallest total percentage error, which was a key target metric for this 
study, due to MSE leading to forecasts towards the mean, while MAE 
leads towards the median (Hyndman and Athanasopoulos 2018). 

The predictions are bounded to zero below by ReLU but remain 
unbounded above. The unbounded top means values of more than 100 is 
possible for the area of a 10 by 10 m pixel. The unboundedness can be 
fixed by clipping the output in postprocessing. However, no clipping was 
done in the comparisons of the predictions. 

Fig. 8. Backscatter (VV) and Interferometric Coherence (VV) over Aarhus.  

Table 5 
Example patch sizes and extracted overlaps.  

10 m inputs 20 m inputs Overlap offset 10 m Overlap offset 20 m 

16 × 16 8 × 8 8x, 8y 4x, 4y 
32 × 32 16 × 16 16x, 16y 8x, 8y 
64 × 64 32 × 32 32x, 32y 16x, 16y 
128 × 128 64 × 64 64x, 64y 32x, 32y  

Table 6 
Model parameters for input variable tests.  

Name Input layers Parameters 

Single 1 3.82 million 
Duo 2 4.72 million 
Trio 3 5.61 million 
Large Models 3 13.39 million  

Fig. 9. The Design of the Inception inspired reduction blocks.  
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The model parameters were changed between the model input var-
iable tests, the tile size tests, and the final large models. The large models 
have increased depth and width by an additional repetition of the 
inception layers, and the filter sizes have been increased by 20%. The 
number of parameters in each model is shown in Table 6. 

The model design builds on Szegedy et al. (2017). by using inception 
and reductions blocks to structure the model. The design of the reduc-
tion blocks used is shown in Fig. 9. For the reduction blocks, adding an 
average pooling layer improved performance. 

The inception blocks improve performance by making the networks 
“wider” rather than deeper. The added width means adding additional 
layers to each convolutional block with distinct tasks. The layers do 1D 
pooling, regular 3 × 3 convolutions and dimensionality reduction steps, 
as shown in Fig. 10. 

Before joining the stems of the network, a 5 × 5 convolution and an 
inception block are introduced to capture additional image context. 
Three versions of the network were trained, building on the same base 
trunk. The colours in Fig. 11 indicate which of the models use the 
respective branches of the network. 

The final weights of the model training on the area labels were used 
to initialise the weights of the volume trained model, and the volume 
model initialised the people trained model. 

Joining the network branches at different places was investigated 
and joining before upscaling provided the best results. Combining the 
SAR data and the 10 m Sentinel 2 bands into one data input was 
investigated, but this yielded worse results than merging before down-
scaling, before upscaling or after upscaling. 

4.6. Training and data accessibility 

All the scripts necessary to replicate the study and the scripts to 
download the required data are available at https://github.com/ 
casperfibaek/sentinel-structureson an AGPL License. The Buteo 
toolbox is required for some of the processing, especially the pre-
processing steps. An interactive map of the predictions and labels are 
available in the repository. A GPU with at least 24 GB RAM is required to 
train the model – predictions are possible without a GPU. 

The models were trained on a computer with the following 
specifications:  

CPU Intel i9 9980HK 8/16 cores 
RAM 64 GB 

(continued on next page) 

Fig. 10. The Design of the Inception-ResNet inspired convolutional blocks.  

Fig. 11. The overall model architecture.  
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(continued ) 

OS Windows 11 Beta and Ubuntu 20.04 LTS 
GPU Nvidia GeForce RTX 3090–24 GB Ram (External)  

Training the three initial models took 1 h 22 m each on average, 
repeated for each tested combination of input variables. The trio models 
took the longest to train at 1 h 37 m on average. The large models took 
17 h each on average to train. 

5. Results 

The results were derived in three steps: (1) First, we analysed the 
impact of different combinations of input data on the model’s prediction 
performance. (2) Upon finding the optimal combination, the ideal tile 
size for the model was found. (3) Finally, four models were trained on all 

the available data, building on the preceding steps. Three of the models 
were trained on each of the target labels using all the SAR data, 
including coherence from both orbital directions, and one was trained 
only on the area target label using the backscatter in both polarisations 
from the ascending orbital direction. The last model was trained on data 
from all of Denmark, excluding test sites, over two years. Table 7 shows 
the abbreviations used in the tables showing the results. 

5.1. Model inputs 

Three models were trained for each dataset, corresponding to each of 
the target labels, and a tile size of 64 × 64 pixels was used to compare 
the input datasets. In Tables 8–10, the results have been normalised to 
the accuracy of using only the blue, green, and red bands of the Sentinel 
2 satellite, as the initial focus is on the relative performance of the input 
datasets. The two best performing models are shown in a light grey 
highlight. Table 8 shows the errors of the models over the Holstebro test 
areas. 

Sentinel 2 data alone performs better than Sentinel 1 data, but 
Sentinel 1 and 2 combined yield significantly improved results. For 
Sentinel 2, including the near-infrared (NIR) band is highly significant 
for the model’s performance, which can be improved by incorporating 
the red-edge bands. Using both orbital directions have the most signif-
icant effect on accuracy for the Sentinel 1 combinations. Including 
coherence and VV and VH polarisation in the model inputs slightly 
increased the accuracy, but the best results came from using all available 
data. 

The results for the urban area of Aarhus show similar patterns to that 
of the mixed Holstebro area. Increasing the number of included Sentinel 

Table 7 
Abbreviation key for the used data sources.  

Shorthand Full name 

RGB Sentinel 2: B2, B3, B4 
RGBN Sentinel 2: B2, B3, B4, B8 
RE Sentinel 2: B5, B6, B7 
SWIR Sentinel 2: B11, B12 
S2 Sentinel 2: B2, B3, B4, B5, B6, B7, B11, B12 
VVa Sentinel 1: Backscatter VV Polarisation - Ascending orbit 
VVd Sentinel 1: Backscatter VV Polarisation - Descending orbit 
VHd Sentinel 1: Backscatter VH Polarisation - Descending orbit 
VHa Sentinel 1: Backscatter VH Polarisation - Ascending orbit 
COH Sentinel 1: Interferometric Coherence - Ascending and descending orbit  

Table 8 
Error comparison for the Holstebro mixed urban area. The model trained only on the RGB bands from Sentinel 2 is used as the baseline and is shown in bold with 
absolute values.     

Area Volume People 

Datasets Model Train. Time MSE MAE MSE MAE MSE MAE 

RGB Single 01:28:08  52.193  1.665  1875.0  8.398  1.6006  0.0184 
RGBN Single 01:14:06  85.7%  88.5%  87.6%  88.7%  94.1%  91.9% 
RGBN + RE Duo 01:31:43  83.6%  84.9%  91.3%  89.8%  87.9%  80.6% 
RGBN + SWIR Duo 01:31:04  81.6%  83.7%  85.5%  84.7%  96.4%  90.3% 
S2 Duo 01:37:30  78.8%  84.0%  86.2%  85.3%  89.1%  83.3% 
VVa Single 01:16:08  258.7%  187.3%  220.9%  170.9%  148.0%  125.4% 
VVa + VHa Single 01:09:27  235.8%  181.4%  203.0%  168.7%  139.6%  114.8% 
VVa + VVd Single 01:09:18  190.7%  161.9%  165.2%  151.4%  131.1%  123.2% 
VVa + Coha Single 01:03:44  210.2%  180.4%  188.9%  157.1%  138.2%  132.2% 
VVa + VVd + COH Single 01:16:22  173.6%  154.6%  146.5%  138.8%  127.5%  121.8% 
VVa + VHa + COHa Single 01:08:52  222.9%  179.1%  194.0%  162.7%  136.9%  118.9% 
S2 + VVa + VHa Trio 01:34:43  66.9%  76.1%  71.2%  78.2%  90.7%  84.5% 
S2 + VVa + VVd + COH Trio 01:39:59  64.2%  77.0%  67.3%  75.2%  86.2%  85.8%  

Table 9 
Error comparison for the Aarhus dense urban area. The model trained only on the RGB bands from Sentinel 2 is used as the baseline and is shown in bold with absolute 
values.   

Area Volume People 

Datasets MSE MAE MSE MAE MSE MAE 

RGB  135.6  4.331  14654.5  31.568  32.5450  0.1120 
RGBN  84.2%  89.4%  89.9%  90.2%  100.4%  97.1% 
RGBN + RE  86.2%  88.5%  98.5%  94.6%  94.4%  91.0% 
RGBN + SWIR  84.9%  86.1%  94.9%  89.5%  85.7%  92.8% 
S2  81.4%  86.3%  94.0%  90.1%  87.4%  90.4% 
VVa  243.8%  198.1%  187.3%  172.7%  156.4%  135.3% 
VVa + VHa  231.1%  196.6%  173.4%  174.9%  143.1%  129.6% 
VVa + VVd  191.9%  162.3%  144.8%  144.5%  130.8%  124.2% 
VVa + Coha  215.9%  185.6%  173.0%  157.2%  149.1%  133.6% 
VVa + VVd + COH  177.1%  157.0%  138.3%  140.1%  142.9%  122.6% 
VVa + VHa + COHa  228.5%  204.5%  168.8%  173.2%  144.5%  131.8% 
S2 + VVa + VHa  68.4%  78.2%  71.0%  80.7%  87.4%  91.2% 
S2 + VVa + VVd + COH  65.0%  77.8%  70.6%  78.4%  82.0%  89.5%  
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2 bands provided less improvement than it did for the mixed area of 
Holstebro, and the SAR dataset’s performance slightly increased against 
the spectral data. The SWIR trained model outperformed the red-edge 
trained models; combining the two with the ten-meter bands yielded 
the best Sentinel 2 results. 

The pattern of decreasing importance of Sentinel 2 bands continues 
for the rural areas on the island of Samsoe. Sentinel 1 performs almost as 
well as the Sentinel 2 trained models when predicting population. 
Sentinel 2 band combinations continue to yield the best results, and 
combinations of Sentinel 1 and 2 continue to provide the best per-
forming models. 

5.2. Tile size 

The best performing model was the S2 + VVa + VVd + COH model, 
which was then used to compare the effect of using different tile sizes. 
When the batch sizes were sized to ensure an equal number of pixels per 
batch, processing time remained close to equal at around two and a half 
hours for each of the four tile sizes. 

The comparisons are raw predictions for the test areas and the same 
model’s predictions with nine additional overlaps. The median 

prediction of the nine overlaps and the original prediction is used in the 
comparison. Comparing the raw predictions with the version that uses 
overlaps show if the tile sizes accumulate errors along boundary regions 
and if the predictions are stable. The overlaps tested are shown in 
Table 11, and Table 12 show the performance of the different tile sizes. 

The models’ performance does not seem to be highly affected by the 
chosen tile size. The smaller the tile size chosen, the more significant the 
performance increase of using prediction overlaps, which corresponds to 
the expectation that smaller tile sizes lead to significantly more border 
regions, which are more likely to contain poor predictions. In urban 
areas, smaller tile sizes without overlaps perform worse, and in rural 
areas, they perform better. Using 32 × 32 pixel tiles at 10 by 10 m 
resolution and nine prediction overlaps were chosen as the base for 
further predictions. 

5.3. Large models 

Four distinct models were trained using the two best combinations of 
input layers. The best combination of input data requires SLC data from 
the Sentinel 1 satellites, which was only processed for the Central 
Denmark Region, covering 13,008 km2. The models requiring SLC data 
were trained with all three target labels and took 17 h on average to 

Table 10 
Error comparison for the rural area of Samsø Island. The model trained only on the RGB bands from Sentinel 2 is used as the baseline and is shown in bold with absolute 
values.   

Area Volume People 

Datasets MSE MAE MSE MAE MSE MAE 

RGB  9.299  0.284  227.1  1.260  0.0541  0.0018 
RGBN  82.4%  83.3%  88.0%  86.9%  97.7%  78.9% 
RGBN + RE  83.2%  83.3%  83.9%  86.9%  92.1%  70.8% 
RGBN + SWIR  82.6%  82.5%  82.9%  83.5%  105.4%  80.4% 
S2  77.8%  82.1%  78.3%  81.1%  88.5%  73.1% 
VVa  148.8%  178.7%  156.0%  174.8%  98.0%  129.5% 
VVa + VHa  145.8%  176.3%  153.1%  183.9%  90.9%  110.1% 
VVa + VVd  145.8%  176.3%  153.1%  183.9%  90.9%  110.1% 
VVa + Coha  137.4%  173.5%  141.3%  147.8%  99.9%  134.2% 
VVa + VVd + COH  116.3%  129.8%  119.9%  123.3%  96.8%  108.2% 
VVa + VHa + COHa  146.4%  195.1%  147.3%  181.2%  100.6%  130.1% 
S2 + VVa + VHa  69.2%  76.0%  71.0%  78.2%  96.7%  68.7% 
S2 + VVa + VVd + COH  62.6%  74.6%  63.2%  71.9%  95.6%  73.7%  

Table 11 
Overlaps and the offsets used.  

Tile Size 
10 m 

Tile size 
20 m 

Offsets for 10 m 
inputs 

Offsets for 20 m 
inputs 

Tiles 
tested 

128 × 128 64 × 64 (0, 32) (0, 64), (0, 
96) 
(32, 32) (64, 64), 
(96, 6) 
(32, 0), (64, 0), 
(96, 0) 

(0, 16) (0, 32), (0, 
48) 
(16, 16) (32, 32), 
(48, 48) 
(0, 32), (32, 0), (0, 
48) 

27,201 

64 × 64 32 × 32 (0, 16) (0, 32), (0, 
48) 
(16, 16) (32, 32), 
(48, 48) 
(0, 32), (32, 0), (0, 
48) 

(0, 8) (0, 16), (0, 
24) 
(8, 8) (16, 16), 
(24, 24) 
(0, 8), (16, 0), (0, 
24) 

107,068 

32 × 32 16 × 16 (0, 8) (0, 16), (0, 
24) 
(8, 8) (16, 16), 
(24, 24) 
(0, 8), (16, 0), (0, 
24) 

(0, 4) (0, 8), (0, 
12) 
(4, 4) (8, 8), (12, 
12) 
(0, 4), (12, 0), (0, 
12) 

424,024 

16 × 16 8 × 8 (0, 4) (0, 8), (0, 
12) 
(4, 4) (8, 8), (12, 
12) 
(0, 4), (12, 0), (0, 
12) 

(0, 2) (0, 4), (0, 6) 
(2, 2) (4, 4), (6, 6) 
(0, 2), (4, 0), (0, 6) 

1,687,648  

Table 12 
Comparing impact on errors of different tiles sizes and prediction overlaps. The 
128 × 128 pixel tile size is used as the baseline and is shown in bold with ab-
solute values. “− 9” designates that 9 overlaps have been used  

Target Tile 
Size 

Batch 
sizes 

MSE-0 MAE-0 MSE-9 MAE-9 

Holstebro 128 ×
128 

16 & 8  28.208  1.122  27.648  1.105 

” 64 × 64 64 & 32  100.0%  100.4%  98.4%  99.4% 
“ 32 × 32 256 & 

128  
100.7%  100.2%  96.6%  97.5% 

“ 16 × 16 1024 & 
512  

106.2%  102.7%  96.6%  97.3% 

Aarhus 128 ×
128 

16 & 8  71.541  2.911  70.038  2.872 

“ 64 × 64 64 & 32  104.7%  100.7%  104.2%  100.0% 
“ 32 × 32 256 & 

128  
108.4%  102.5%  102.8%  99.7% 

“ 16 × 16 1024 & 
512  

112.8%  103.4%  102.6%  98.0% 

Samsoe 128 ×
128 

16 & 8  6.225  0.213  6.147  0.211 

“ 64 × 64 64 & 32  98.9%  101.2%  97.7%  100.5% 
“ 32 × 32 256 & 

128  
96.9%  99.0%  93.0%  96.4% 

“ 16 × 16 1024 & 
512  

98.2%  98.4%  91.9%  93.9%  
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train. The second-best version, which only requires GRD data from the 
Sentinel 1 satellites, was trained on data from two seasons across 
Denmark, excluding test sites, on the area label. The second model was 
trained on 1.7 million training samples and took 48 h to train. The model 
parameters were adjusted from the previous tests by adjusting the 
number of repeated inception blocks from two to three and increasing 
the filter count by 20%. The performance of the models trained with SLC 
data is shown in Table 13. 

In Table 13, TPE is the total percentage error between the sum of the 
predicted values and the sum of the labels, divided by the sum of the 
labels. The merged test area is a virtual raster of the Holstebro, Aarhus 
and Samsoe test areas. The models consistently underestimate the total 
area, volume, and number of people but perform well at describing the 

spatial patterns of the structures. The increasing complexity of the 
model targets results in lower prediction accuracy. Converting the pre-
dictions to a binary classification on the existence of structural area, 
volume, or people on a given tile shows the model’s high accuracy in 
replicating the general spatial distribution of structures. The binary 
accuracy is shown in Table 14, where area and volume predictions 
values above or equal to one are counted as positive. For the people 
labels and predictions, 0.001 people were used as the threshold. “Bal. 
Acc” refers to the class balanced accuracy metric as defined in Brodersen 
et al. (2010). 

Figs. 12–14 show the predictions, labels and the difference between 
them. Fig. 12 shows the predictions produced by the area label trained 
model, shown for a zoomed-in area of the Holstebro mixed urban area, 

Table 13 
Accuracy summary for the larger models using SLC data.   

Area Volume People 

Test Area TPE MSE MAE TPE MSE MAE TPE MSE MAE 

Holstebro − 0.61%  27.60  1.108 − 8.34%  1048.40  5.694 − 12.46%  0.0108  0.013 
Aarhus − 3.12%  72.70  2.918 − 2.12%  7990.64  21.792 − 25.40%  0.2116  0.082 
Samsoe − 4.04%  5.13  0.195 − 12.75%  128.40  0.886 12.99%  0.0004  0.001 
Merged − 1.90%  22.45  0.903 − 6.53%  1617.58  5.628 − 21.76%  0.0367  0.018  

Table 14 
Binary accuracy summary for the larger models using SLC data.  

Location Target Accuracy Bal. Acc Precision Recall F1 

Aarhus Area  0.9181  0.9353  0.6859  0.9614  0.8006 
“ Volume  0.8992  0.9231  0.6441  0.9600  0.7710 
“ Population  0.9121  0.9220  0.5924  0.9352  0.7254 
Holstebro Area  0.9702  0.9587  0.7096  0.9454  0.8107 
“ Volume  0.9585  0.9543  0.6352  0.9493  0.7611 
“ Population  0.9706  0.9418  0.5935  0.9105  0.7186 
Samsoe Area  0.9925  0.9440  0.5659  0.8946  0.6932 
“ Volume  0.9893  0.9525  0.4797  0.9149  0.6294 
“ Population  0.9942  0.9068  0.4662  0.8186  0.5941 
Merged Area  0.9736  0.9619  0.6826  0.9487  0.7940 
“ Volume  0.9653  0.9588  0.6216  0.9515  0.7519 
“ Population  0.9737  0.9464  0.5821  0.9170  0.7122  

Fig. 12. Comparison between prediction and truth for building area.  

C.S. Fibæk et al.                                                                                                                                                                                                                                



International Journal of Applied Earth Observation and Geoinformation 105 (2021) 102628

13

Fig. 13. Comparison between prediction and truth for building volume.  

Fig. 14. Comparison between prediction and truth data for population.  
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showing the model’s ability to reconstruct the general patterns of 
structures. The most significant errors in the scene are in the top right 
corner, where a scrapyard is confused with structures. 

In Fig. 13, the difference in the predicted volume shows a very 
similar pattern to the errors in Fig. 12. The model has increasing issues 
with predicting the volume of the buildings in the urban core in the 
bottom right corner and issues with overpredicting one side of the 
warehouse in the bottom left and under predicting the other. As the 
volume of the building grows, so does the absolute error. The figures are 
displayed using the absolute errors and the absolute differences between 
the labels and predictions. This choice was made because displaying the 
errors relative to the maximum label value produced significant visual 
noise that made interpretation difficult, especially in suburban neigh-
bourhoods due to pixels with small values. 

The population predictions are shown in Fig. 14, which shows the 
most prominent errors, and interpreting the results is more complicated. 
The model does very well at reducing the influence of industrial and 
farm buildings but also removes some of the horseshoe-shaped resi-
dential blocks in the centre of the Figure. 

Finally, a model was trained without data from the descending 
orbital direction and coherence from the Sentinel 1 constellation. The 
needed input variables are available globally, and less processing power 
is required due to the removal of the need to process SLC data. The 
model was trained on data from all Denmark, excluding test areas, for 
summer 2020 and spring 2021 using the area label target. The test areas 

for this model were Odense and Bornholm in summer 2020. Training the 
model took 48 h, and Table 15 and Figs. 15–17 show the predictions. 
The merged test area in Table 15 refers to a virtual raster combining the 
Odense and Bornholm test sites. 

The model does well at describing the general patterns of the labels; a 
close-up is shown in Fig. 17. The most significant errors in Fig. 15 are the 
two industrial buildings in the bottom right and the greenhouses in the 
top. The binary accuracy is very high, while the model still consistently 
underestimates the total structural area. The underprediction is 
increasingly pronounced the more rural a target area is, as shown in 
Fig. 16. 

Some smaller buildings in the rural areas are not predicted, which is 
likely due to vegetation overshadowing parts of the structures. As there 
are fewer structures in rural areas, missing a structure will increase the 
TPE considerably if the test area only covers rural areas. 

6. Discussion 

Our presented methodology on mapping structural characteristics 
using Sentinel 1 and 2 data is successful in replicating structural char-
acteristics at a high level of accuracy. While the accuracy of the pre-
dictions decreases with the increased complexity of the target 
characteristics, the approach enables future predictions at the temporal 
resolution offered by the Sentinel satellites and a 10 by 10 m spatial 
resolution. Generating time series of structure characteristics will make 

Table 15 
Results of the model trained on all of Denmark – without SLC data and Sentinel 1 GRD data from the descending orbital direction.  

Test Area Type TPE MSE MAE Accuracy Bal. Acc Precision Recall F1 

Odense Urban − 7.09%  66.487  2.281  0.9585  0.9150  0.8670  0.8529  0.8599 
Bornholm Rural − 14.92%  12.459  0.361  0.9931  0.8879  0.7886  0.7792  0.7839 
Merged Mixed − 9.41%  22.473  0.717  0.9867  0.9114  0.8418  0.8293  0.8355  

Fig. 15. Odense urban centre comparison.  
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it possible to train improved deep learning models or create rules for 
cellular automata models to predict the spatial extent of urbanisation 
and guide urban planning as outlined by (Arsanjani et al., 2018). 

The predicted structural characteristics have an MAE of less than 2.3 
m2 for area predictions in urban areas and an MAE of between 5.7 m3 

and 21.8 m3 for mixed and urban areas volume predictions. Population 
predictions were made with an MAE of 0.08 people per pixel. Pre-
dictions on inhabitants of structures showed the highest total percentage 
error at − 25.4% in dense urban areas and − 12.5% in mixed areas. 

Sentinel 2 imagery is the most critical data source for the models to 
achieve good performance, but relying on Sentinel 2 alone, means a 
dependency on cloud-free mosaics, which is an issue in time-sensitive 
mapping and areas that experience perpetual cloud cover. Interfero-
metric coherence from Sentinel 1 increases the accuracy of the model. 
However, considering the computational efforts required to process and 
analyse coherence, leaving it out of the model, depending on the use 
case, is recommended. Combining ascending and descending imagery 
significantly boosts the models’ performance, especially if Sentinel 1 is 
the only data source. The improved accuracy from including both orbital 
directions was also shown in Frantz et al. (2021), and this study’s 
findings confirm their results. In cases where Sentinel 1 is combined 
with Sentinel 2, the improvements in accuracy by using both orbital 
directions is less pronounced. Combining Sentinel 1 and 2 data yielded 
the best results in all tests. 

The total percentage errors for all tests were negative, which means 
consistent under predictions. A solution to the underpredictions could 
be adding an additional postprocessing network to the predictions to 
reduce the total percentage error. However, such an approach would not 
increase the number of structures captured by the model but scale the 
mean of the per tile predictions so that the overall sum of structural area, 
volume or population is more accurate at the expense of per-pixel ac-
curacy. Accuracy might be improved by employing noisy student semi- 
supervised training iterations as done in Sirko et al. (2021) and 
described in Xie et al. (2020), which showed promising results. Adding 

textures to the input layers was not tested and might increase the ac-
curacy of the models by adding additional context to the pixels, espe-
cially in border regions. However, as nine prediction overlaps were used 
for each prediction, the added benefit to border accuracy by textures is 
expected to be small. There was no dimensionality reduction done 
during the preprocessing of the input variables, such as a principal 
components analysis, which might have increased the models’ perfor-
mance. However, in the Inception-Resnet style architecture used in the 
study, the 1 × 1 convolutions in the inception blocks are used to perform 
dimensionality reduction (Szegedy et al. 2017). 

The proposed models’ geographical applicability could be extended 
by incorporating data from other geographical areas where high-quality 
terrain models and building footprints are available. A good candidate 
for collecting other ground truth data is the United Kingdom, where 
building footprints and terrain models are freely available. Open-
StreetMap data is a good source of data for global footprints and has 
been proven to be a good auxiliary data source for population estimates 
(Stevens et al. 2015). Areas that have recently been mapped for building 
footprints, such as Nepal, Haiti, Uganda and Tanzania, which were 
recently updated due to efforts by the Humanitarian OpenStreetMap 
Team and contributors, would improve model performance. While 
Denmark is geographically homogenous, preliminary testing shows that 
the models presented in this study significantly boost the accuracy of 
models applied in Ghana when Deep Transfer Learning is methodologies 
are applied. 

As the data sources used to generate the population ground truth 
data are unavailable in many countries, other approaches to generating 
population predictions from sentinel imagery should be investigated. 
Combining the model trained on the area or volume labels with a clas-
sification of structure– or settlement types and census information on 
housing patterns could be used to generate the population estimates. An 
approach like this is described by Leasure et al. (2020) for Ghana using 
WorldPop and Microsoft (2021) data. Applying their methodology for 
population estimations to the models proposed in this study could make 

Fig. 16. Bornholm rural village comparison.  
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the population estimates from Sentinel 1 and 2 scalable to the global 
level. 

7. Conclusion 

The objective of this study was to investigate the possibility of 
mapping structures and their characteristics at 10 m spatial resolution 
using publicly available satellite data from the Copernicus Programme. 
We investigated different input variables’ and tile sizes’ effects on pre-
diction performance using a multi-sensor approach with an Inception- 
ResNet style neural network to make predictions. The models perform 
well at describing the general spatial patterns of human-made structures 
and predicting the area and volume of structures. Population predictions 
show good promise but consistently underestimate the total population. 
The underprediction can be alleviated by scaling the predictions using 
volume or area predictions to lower the total percentage error or adding 
a postprocessing neural network. The ability to extract building features 
from the Sentinel satellites can likely improve the classification of urban 
settlement types by tying the classes to structure density and type. The 
large model, trained on area labels from all of Denmark during multiple 
seasons, was designed to have globally available input variables. We 
suggest further research is conducted on applying the models in more 
diverse geographical locations. 
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