
 

  

 

Aalborg Universitet

Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic
serial sections

Larsen, Nick Y.; LI, Xixia ; Tan, Xueke; Ji, Gang; Lin, Jing ; Rajkowska, Grazyna; Møller,
Jesper; Vihrs, Ninna; Sporring, Jon; Sun, Fei; Nyengaard, Jens R.
Published in:
Communications Biology

DOI (link to publication from Publisher):
10.1038/s42003-021-02548-6

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, N. Y., LI, X., Tan, X., Ji, G., Lin, J., Rajkowska, G., Møller, J., Vihrs, N., Sporring, J., Sun, F., &
Nyengaard, J. R. (2021). Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic
serial sections. Communications Biology, 4(1), Article 1030. https://doi.org/10.1038/s42003-021-02548-6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1038/s42003-021-02548-6
https://vbn.aau.dk/en/publications/6dc721fa-aad3-412a-a1f3-9a28be4e6e83
https://doi.org/10.1038/s42003-021-02548-6


ARTICLE

Cellular 3D-reconstruction and analysis in the
human cerebral cortex using automatic serial
sections
Nick Y. Larsen 1,2,3,4✉, Xixia Li5,6, Xueke Tan5,6, Gang Ji5,6, Jing Lin7, Grazyna Rajkowska 8, Jesper Møller2,9,

Ninna Vihrs 9, Jon Sporring 2,7, Fei Sun 3,4,5,6,11 & Jens R. Nyengaard1,2,3,10,11

Techniques involving three-dimensional (3D) tissue structure reconstruction and analysis

provide a better understanding of changes in molecules and function. We have developed

AutoCUTS-LM, an automated system that allows the latest advances in 3D tissue recon-

struction and cellular analysis developments using light microscopy on various tissues,

including archived tissue. The workflow in this paper involved advanced tissue sampling

methods of the human cerebral cortex, an automated serial section collection system, digital

tissue library, cell detection using convolution neural network, 3D cell reconstruction, and

advanced analysis. Our results demonstrated the detailed structure of pyramidal cells

(number, volume, diameter, sphericity and orientation) and their 3D spatial organization are

arranged in a columnar structure. The pipeline of these combined techniques provides a

detailed analysis of tissues and cells in biology and pathology.
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Life science aims at a better understanding of multiple bio-
logical functions, such as healthy organ development with
cellular proliferation, migration and organization, tumor

formation, and general pathology. Several techniques have been
developed to study biological structure in 3D like serial block-face
scanning electron microscopy (EM), focused ion beam scanning
EM, serial-section transmission EM, automatic tape-collecting
ultramicrotome-scanning EM, and many types of light micro-
scopy with or without tissue clearing1–4. In life science, EM is
widely used to explore the subcellular components, which are
several orders of magnitude smaller than the spatial neuron
networks. Clearing techniques can be very helpful in attempting
to explain neuron networks in greater brain volumes, such as the
adult mouse brain, in an entire state without disassembly5,6.
However, some of the disadvantages for tissue clearance are that
immunostaining of archival tissues is usually complicated as a
result of the antigen masking due to formaldehyde protein cross-
linking7. Furthermore, practicing immunostaining with tissue
clearing remains difficult in human tissues due to factors such as
inadequate antibody penetration depth, physicochemical prop-
erties, and tissue composition7,8.

A typical human neuron has thousands of complex connec-
tions with neighboring neurons, which is essential for normal
function, yet the organization of these neurons is still under
debate9. The cellular organization in the human neocortex has
been described as a local network of vertical columns containing
neurons. Neurons with similar functions are grouped together
and according to different theories, these cortical columns may
contain smaller columns known as minicolumns, which are the
smallest unit capable of processing information in the cerebral
cortex10,11. Cortical columns are radially oriented cell bodies that
span through the laminar pattern perpendicular to the pial sur-
face and can be seen using regular Nissl preparations or another
cell body-revealing histological procedures. The introduction of
minicolumns was in response to studies of the patterning of
apical dendrites of pyramidal cells with somata situated in layers
II, III, and V12,13. Studies have attempted to characterize and
analyze the morphology of minicolumns with a 2D computerized
method designed to detect subtle differences among patient
groups such as schizophrenia, autism, and Alzheimer14–17. As a
result, much of our understanding of cellular organization is
focused on 2D histological images, which could potentially mis-
represent biological structures and malpositioning of cells in 3D-
space.

This paper aims to create a method that is accessible to the
broader science community and analyze 3D tissue organization
through the use of archival tissue to make detailed inferences
about pathologies. In the present study, we developed Automatic
Collector of Ultrathin Sections for Light microscopy (AutoCUTS-
LM) to measure the neuronal cell morphology and their spatial
organization in 3D-space of archived tissue. This is accomplished
by modifying and adjusting the original AutoCUTS, which was
designed for scanning EM array tomography18–20, to image
archival human brain tissues (~20 years) in layer III of Brodmann
Area 46 (BA46). BA46 was chosen since it involves working
memory, attention and has been the subject of studies related to
mental disorders like schizophrenia and depression21–28. Myeli-
nated axon bundles are potentially cortical efferents that origi-
nated in layer II/III pyramidal cells as these bundles descend to
the white matter29. Pyramidal neurons in layer III project to other
cortical areas and play a key role in cortical and thalamic cortical
circuits, and have been found to be the most affected layer by
these disorders in BA4630–32.

Here, we report the applied technical workflow that is able to
uncover morphological properties of pyramidal neurons in
human brain autopsy tissue: First, we identified BA46 and applied

advanced sampling procedures of biopsies. After embedding
biopsies in resin, the AutoCUTS-LM cut them automatically into
semi-thin sections (300 and 400 nm), and collected them on tape.
Sections were stained and mounted on glass slides, and a library
for each sample was organized. The digitalization of sections was
stored, aligned, and stacked as a volumetric structure. Then, we
detected neurons using the UNetDense architecture. Finally, the
3D spatial arrangement and structural parameters of pyramidal
neurons in layer III of BA46 were analyzed in three human brains
applying recently developed methods.

Our findings present valuable insight into neuronal morphol-
ogy and architecture by characterizing pyramidal neurons in 3D
from old archived human brain tissue. We discovered that pyr-
amidal cells are not randomly distributed but are clustered in
small columnar structures, which may be relevant for under-
standing the formation and function of the cortical network.

Results
Sampling strategy and preparation of tissue. A block of tissue
from the dorsolateral prefrontal cortex that contained all of BA46
was removed from each brain33, see Fig. 1. We used the
MATLAB script we developed to delineate BA46 and sample two
biopsies on a highly complex surface like the brain, with the
second biopsy kept as a reserve. The cortical columns of neurons
in the cortex could be successively extracted by a biopsy per-
pendicularly to the cortical surface; therefore, only neurons from
gyri and not sulci were analyzed, illustrated with the yellow color
in Fig. 1D. The sampling area was divided into four quarters to
avoid any overlap or adjacent biopsies, see Fig. 1E, F.

The brain tissue samples were obtained by using a biopsy
punch positioned on the two sampling points with a diameter of
1.5mm and a depth around 3–5mm. This meant that a sample
included all six layers of the cerebral cortex. The tissue samples
were fixed in resin and not stained with osmium since osmium
fixation reduces the contrast of sections during light microscopy,
see Fig. S1.

Our strategy to successfully find neurons in the supragranular
layers (I–III) and layer IV, region of interest (ROI), requires that
the sample be positioned in such a manner that all six layers in
the neocortex appear in every section during the AutoCUTS-LM
procedure. Consequently, the biopsy was placed at the bottom of
the embedding form such that the pial surface was perpendicular
to the cutting direction, see Fig. S2. This orientation decreased the
number of sections approximately two to three times relative to
alternate orientations, thus shortened the time spent collecting
and capturing images with the microscope. We used a light
microscope to locate and measure the ROI by first examining and
staining the outermost section of the block to delimit the area for
collecting semi-thin sections (100–500 nm). We precisely
trimmed the excess embedding resin around the sample to avoid
wrinkles while cutting and removed layers V–VI, which resulted
in an ROI of around 1.5mm2.

Collection and preparation of serial brain sections on tape. We
have modified and adapted the automatic serial section technique,
which was originally developed for scanning EM18–20, so it
operates for light microscopy. The main changes were the
replacement of the double-sided conductive tape with a plasma
cleaned transparent tape and mounting tape strips containing the
sections on glass slides instead of on a silicon wafer. The trans-
parent polyester tape was 7-mm wide and was put through
plasma treatment, which influenced the hydrophilicity of the tape.
The hydrophilicity was found to not only reduce wrinkles of the
brain sections produced during the collection process20, but also
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made the sections more adhesive to the tape. Thus, the sections
would later stick to the tape during collection and staining.

Automated collection of the resin-embedded material was
accomplished using a ultramicrotome attached to a custom-tape
collection device (AutoCUTS-LM). We collected around
2400 serial sections with a total tissue depth of about 0.7mm
for each subject. The three human subjects’ cutting thickness was
chosen to be 400 nm for subject 1 and 300 nm for subjects 2 and 3

(sectional area was about 1.5mm2, and the total volume was
~1mm3). Sections were cut continuously with a diamond knife
(Diatome, Switzerland) with an indoor humidity around 85%, see
Fig. 2A. The pulling motion from the collecting tape moved the
sections from the water onto the tape’s surface, and its
adhesiveness affected how flat these sections lay on the tape.
Around 800 sections were collected per hour with our settings.
Hence, we used less than 3 h to cut a tissue sample that is around

A

0 100 200 300 400 500 600 700
Row number

0

50

100

150

S
u

m
 w

h
it

e 
p

ix
el

s

White pixel count
25% 50%75%

0

5000

10000

15000

C
u

m
u

la
ti

ve
 p

ix
el

s

B C D

E F G

Fig. 1 Sampling of biopsies at BA46. A Formalin-fixed tissue from three human brains was selected from the brain collection at Aarhus University
Hospital. The red box marks the excised area of the tissue. B Fixed coronal block of tissue containing BA46. C Manual delineation of BA46 performed by
MATLAB. D Infused image between global threshold image and sample area. The filtered surface of a coronal block of tissue containing BA46 was marked
with a red and yellow map that shows the available sample area. E Summation of all white pixels for each row of the binary picture of the sample area. The
1st, 2nd, and 3rd quarter of pixels were marked with a green dashed line. F The two biopsies can only be sampled in either the 1st and 3rd quarter(white
area) or the 2nd and 4th quarter (red area). In this case, random points in the 2nd and 4th quarters, marked with blue dots, were chosen by the algorithm.
G The two chosen biopsies are marked with blue dots on the original block of tissue from (B).
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D

Fig. 2 Image of the AutoCUTS-LM and sample preparation on tape. A The supply-reel of the AutoCUTS-LM contains a transparent plastic tape that
collects sections from the knife boat to the final take-up reel. (Red frame) Close-up view of the tape conveyor belt positioned in front of the knife boat with
the mounted sample. B Collected sections on the transparent tape before staining. C Sections have been stained with toluidine blue. D Setup to glue the
sections on the microscopic glass slide. E Stained sections glued on a microscopic slide and ready for image acquisition.
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0.7 mm thick. It is important to notice that the ultramicrotome
calibrates itself after sectioning the maximum useful range of
200 μm and had to be manually reset. In our case, a tissue sample
to a depth of 0.7mm could be sectioned with only three
interruptions, and it was possible to move the sample to a
different knife-edge, as dulling of the knife affects the section
quality. Collecting thousands of sections was possible without any
loss of tissue. However, we observed different technical and
environmental factors that could generate wrinkles and disfigure
the sections during cutting. The indoor humidity level was one of
the main factors (see the “Methods” section).

Following section-collection, we chose to stain our sections
with toluidine blue, since it interacts with most cells in the brain
(both neurons and glial cells) and is thus excellent for revealing
the neuronal patterns. However, to assess other biological results,
methods such as immunolabeling or EM may also be used with
the same AutoCUTS strategy, see Fig. S3. The spools holding the
tape with attached sections were dried overnight in an oven at
50 ∘C. Sections were then stained with toluidine blue, and the tape
with attached sections was cut into three consecutive strips with
~60 serial sections and glued onto a standard microscope slide
(Fig. 2B–E). Each sample resulted in a section library of ~40 glass
slides, which were digitalized.

Data acquisition. Digital images were acquired using the Apiro
Versa 200 platform from Leica. The scanning speed was ~15min
per glass slide and required about 10 h to complete a section
library of glass slides for each subject. We only sampled every

second and third section because a distance of 800 nm (subject 1)
and 900 nm (subject 2 and 3) between sections was considered
sufficient for 3D-reconstruction of pyramidal cells, which have an
average somal diameter of ~13 μm34, see Fig. 3A. The microscope
included the commercial software Aperio ImageScope (Leica
Biosystems Imaging, Inc., USA), which visualized the whole
microscope slide image with high resolution. However, the user
had to extract a region manually before an image could be
exported as a TIF file. The uncompressed images were then
automatically processed, ordered, and exported as individual
images of each section using a MATLAB algorithm we developed,
as shown in Fig. 3B. These individual images were then aligned
and stacked by sequential image registration using our custom
MATLAB scripts35. Next, the stack of images was prepared for
further analysis by cropping tissue regions, see Fig. 3C.

Pixelwise performance of deep learning model for segmenting
pyramidal cells. We worked with UNetDense, a deep learning
framework, which has provided promising results for image
segmentation of pyramidal cells36. The performance of the
UNetDense model was measured by reporting sensitivity, preci-
sion, and F1-score. Neither recall nor accuracy was calculated as
the cell’s pixel count is dominated by background pixels making
these measurements less informative. These measures were cal-
culated based on the confusion matrices shown in Table 1. In
general, the output of using individual models per subject showed
a better predictive result compared to the combined model, see

Original Super Image Overview
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1234

Fig. 3 Image acquisition and 3D-stacks of aligned sections. A Overview of a microscopic glass slide with the commercial Leica software. Systematic
sampling of every third section was manually marked with three local points for the autofocus calibration. B In MATLAB, a TIF image was loaded where
each second was of interest, which is different from (A) but easier to visualize as an example (i). Next, we used an entropy filter to detect sections of
interest (ii). Binary masks have been computed for each section of interest and the images are ready for export (iii). The output of each exported section
(iv). C Individual sections were aligned and stacked on top of each other. The stacked block of sections was then cropped down to a specific ROI
(1.05 × 1.05mm) which only contains tissue.
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Table 2. In general, individual models for each subject performed
well with sensitivity, accuracy, and F1-score above 0.8.

Objectwise performance of 3D-reconstruction of segmented
pyramidal cells. The performance of detecting pyramidal cells as
3D objects was evaluated by measuring the sensitivity, precision,
and F1-score based on 3D-reconstructions of cells from a stack of
30 images. Manually Segmented (MS) and UNetDense Predicted
(UDP) 3D-reconstructions were compared by checking whether
estimated centroids from the MS cells fell within a cell profile of
the UDP cells and vice versa. The sensitivity, precision, and F1-
score were 0.98, 0.93, and 0.95, respectively, after removing
datapoints from first and last three images, see Table 3. Thus, the
3D-reconstruction of pyramidal cells demonstrated a high per-
formance across all three measurements.

3D-reconstruction and morphological analysis of pyramidal
cells. Layer III was located using a density plot of a 2D-projection
of the centroids of every 3D-reconstructed neuron, with yellow
representing areas of high density and blue representing areas of
low density, see Fig. 4. Layer I got a very low density of neurons,
while II and IV are denser than layer III in BA46. As Layer III has
a smaller density than Layer II and Layer IV, the ROI is specified
between the two dense yellow areas for our analysis.

Further classifications into pyramidal or non-pyramidal
neurons were needed as the UDP detects all neuronal shapes
from 2D images. This is necessary because pyramidal cells’ top

and bottom image profiles can be mistaken for smaller neurons/
glial cells, as seen in Fig. S4. The Gaussian mixture model (GMM)
was used to classify the 3D-reconstructed pyramidal and non-
pyramidal cells based on estimated sphericity and volume, see
Fig. 5B. Big objects/cells were classified as outliers if the
maximum Feret diameter in 2D or 3D measurements was three
standard deviations from the mean. As a result, a total of 1, 19,
and 28 datapoints for each subject were deemed outliers and
hence excluded from the pyramidal cell data. The percentage of
objects/neurons excluded from analysis using GMM and outlier
detection accounted for 23, 25, 37, and 23% of the total number
of detected objects for each dataset, as shown in Tab. S1. The
mean density of pyramidal cells in layer III of BA46 after filtering
was 28,155mm−3, and the GMM categorization and data
containing outliers are shown in Figs. S5–S6. The measurements
and calculations for each subject’s entire stack were examined just
for the classified pyramidal cells, with the number of cells and the
size of the ROI window for each subject shown in Table S1.
Table 4 provides information on the size, shape, and orientation
of pyramidal cells of layer III in BA46 for all three subjects.

The average neuronal volume across all three subjects is
795 μm3, and the shapes of pyramidal cells were assessed by
approximating sphericity, giving an average value of 0.3537. The
orientations of pyramidal cells relative to the direction of the
vector pointing toward the pial surface had an average of 29∘, and
some examples of orientation vectors are shown in Fig. 5E.

The diameter was calculated using the nucleator probe by
measuring the segment length from the largest cell profile (DiaL)
and the average segment length from all cell profiles (DiaAll). The
average neuronal diameter for DiaL and DiaAll were 11.17 and
7.03 μm, respectively. Estimated spheres of length DiaL were
constructed and displayed with their matching 3D-reconstructed
cell in Fig. 5F. Histograms of the different measurements can be
found in Fig. S7 and as log-normal transformed in Fig. S8.

2D vs 3D comparison of pyramidal cells sizes. The exact same
neurons were used to compare the 2D and 3D analyses for each
subject. The volumes of pyramidal cells from 2D images were
approximated by constructing a spherical object based on the
estimated radii measured by the nucleator probe. The volumes of
cells from the three subjects were calculated from 2D images
using the estimated segment length from the largest cell profile
(VolL) and all cell profiles (VolAll). The average neuronal volume
in 3D (Vol3D), VolL, and VolAll are 795, 730, and 183 μm3,
respectively.

An approximation to the mean diameter of a cell Dia3D was
estimated from the mean volume Vol3D under the assumption
that it is the volume of a perfect sphere. Dia3D was then assessed
and compared to the diameter measured from the largest cell
profile (DiaL) and all cell profiles (DiaAll). Because the nucleator
probe is derived from the mathematical fact that the length of
isotropic test lines between a unique point and the cell border, it

Table 1 Pixelwise validation.

Model 1 (A) 0 (A)

Subject 1 Subject 2 Subject 3 Subject 1 Subject 2 Subject 3

Individual 1 (P) 128937 TP 83370 TP 91266 TP 11710 FP 14400 FP 10717 FP
Models 0 (P) 19923 FN 17810 FN 11512 FN 4033734 TN 4078724 TN 4080809 TN
Combined 1 (P) 119351 TP 77409 TP 92189 TP 9506 FP 12994 FP 12337 FP
Model 0 (P) 29509 FN 20717 FN 8931 FN 4035938 TN 4083184 TN 4080847 TN

Pixel to pixel comparison between an MS and UDP image (2048 × 2048) for each subject. The confusion matrix is used to validate the UNetDense model on images that the model has not encountered
before. The result shows the performance of individual trained UNetDense models for each subject and a combined UNetDense model used for all subjects. Pixels belonging to the background have label
0, those belonging to the pyramidal cells have label 1, (A) stands for actual (value in MS image), and (P) stands for predicted (value in UDP image).

Table 2 Performance of pixelwise validation.

Model Metrics Subject 1 Subject 2 Subject 3

Individual Models Sensitivity 0.87 0.82 0.89
Precision 0.92 0.85 0.89
F1 0.89 0.84 0.89

Combined Model Sensitivity 0.80 0.79 0.91
Precision 0.93 0.86 0.88
F1 0.86 0.82 0.90

Precision, sensitivity, and F1-score of 2048 × 2048 pixel image for each subject with individual
trained UNetDense models and one combined UNetDense model. Pixel evaluation is based on
the confusion matrix of Table 1.

Table 3 Performance of objectwise validation.

3D-stack TP FN FP Sensitivity Precision F1

Original 472 19 33 0.96 0.93 0.95
Filtered 368 6 29 0.98 0.93 0.95

Validation of segmentation of pyramidal cells based on 3D-reconstruction. Precision, sensitivity,
and F1-scores were calculated based on 491 reconstructed pyramidal cells from 30 stacked
2048 × 3840 manually marked images. Original refers to the case where centroid points from
all 30 images are included. Filtered refers to the case where centroid points from the first and
last three images of the stack were excluded.
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provides the most accurate one-to-one comparison. The average
diameter for Dia3D, DiaL, and DiaAll are 11.48, 11.17, and
7.03 μm3, respectively. The values for the 2D vs 3D comparison of
volume and diameter can be seen in Tab. S2–S3.

Point pattern analysis of pyramidal cells. The coordinates of the
centroids for the 3D analyzed pyramidal cells in layer III of BA46
form a spatial point pattern. We considered four such point
patterns, which we refer to as 1_1, 1_2, 2, and 3 and they cor-
respond to the three subjects (Subject 1 was divided into two
parts since it was collected over two different days).

In order to detect possible columnar structures in the datasets,
we estimated the cylindrical K-function for each dataset, and
compared it to the 95% global envelope obtained by simulations
under the null hypothesis of complete spatial randomness (CSR).
The results can be seen in Fig. 6. We considered the empirical
cylindrical K-function in the directions of the three main axes.
When the empirical cylindrical K-function is above the envelope,
it indicates cylindrical clusters of points (centroids of cell
locations) in the corresponding direction.

There were signs of columnar clusters in all three directions for
all subjects. However, it was most pronounced in the direction of
the x-axis, which is the expected direction of the possible
columnar structure of pyramidal cells, especially when looking at
radii between 5 and 20 μm and heights between 20 and 80 μm.
There were areas where the empirical curves were below the
envelopes suggesting some repulsive behavior in the data. This
was not unexpected since the point patterns only represent the
centroids of cells, since cells cannot overlap, it was thus natural to
see some repulsion between the points. The global envelope tests
corresponding to the situations in Fig. 6A all yielded p-values

below 0.05, and the tests corresponding to the situations in
Fig. 6B all yielded p-values below 0.001, indicating that all
datasets exhibited large deviations from CSR.

Tissue deformation. Every single-cell location research technique
is vulnerable to tissue deformation. Epon embedding is used for
the analysis in this paper to minimize shrinkage. We compared
the tissue area of three Epon-embedded biopsies before and after
processing. The human gray matter brain biopsies showed an
areal shrinkage equal to 0.1%, 4.2%, and 7.9%, respectively. Based
on these data and our previous publications38,39, it was decided
not to correct our results for shrinkage.

Discussion
The presented method can reveal fundamental characteristics of
specific brain areas, which can be used to improve our under-
standing of neuronal morphology and their spatial relationship. A
variety of efforts have been made toward developing technologies
for revealing the intricate patterns of neural circuits.

By using different slicing or optical methods to recreate neu-
ronal tissues, multiple studies have provided 3D data on the
microscopic morphology or gene expression of neurons6,40–46.
Due to a number of difficulties, such as size limitations of the
slide scanner and microtome, low homogeneity of serial whole
organ sectioning and staining, the time-consuming design of the
operation, computer constraints, and limited digital processing
capability, the entire human brain is difficult to recreate entirely
on a mesoscopic scale. High-resolution, 3D models of animal and
human brains are difficult to acquire. Chemical clearance meth-
ods make the tissue transparent and enable the entire mouse
brain to be reconstructed6,44, but 3D-reconstruction and
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Fig. 4 Visualizing the steps to identify layer III. A) Illustration of four layers of BA46 and the observation window for the analysis is marked in green.
B Raw image of a section. Scale bar= 300 μm. C Binary image of the output from the Deep learning model, UNetDense. D Position of centroids from 200
images projected to the x- and y-plane. E Density map of the positions of neurons to visualize the different layers in the cerebral cortex and the yellow color
represents areas of high density, whereas the blue color represents areas of low density. The density was high at the yellow areas, which indicate the
position of layer II and layer IV (from left to right) and low at the blue areas, which indicate fewer neurons and show a part of layer I and layer III. The
volumetric stack of images was cropped within the squared marked with the red dashed lines that was selected by a user. F The part of the image in C,
which is chosen for analysis.
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digitization of fine neuronal morphology continue to be chal-
lenging. One explanation is that in the nervous system, cells are
closely arranged, making it difficult to distinguish one from
another. Applying Golgi-staining, a 3D structural dataset of the
entire mouse brain was also collected by micro-optical sectioning
tomography, which can conduct imaging and sectioning simul-
taneously on centimeter-sized tissues42. However, such a section-
based method demands costly specialized instruments, relatively
long periods of sample treatment (weeks or months), and for a

single brain imaging time can approach even one month47. Based
on the reconstruction of histological sections of a human brain
preserved in paraffin, Amunts et al. developed a 3D model of the
whole human brain called BigBrain with a spatial resolution of
20 μm45. The tissue was embedded in paraffin, which can shrink
tissue volume up to 50–60%39, and it is challenging to study
neuronal morphology with a spatial resolution of 20 μm. To date,
no optimal approach to the analysis and processing of the whole
human brain with micro-resolution has been achieved. The

A B

C D

E

F

Pyramidal cells
Non-pyramidal cells

Fig. 5 Illustration of 3D-reconstruction of neurons and segmentation of pyramidal cells. A Visualization of the 3D-reconstruction of one layer neurons
with a window height of 31 μm. B Zoomed image of the segmented pyramidal and non-pyramidal cells. Scale bar= 20 μm. C Overlay image of the binary
segmented image with the gray-scale image of a section. Scale bar= 200 μm. D, E Close-up view of the overlay picture and 3D-reconstruction of pyramidal
cells, with yellow lines representing orientations. Scale bar= 15 μm. F Measurement of diameter from the longest cell profile DiaL was utilized to construct
3D spherical objects with their corresponding 3D-reconstructed cell. The graphic indicates that the difference in 3D volume space between the spherical
approximation and the 3D-reconstructed item is similar. Scale bar= 20 μm.

Table 4 Quantitative values for pyramidal neurons from the entire stack of each subject.

Brain Volume (μm3) Orientation (∘) Sphericity DiaL (μm) DiaAll (μm)

Subject 1 867 ± 960 34 ± 23 0.38 ± 0.08 11.13 ± 3.46 7.23 ± 3.26
Subject 2 709 ± 806 28 ± 22 0.33 ± 0.07 11.13 ± 3.74 6.49 ± 3.1
Subject 3 808 ± 893 24 ± 18 0.35 ± 0.06 11.27 ± 3.61 7.37 ± 3.1
Mean 795 ± 65 29 ± 4.1 0.35 ± 0.02 11.17 ± 0.07 7.03 ± 0.39
CV 0.08 0.14 0.06 0.01 0.06

The table shows the neuronal volume, diameter, orientation, and sphericity of pyramidal cells for each subject based on the data which is summarized in Fig. S7. The entries for each subject state the
average and ±one standard deviation. Mean is the average measurement for each column, coefficient of variation CV= SD/mean.
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majority of the approaches discussed above share the use of
immunolabeling in order to detect and localize antigens or pro-
teins within a cell at a specific location.

The fundamental constraint of immunolabeling is that milder
fixation conditions and a shorter detergent permeabilization
incubation time are required to allow antibodies to penetrate the
tissue. This is particularly important for soluble proteins in the
cytoplasm, which are frequently damaged or destroyed during
incubation. Hence, it is challenging to create neuronal antibodies
that work in postmortem brains that have been in the fixative for
months or years48. Another well-known concern is that many
histological procedures can cause tissue samples to shrink and
deform, potentially altering cell size, shape, and organization.

Keeping the dimensions of the tissue is especially essential if
studies want to assess changes in the size and distances of any
cells or organelles within the tissue. Our methodology provides an
effective technique for imaging smaller pieces of most archival
tissue from semi-thin serial sections into a functional dataset with
hardly any tissue deformation. Researchers have with our method
a unique opportunity to study archived tissue samples, enabling
researchers to investigate tissue and disease development in great
detail.

An automated section collection EM system has been altered
into a unique 3D-reconstruction method for light microscopy,
AutoCUTS-LM. We used histological staining to visualize
cytoarchitecture and an autonomous slide scanner to produce
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Fig. 6 Results of analyses with the cylindrical K-function for the spatial point patterns of centroids of pyramidal cells. Each row represents a dataset
which from top to bottom are Subject 1_1, 1_2, 2, and 3. A 95% global envelopes (shaded area) for the cylindrical K-function, with t= 80 fixed, and using
2000 CSR simulations. The theoretical value of the cylindrical K-function under CSR was subtracted from the curves for better visualization. The three
curves correspond to the empirical cylindrical K-function for each dataset, in the direction of the x-axis (solid lines), y-axis (dotted lines), or z-axis (dashed
lines). B Summary of 95% global envelopes for the four datasets based on the cylindrical K-function when varying both the height t and radius r. The
envelopes are each based on 4000 CSR simulations. The direction of the cylinders is stated at the bottom of each plot. The plots indicate whether the
empirical cylindrical K-function for the observed point pattern is above the envelope (black), within the envelope (gray), or below the envelope (white).
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high-resolution images of the brain tissue. Via deep learning,
pyramidal neurons were characterized and their spatial distribu-
tion analyzed using advanced techniques. Our application pro-
vides valuable information on the neuronal 3D architecture from
archived human brain tissue.

We systematically sampled the tissue for our setup to reduce
the scanning time and the processing of data. A thickness of 800
and 900 nm provided sufficient axial spatial resolution to detect
and reconstruct pyramidal cells. The UNetDense architecture was
applied to detect the pyramidal cells in our images, as threshold-
based segmentation techniques typically yield poor output in
medical image analysis for low-contrast images, unexplained
noise, blurred boundaries, and different light condition49,50. The
variation between brains made it challenging to create a model
that suited all three brains since flaws occurred mainly along the
edges of the images, and where the contrast was low due to less
staining absorption. Therefore, we trained an individual UNet-
Dense model for each subject in this study since the sensitivity,
precision, and F1-scores for both pixelwise and objectwise seg-
mentation were above 0.82 and 0.93, respectively. Overall, the
results of the combined model showed smilar precision and F1-
scores but lower sensitivity compared to the individual models.
That being said, sensitivity was emphasized for this study as it
demonstrates how effectively the model detects pyramidal cells
present in the data, which is essential for conducting the point
pattern analysis. The risk of having three models is overfitting.
Overall, the validation-findings from the sensitivity, precision,
and F1-scores showed that the outcomes of the three models are
reliable. One reason for the difference between subjects was that
the brains absorb staining differently, and this may be due to
different ages, postmortem intervals, and long fixation time. With
this limitation in mind, one model might be adequate if the
captured images did not alter too much or if we annotated more
images to train the model.

We measured the volume, sphericity, orientation, and diameter
of pyramidal cells and used the cylindrical K-function to identify
columnar structures. The average volume was 795 μm3 with an
equivalent diameter equal to 11.48 μm. The neuronal diameters of
pyramidal neurons in layer III of BA46 have received little
attention in the literature. Nonetheless, Rajkowska et al. examined
150–200 neurons in this region using stereological techniques and
determined an average diameter of 13.45 μm. The process for
measuring neuron radii was comparable to the nucleator probe as
they measured the border outlines of cell profiles to compute the
associated diameter. Similar to the procedure in this study, they
only assessed neurons in the crown of a gyrus. The differences in
radii could be related to the fact that we sampled pyramidal cells
from a small concentrated area. Also, they quantified neurons in
broader regions of BA46 using a succession of counting boxes. In
comparison, our method offers information on thousands of
counted neurons from each subject, whereas Rajkowska
counted 150–200 neurons per subject34. In BA46, counting fewer
neurons from smaller sample sizes over a broader area may
overestimate neuronal radii. This is due to the fact that smaller
pyramidal cells dominate layer III over bigger ones, resulting in a
stronger proclivity toward smaller radii. The difference in radii
measurements across individuals might also be related to biolo-
gical variance for subjects, brain storage period, or different
embedding media, as the difference is roughly 17%.

Different factors such as age, disease, and toxicity have been
reported to affect neuron volume in the cerebral cortex across other
studies, however, they do not give any detail on how the shape of
the neurons are affected51–54. A literature search revealed that no
quantitative values to quantify the sphericity and orientation of
pyramidal cells had previously been published. As a result, such
measurements were not comparable to those of other studies.

Sphericity is valuable as a general shape descriptor since it also
applies to objects having holes, such as a torus. Yet, the main
reasons sphericity is used for measuring shape are as follows:
sphericity is a unitless number, hence is scale invariant. Fur-
thermore, it is simple to compute since MATLAB easily calculates
the surface area and volume of cells, which are fundamental
descriptors of cells in their own right. Estimation of sphericity
does not presume any shape before examining a 3D object,
making it an appealing tool for differentiating between distinct
forms. As a result, we implement sphericity estimates to com-
prehend a natural cell shape. The average sphericity of 0.35 found
in this paper indicates that pyramidal cells appear elongated and
far from spherical.

The average angle between the vector that represents the
orientation of the pyramid cell and the x-axis, which points to the
pial surface, is 29∘, suggesting that pyramidal cells are focused
perpendicular to the pial surface. Quantities such as cell sphericity
and orientation in follow-up studies with different disease groups
could be utilized to understand the morphological alterations
induced by these disorders.

The volumes of pyramidal cells calculated from 3D-
reconstruction images were compared to the results of the
nucleator probe measurements for the same pyramidal cells,
which estimate the mean cell volume from 2D images. It is crucial
to keep in mind that the volume estimates are based on two
separate methodologies, and the volume may be overestimated or
underestimated with either approach. The 3D approach measures
every cell profile, and if a cell profile on the edge of a pyramidal
cell is not recognized, this approach may underestimate the
volume (top or bottom cell profile). On the other hand, the
nucleator relies on measurements from a unique position (e.g.,
nucleolus), assuming that the section or cell is isotropic. If this
criterion is not fulfilled, the estimate may be biased.

The average estimated volumes of pyramidal cells were 795,
730, and 183 μm3 for Vol3D, VolL, and VolAll, respectively. The
difference between Vol3D and VolL is 8.7%, whereas the difference
between Vol3D and VolAll is 77%. It appears that using the
nucleator probe on the largest cell profile to estimate volume
yields a comparable overall result, but employing the nucleator
probe on all cell profiles causes a huge difference. The estimated
average volumes vary greatly depending on the approach used.

The estimated diameter of pyramidal cells changed less than
the volume estimates, with results of 11.48. 11.17, and 7.03 μm for
Dia3D, DiaL, and DiaAll, respectively. The difference between
Dia3D and DiaL is 2.9%, whereas the difference between Dia3D
and DiaAll is 39%. Hence, if we look at estimated radii when
employing the largest cell profile compared to the 3D estimation,
there is no substantial disagreement between those two approa-
ches for calculating diameter because the difference is nearly
equivalent to the 272 nm pixel size. In contrast, estimating the
average radius from all cell profiles makes a notable difference. As
the neurons are not spherical in reality, comparing neuronal size
based on volume rather than diameter is a more appropriate
parameter to quantify changes in neuronal size in future refer-
ences. Nevertheless, if only a 2D technique is available, adopting a
spherical approximation by assuming general isotropy of these
human pyramidal cells to estimate neuronal volume is not
entirely inaccurate. It is vital to notice that a slight change in the
radius can substantially change the volume value considering
the radius is raised to the power of three while computing the
volume.

Even though the nucleator is a 2D procedure, it is nevertheless
based on a 3D sampling methodology since the biggest cell profile
detected during the sample is required before the analysis can be
completed. The nucleator is therefore a helpful tool to use when it
is challenging to distinguish smaller cell profiles at the edges and
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only larger cell profiles are required. Another important con-
sideration is that the nucleator will be less sensitive to tissue
shrinkage in the direction of the z-axis as it estimates the volume
from a single 2D plane. The nucleator is advantageous for esti-
mating volumes compared to other embedding materials that are
sensitive to shrinkage, such as frozen sections or vibratome sec-
tions, which rarely deform in the x- and y-axes but shrink in the
z-axis.

The observed pyramidal neuron density in layer III of BA46
after the classification between pyramidal and non-pyramidal cells
is 28,160mm−3. A stereology study by Francine M. Benes found a
neuronal density of 36,800mm−3 in layer III of postmortem
brains from nine healthy controls in the prefrontal cortex55.
Cullen et al. estimated a neuronal density of 37,000mm−3 in the
prefrontal cortex of 10 adults with no history of mental illnesses,
similar to Benes et al. However, Cullen et al. also measured the
density of pyramidal cells in layer III to be 25,650mm−3, a dif-
ference of 30% compared to the total neuronal density. Rajkowska
et al. characterized and mapped the cytoarchitecture of BA46 in 17
healthy people. They were able to estimate a neuronal density of
51,510mm−3 by blending cortical layers I–III34. Because the
density in layer II varies from 48,000 to 78,000mm−3 and covers a
smaller area than layer III, it is reasonable to assume that the
density in layer III would be about 36,000–44,000mm−3 55,56. If
the difference between neuronal and pyramidal density is roughly
30%, then the projected density should be ~25,200–30,800mm−3,
which is consistent with our findings.

One thing all of the three studies listed above have in common
is that they solely measured prefrontal cortex neuronal
density34,55,56. Number densities indicate changes in the number
of cells as well as tissue volume under consideration, because they
are ratios. It is commonly assumed that as the number of detected
objects rises, so does the density. However, the density increases
as well if the number of identified objects remains constant, but
the examined volume shrinks. As noted in other studies, making
any definite claim regarding changes in 3D structures based
purely on density estimates may lead to questionable
findings57–59. Because this assumption is so widespread, the
phrase “reference trap” refers to circumstances in which wrong
conclusions are drawn only on the basis of density. As a result,
comparing densities should be handled very carefully.

Some studies have shown that pyramidal cells are organized in
columns that are perpendicular to the pial surface of the cerebral
cortex60–63, other studies suggest otherwise64,65. It is an attractive
idea to explain the neuronal organization because interconnected
neuron groups typically share similar physiological properties,
and the conditions that excite a neuron are also likely to excite a
considerable fraction of its afferent input. The loss or changes in
the spatial organization of neurons may interfere with informa-
tion processing between distributed networks, thereby promoting
cognitive decline. The spatial distribution of pyramidal neurons
was analyzed with the use of the cylindrical K-function, which
does not assume any columnarity a priori, and where we applied
the cylindrical K-function on much larger point pattern datasets
than so far analyzed in the literature66–68. Our results suggest that
there is evidence of a columnar structure in the directions of the
x-, y-, and z-axes for all three subjects, but it was most pro-
nounced in the direction of the x-axis, which is pointing toward
the pial surface. Thus, the results support the theory of a
columnar pattern perpendicular to the pial surface. The method
can be used to detect potential cytoarchitectural distortions that
may impact the neuronal columnar organization in the brain
cortex. However, more human brains need to be studied in order
to draw any final conclusions.

Technical and environmental factors could affect the sampling
quality of our sections. The plasma treatment required the

transparent collection tape to be hydrophilic to ensure that the
sections would adhere to the tape20,69. If the tape was too
hydrophilic, the sections would not have time to unfold before
they landed on the tape and folds were unavoidable. Variations in
density between tissue samples and resin meant that the
remaining blank resin had to be trimmed off4,20,70. We observed
the advantage of higher indoor humidity, which provided a
favorable environment for collecting sections. The impact of
induced folds can be seen with a humidity level about 10%, 60%,
and 90% in Figs. S10–S11. The test showed that a stable indoor
humidity level around 80% and 90% could help avoid folds.

If larger structures were to be explored in the future, the use of
an optimized resin embedding protocol that could be used for
thicker sections (>500 nm) would ease the workload. Applying a
resin ratio test to match the tissue density and select the most
suitable one before collecting samples with AutoCUTS-LM would
have a beneficial effect on reducing the folds in the section.
Reducing the hardness of the resin to suit a particular tissue type
can be achieved by controlling the ratio of two different anhy-
dride curing agents (Dodecenyl Succinic Anhydride and NADIC
Methyl Anhydride). This could avoid the excessive cutting of
thousands of needless sections, which would result in the
sharpness of the knife being extended, using less tape, and a
reduced workload for data collection and image processing. Other
labeling methods can also be carried out with the AutoCUTS-LM,
as our sections can be combined with immunofluorescence
labeling to identify the distribution and co-localization of proteins
as shown in Fig. S3A, and it may also be combined with in situ
hybridization in order to localize a specific DNA or RNA
sequence71. Due to the use of a hard resin, sections can also be
viewed in an electron microscope, Fig. S3B, in which case cellular
ultrastructure can be visualized. In essence, this methodology can
be designed for both light microscopy and electron microscopy to
bridge the localization of important molecules with cellular
ultrastructure.

In conclusion, the AutoCUTS-LM method could benefit
research in cell and developmental biology, model organism
analysis to address mechanisms as cell migration, 3D tissue
modeling, and morphological changes between animal/patient
groups. This method is applicable for any disease and can
potentially enhance the research of normal and disease processes,
particularly those involving morphological alterations or in which
the spatial interaction of disease features is essential.

Methods
Subjects. Three healthy human brains (two women, one male) aged 30, 53, and 58
(Subjects 1, 2, and 3) with no history of psychiatric or neurological diseases were
selected from the brain collection at Core Centre for Molecular Morphology,
Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus,
Denmark. These archived brains have been stored for 19, 21, and 21 years,
respectively, in 4% formaldehyde in phosphate buffer at neutral pH and were
collected in compliance with Danish law and with approval from the Central
Denmark Area Health Research Ethics Committees (license number: M-2017-91-
17).

Sample extraction. We have developed an algorithm in MATLAB that can assist
any user in delineating a ROI in a block of tissue and systematically sample two (or
more) points for biopsies on the cortex, see Fig. 1. The user had to capture a picture
of the tissue block and define the biopsy diameter. Then the image was transformed
into gray scale, and the ROI was delineated to produce the sample area. This
picture was then transformed into a binary image indicating the sample area by
means of a global threshold. Next, to prevent the biopsy from being placed on the
crown of the gyrus, the edges of the binary image were removed. This was done by
using morphological erosion with a filter size equivalent to the biopsy diameter and
is shown with the red color in Fig. 1D. The sampling area was divided into four
quarters. The two biopsy punches should either be performed in the first and third
quarters or in the second and fourth quarters to avoid overlapping biopsies. The
four quarters were determined by considering the accumulation of white pixels by
rows and detect when they reached 25, 50, and 75%, see Fig. 1E. A 1.5mm diameter
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biopsy punch was used to sample brain tissue covering all six layers of the cerebral
cortex.

Sample embedding and block preparation. The biopsies were first immersed in
Phosphate-buffered saline (pH 7.3) with sucrose for one day and then washed two
times in 0.05 Mol maleate buffer (pH 5.2), 5min each time, at room temperature.
Osmium is traditionally used to stain samples for epoxy-resin embedding for EM.
However, we discovered that it decreased the sample’s signal-to-noise ratio (SNR)
when it was applied for light microscopy, see Fig. S1. Samples were processed and
embedded inside the Leica EM TP Automated Tissue Processor (Leica Micro-
systems, Brønshøj, Denmark). Here, they were stained with 1% uranyl acetate in
maleate buffer for 1 h and dehydrated through a graded ethanol series (70% 86, 96,
and 99%, 20min each). Following the completion of dehydration, samples were
washed three times with 100% acetone for 10min, followed by infiltration in 100%
acetone/epon 1:1 with constant rotation for 12 h overnight. Infiltrated samples were
incubated in pure Resin 812 for 1 h and placed in embedding molds in a pre-
warmed oven (60 ∘C) to polymerize for 24 h. The biopsies were placed in the
bottom of the embedding form, such that the pial surface was perpendicular to the
cutting direction of the knife, as sectioning all six layers in the neocortex was
preferred. This reduced the number of sections by approximately two to three
times compared to alternative orientations, which ease the time spend on capturing
images for 3D-reconstruction. After the resin had fully cured, most of the white
resin from the embedded sample was roughly trimmed by a high-speed milling
system (EM TRIM2, Leica) with an angle set to 60∘. A glass knife was used for fine
adjustment to trim around a 1.1 × 1.4mm rectangle with a depth of 0.7mm
(1mm3), resulting in a sample where only neurons in the supragranular layers and
layer IV were included, see Fig. S2. It was essential to trim all the blank epoxy-resin
away since the density difference between the tissue and epoxy can generate
wrinkles while cutting. Supplementary Note 1 describes in detail how to prevent
wrinkles and optimize section quality, as seen in Figs. S9–S14.

Transparent collection tape. Collection tape with different settings was tested to
find the most suitable tape for our needs. A roll of PEN tape 300-mm wide, 45-m
long, and 50-μm thick was chosen for this study attributable to heat treatment and
the feature of a protective coat on both sides, which prevents dirt (South China
Science & Technology Co., Ltd, China). This tape was slit into 7-mm wide strips
(Tianjian Xinhua Electronic Material Co. LTD., China). Adjusting the tape
hydrophilicity was essential since it reduced wrinkles of the brain sections on the
tape and made the sections more adhesive to the tape, so they did not fall off during
collection and staining. The system parameters for the plasma treatment (Beijing
Jiaruntongli Technology Co., Ltd., China) were set with the values: power 120W,
frequency 40 kHz, speed time 4mm/s, and processing time of about 2 h for
20 m tape.

Automatic serial section collection. An ultramicrotome (EM UC7, Leica) con-
nected to a custom-tape collection system (AutoCUTS) was used to automatically
cut the resin-embedded material into serial sections. Serial sections with a thickness
of 400 and 300 nm were cut by a 45∘ Histo diamond knife (Diatome, Switzerland)
and floated onto the water surface, see Fig. 2A. The tape’s reel speed and cutting
speed were set to 1 and 2mm/s, respectively, which gives a distance of 1mm
between every section on the tape. The pulling motion from the collection tape
brings the sections from the water to the surface of the tape, and the adhesiveness
of the tape affects the flatness of these sections.

We collected about 800 sections per hour with our current settings. Hence, it
takes about 3 h to finish around 0.7mm of tissue. A video camera was attached to
the AutoCUTS to monitor and record the process to ensure a more comfortable
experience for the user by displaying the cutting process onto a computer screen. It
was possible to collect thousands of sections without any loss of tissue.

Different technical and environmental factors were observed that could
generate wrinkles and disfigure the sections during cutting as described
in Supplementary Note. We found that sections with a cutting thickness above
300 nm were more susceptible to generate these wrinkles during the cutting
process. The impact of wrinkles was also affected by a combination of room
humidity level and tape hydrophilicity.

Section library. The spool that contains the tape with attached sections had to be
completely dry before staining was applied to prevent any sections from falling off
during this process. Hence, the spool was placed in a sealed plastic bag and placed
inside a 50 ∘C oven overnight. The toluidine blue staining was absorbed differently
in each brain. Consequently, we had to check the optimal staining time for every
brain before running the protocol. Some sections would be stained at room tem-
perature for 20min to decide which time the pyramidal cells had the best signal-
noise ratio. Hereafter, the tape was segmented into smaller pieces and placed in a
petri dish (20 cm diameter) filled with 1% toluidine blue without the tape sticking
together Fig. 2B. During the staining period, a cover was placed on top of the petri
dish to condense moisture and prevent dust or dirt from mixing with the blue
toluidine solution. Toluidine blue residues on the tape segment were washed away
(once with 80% ethanol, twice with purified water), and the tape segment was then
dried with a hairdryer (Fig. 2C). It was important not to let the tape dry naturally

since water stains would then be developed on the plastic surface of the tape, which
generates hazy white spots on the surface. The tape segment was cut into smaller
strips and glued onto a typical 75mm by 25mm microscope slide (Fig. 2D, E). The
sequence of the serial sections was numbered from the bottom right corner to the
top left corner. Beforehand, each glass slide was cleaned of dust and other particles
in pure acetone and alcohol.

Different glues were bought and tested for their ability to adhere PEN tape to
the microscopy glass slide. For this study, we chose the glue from Krazy glue (Krazy
Glue All Purpose Super Glue Pen, Fine Tip, 3 Grams) due to its high adhesive level
and because it was non-toxic and convenient to use. Krazy glue does not require a
fume hood, which can generate turbulence and blow away the cutting strips.
Besides, the pen shape made it easier to use than a standard plastic pipette
(Fig. 2D). Note that sometimes air bubbles could be generated between the glass
and tape, so it was essential to press the tape as flat as possible with a pair of
rubber-tipped tweezers. The 7-mm wide tape was chosen for this specific reason
since it was more convenient to glue 3 × 7mm parallel strips onto a 25mm glass
side compared to the traditionally 8-mm wide tape.

Data acquisition. Images of the sections were acquired using Leica’s Apiro Versa
200 Digital Pathology Scanner. The Apiro Versa 200 is equipped with a 200-slide
autoloader and a robotic arm that allows any user to capture pictures unsupervised.

First, it captured a low-resolution overview image of the whole slide.
Subsequently, three focal points were positioned manually on each observable
section for autofocus adjustment. Next, the microscope collected images at higher
magnifications (lens ×20, NA 0.8) with pixel size down to 272 nm, which did not
lose any details because the pixel size was below the expected resolution for this
system’s optics. Systematic sampling of our sections was done by only chosen every
second (subject 1) and every third section (subjects 2 and 3). This choice was based
on the chosen cutting thicknesses of 400 and 300 nm, which correspond to a
sample interval of 800 and 900 nm, respectively.

The output files were named based on the positions of the glass slides in the
loader, e.g., Slide1 for position 1, and the output files could be read from the
commercial software Aperio ImageScope (Leica Biosystems Imaging, Inc., USA)
that was part of the microscope interface. Aperio ImageScope could visualize the
whole slide image and keep the high-resolution image. However, the user had to
manually select a region before sections could be exported as individual image files.
As a result, we built a script that could load large image files containing multiple
sections and export the individual sampled sections as uncompressed TIF files in
order, see Fig. 3B72.

The output images for each glass slide were roughly 2–4 GB in total if images
for each stripe were exported, and it is thus recommended to break the
photographs into smaller segments for each glass slide. First, the large image files
were converted to gray scale, followed by a Gaussian blur. An entropy filter was
then applied to measure randomness, which was used to characterize the texture of
the input image. This could be used to detect sections of interest since pixel values
of sections in focus varied a lot due to the presence of various fine details, while
sections out of focus were blurry and showed more homogenous pixel values. After
that, a binary mask for each section was created by replacing all values above the
globally defined threshold with 1 and filtering out smaller connected components.
Each section detected was then exported as an individual file and prepared for
alignment.

Alignment of sections. The alignment of the segmented sections for each subject
was accomplished by a sequential slice-to-slice image-based registration approach.
Regions in image pairs were matched by translating and rotating images following
a precise registration. First, we converted the RGB image of a section into gray scale
and then employed a median filter to remove the noise. Then, we did a rough
registration followed by a fine-registration using rigid intensity-based image
registrations with different optimizer and metric configuration properties35. In
MATLAB, we set the imregconfig function, which determines the optimizer and
the metric configuration, to the multimodal configuration, as images may have
varying intensity distributions. The function imregconfig was set to its default
values for the rough registration, while the growth factor, initial radius, and
maximum iterations were updated to 1.02, 2 × 10−3, and 300, respectively, for the
fine-registration. For the image registration, images were downscaled by a factor of
four in all directions before any transformations were done in order to increase the
registration speed. After the transformation matrix calculation, the images were
upscaled again in order to recover the original scales. After all the images were
aligned, a window in which only the tissue remained was chosen. The images were
chopped to this window and prepared for analysis, see Fig. 3C.

Data analysis pipeline. The research pipeline for processing microscope images is
depicted in Fig. S15, where the key steps in the pipeline are explained in the
following subsections. First, we manually annotated microscope images and aug-
mented those images to produce a sufficient amount of images for the training and
validation set used to train the UNetDense model. After all aligned images were
segmented with the UNetDense model, a density map was used to identify multiple
layers of neurons in the neocortex, which made it possible to identify and crop out
layer III for further study. Then, we performed 3D-reconstruction and calculated
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morphological parameters for all cells from the segmented neurons in layer III. On
the basis of the 3D-reconstruction cells, pyramidal cells were detected and ready for
analysis. Finally, 3D coordinates of the centroids of pyramidal cells were investi-
gated for columnar patterns by using the cylindrical K-function.

Annotation. Data annotation is the method of labeling objects of interest that are
detectable. The entire process for marking the pyramidal cells for our dataset was
performed on 35 random cropped images from the aligned stack of each subject, is
illustrated in Fig. S16. Here, the annotation was manually performed by an expert
(NYL) using Photoshop’s quick selection tool for each subject, but any image
labeling program can be used, e.g., open-source tools such as VGG Image Anno-
tator or ImageJ. Moreover, the Image Labeler program in MATLAB or employing
the inbuilt function ginput to mark the border of a cell and then applying the imfill
function to mask the cell may also be useful for labeling cells. Next, we used
MATLAB to read the manually segmented (MS) images as binary images where
pixels in pyramidal cell profiles equaled one, and all other pixel values equaled zero.

Deep learning architecture. Deep neural networks, in particular, convolutional
neural networks (CNN), are commonly used for tasks of image classification73. For
the research of this paper, we have chosen to continue working with the network
described in the thesis ’Statistical analysis of pyramidal cells in brain tissue’ where
the code was published on GitHub36. The deep learning framework, UNetDense, is
a modified version of the original UNet architecture and consists of several dense
blocks, transition blocks and merging blocks adopted by the pre-trained DenseNet-
121 to compute pixel-level predictions for neurons74,75. The Adam optimizer was
used with a learning rate of 1 × 105, the loss function was Binary Cross Entropy
plus Dice Loss, and the code was run on Google Colaboratory36,76. Cell profiles
from 35 annotated images from each model were each sliced into 200 image
patches of 256 × 256 pixels without redundancy, giving a total of 7000 (35 × 200)
images. The 7000 images were augmented by adjusting brightness and contrast and
were then divided into a training set of 5600 images and a validation set of 1400
images. The differences in tissue from different subjects make it be difficult to train
one combined model to segment the data of all subjects, see Table 2. Hence, we
compared a combined model with individual models trained for each subject. Only
the model for Subject 1 was trained from development, after which transferred
learning was applied to the other two models afterward.

Pixelwise validation. We classified our predicted pixel values into four categories:
true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN).

TP: The total number of pyramid-pixels correctly identified by UNetDense model.
FP: The total number of pyramid-pixels wrongly identified by
UNetDense model.
TN: The total number of non-pyramid-pixels correctly identified by
UNetDense model.
FN: The total number of non-pyramid-pixel wrongly identified by
UNetDense model.

For validation, the model was used to segment neurons from images that had
also been manually segmented. The difference was then measured between the MS
image and the UDP image, see Figs. S17–S19. The performance of each UNetDense
model for segmenting 2D images was assessed using metrics of sensitivity,
precision, and F1-score.

Sensitivity ¼ TP=ðTP þ FNÞ ð1Þ

Precision ¼ TP=ðTP þ FPÞ ð2Þ

F1� score ¼ 2 � ðSensitivity � PrecisionÞ
Sensitivity þ Precision

ð3Þ
Objectwise validation. For validating the predictions of 3D-reconstructed cells, a
new validation set was produced of 30 stacked images (2048 × 3840 × 30), which
took about one week to complete. The data obtained was just a small portion of
stacked images from Subject 1 and had not been seen by the UNetDense model
before. The 3D-reconstruction from a stack of binary images and performance of
the objectwise validation was done using custom MATLAB scripts, where we used
the built-functions bwconncomp and regionprops3 for the 3D-reconstruction.
After being reconstructed as 3D objects, the manually marked and predicted
pyramidal cells were compared.

For this comparison, observed structures that did not appear in more than three
consecutive images were omitted, corresponding to a height below 3 μm. Then, for
both the MS and UDP images, we calculated the centroid of all detected pyramidal
cells. A case where a MS centroid fell within a cell profile of the UDP 3D-
reconstruction was denoted TP, while a case was denoted as FN when an MS
centroid did not fall within such a cell profile. The FP case was defined to be the
situation where a centroid of the UDP 3D-reconstruction did not fall within a cell
profile of the MS 3D-reconstruction since these are falsely detected cells in the
UDP. Based on these definitions, sensitivity, precision, and F1-scores were
calculated.

The validation set contained 491 reconstructed and labeled pyramidal cells,
which contains 5556 cell profiles in total, and we observed that the first and last

three images of the dataset predominantly contained false-negative neurons, see
Fig. S20. The cause for this error was that centroids for cells extending beyond the
image borders were poorly estimated. Thus, these were removed.

Defining layer III. The aligned segmented images from the output of the deep
learning model were examined with custom MATLAB scripts. In this research,
pyramidal cells in layer III were of primary interest. Thus, we identified a ROI
containing only layer III by plotting a density map of a projection of estimated
neuron centroids. These estimates were made from a total of 200 images loaded
from the beginning, middle, and end of our complete aligned stack. We used the
built-in function regionprops3 to estimate neuron centroid values from such
images. Segmented 3D objects that were smaller than eight voxels were considered
as artifacts and were thus filtered out just like centroid points from the first and last
three images.

The density map depicts where the majority of cells were located, with yellow
representing regions of high density and blue representing areas of low density.
Layer III of the neocortex has a lower density than layer II and layer IV, then the
ROI was specified between the two dense yellow areas for our analysis Fig. 4D.
After a user had clicked on the top left and the bottom right corner to define the
ROI, red dashed lines appeared to show the cropping frame, see Fig. 4D. This semi-
automatic approach was chosen due to its reproducibility and effectiveness.

3D-reconstruction and quantitative measurement of pyramidal cells. The use of
custom MATLAB scripts completed the study of morphological features and
visualized the 3D-reconstruction of pyramidal cells, as shown in Fig. 5. Quanti-
tative analytical values for each pyramidal neuron were approximated based on the
entire stack of images, such as volume, centroid, diameter, maximum Feret dia-
meter, orientation, surface area, and sphericity, where most values were calculated
using the built-in function regionprops3.

Each cell’s shape was assessed by approximating the sphericity, which does not
have any prior assumption of shape and is independent of cell size. The sphericity
is a dimensionless ratio, and the formula is given in Eq. (4), where V and A are the
volume and surface area of the segmented cell. If a cell has sphericity equal to 1, it
resembles a perfect sphere37.

ψ ¼ π1=3ð6VÞ2=3
A

ð4Þ

It was necessary to classify the detected neurons into pyramidal or non-pyramidal
neurons as the UDP detects all neuronal shapes. This is because the top and bottom
parts of a pyramidal cell have smaller profiles and can appear to be part of minor
neurons or glial cells, as seen in Fig. S4.

A Gaussian mixture model (GMM) clustering algorithm was used to
differentiate pyramidal and non-pyramidal neurons based on 3D measurements.
The data used for the GMM consisted of the estimated volume and sphericity in
3D. The choice of data for the GMM is based on the idea that spherical objects with
a smaller volume resemble smaller neurons or glial cells and hence non-pyramidal
cells. For the dataset used for the GMM, we decided to only use the observed cells
below the average volume of the dataset to ensure that only small round cells were
evaluated. The dataset was fitted to the GMM using the default settings in the
inbuilt fitgmdist function in MATLAB. After the GMM separated the dataset into
two, the cells in the cluster with the lowest measurements were considered non-
pyramidal cells and were excluded for all three subjects, see Fig. S5. Sometimes two
cells were very close to each other and such merged cells were detected as one cell.
Non-cellular structures like big vessels may also look like one cell. Such large,
undesirable items were detected by identifying elements that had a log-transformed
maximum Feret diameter measurement in 2D and 3D were greater than three
standard deviations from the mean. This is particularly effective for distinguishing
artifacts of unusual length because the maximum Feret diameter is the most
extensive distance between two points in the convex hull, see Fig. S6 for the
filtered data.

Finally, the orientation vector of a pyramidal cell is defined to be the unit vector
u in the direction of the maximum Feret diameter, Eq. (5). The maximum Feret
diameter provides information about the most extended length of a cell in a
particular direction, usually toward the apical dendrite. The orientation angle θ is
then defined to be the angle between u and the unit vector u0= (1, 0, 0) which
points in the direction of the x-axis. This means that if a pyramidal cell has
orientation angle 0, its orientation vector points toward the pial surface. The
orientation vector for each pyramidal cell can be calculated by

u ¼ d � c
jjd � cjj ; ð5Þ

where c and d are the vectors of the coordinates that define the maximum Feret
diameter of the cell.

The orientation angle can be calculated by

θ ¼ cos�1 u0 � u
� � ð6Þ

Quantification of pyramidal cell sizes in 2D. The 2D analysis was performed on the
precise same cells as the 3D analysis after removing non-pyramidal cells and
outliers. Each identified cell consists of consecutive cell profiles that become a 3D
cell entity after being combined, see Fig. S4. The volume of a given cell in 2D can be
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estimated by using Eq. (7), where l equals the mean segment length from the
centroid to the cell boundary, and n equals the number of segments.

Volume ¼ 4
3
πl

3
n ð7Þ

This method is based on the well-known nucleator probe in stereology, which is
used in biological research to estimate mean cell volume for quantitative
histology77. This volume obtained by the nucleator probe relies on the mathe-
matical fact that the mean intersection length, �ln, between a unique point and the
cell border by isotropic test lines can be viewed as a radius.

Two procedures were applied to test the 2D-analysis. For the first procedure,
the largest cell profile was detected within the stack of profiles for each cell, which
is usually near the middle of a cell. The nucleator probe was then applied on the
largest cell profile and five-segment lengths were randomly positioned with a
spacing between each other of 72∘ (360∘/5), see Fig. S21. For the second procedure,
the nucleator probe was employed on every profile of a cell and the average
segment length was used to calculate the cell volume. The diameters for both
procedures were estimated by Eq. (8).

Diameter ¼ ln � 2 ð8Þ
Point pattern analysis. The statistical analysis was conducted with R Core Team
(2019). For each of Subjects 1_1, 1_2, 2, and 3, the 3D coordinates for locations of
the centroids of pyramidal cells in layer III of BA46 form a 3D spatial point pattern
that was analyzed using statistical methods78. We used the cylindrical K-function66,
as was previously done in Rafi et al.67 and Christoffersen et al.68, to detect
columnar structures in each 3D point pattern. In order to use the cylindrical K-
function, we assumed that each point pattern was homogeneous. We assessed this
assumption by looking at histograms of the projections of data onto the x-, y-, and
z-axis and kernel smoothed intensity functions of the projections onto the xy-, xz,
and yz-plane. Based on that, the point patterns seemed reasonably homogeneous.
We denote the cylindrical K-function as Ku(r, t) which makes it clear that it
depends on a direction u (a unit vector in 3D space), a radius r, and a height t, and
we estimated it by the non-parametric approximation defined in Møller et al.66. Let
ρ be the intensity (mean number of points per volume unit). Then ρKu(r, t) is
interpreted as the expected number of further points inside a cylinder centered at a
‘typical point’ (intuitively a randomly selected point of the point process) with
direction u, base radius r, and height 2t, as exemplified in Fig. S22. If there is a
columnar structure in a point pattern, the estimate of Ku(r, t) is expected to be
particularly high for the direction of the columnar structure for a range of r and t
values. In order to decide whether Ku(r, t) was significantly high, we compared it to
the situation of Complete Spatial Randomness (CSR), meaning that there is no
structure in data (a so-called homogeneous Poisson process), using a test called the
extreme rank length global envelope test with a corresponding 95% global
envelope79,80. This global envelope consists of a lower and upper curve such that
the empirical cylindrical K-function for data falls entirely between these bounding
curves if and only if the global envelope test cannot be dismissed at level 5% (more
specifically at ~5% because we obtained the envelope based on simulations). When
the empirical curve for Ku(r, t) falls above the envelope, it means that it is higher
than expected under CSR, which in turn indicates that there are cylinder-shaped
clusters in the direction u. If the curve falls below the envelope, it indicates
repulsive behavior between the points.

In our analysis, we looked at the directions corresponding to the three main
axes, and we expected to find a columnar structure in the direction of the x-axis.
We considered two situations for the global envelopes: First, we allowed r and t to
vary and estimated the cylindrical K-function on a 64 × 64 grid where r ∈ [0, 25]
and t∈ [0, 80]. We used 4000 simulations under CSR for the envelopes in this
situation. Second, we fixed t= 80, meaning that Ku(r, t) only depends on
r∈ [0, 25]. We estimated the function for 64 r-values and used 2000 simulations
under CSR for the envelopes (These numbers of simulations follow the
recommendations in the references above).

Tissue deformation. One biopsy with a diameter of 1.5mm was taken from the
gray matter of three human autopsy brains. The tissue area was carefully measured
before and after it was dehydrated, embedded, sectioned, and stained. The area, A,
of the tissue was estimated as:

A ¼ ∑P ´ ða=pÞ
where ∑P is the number of test points hitting tissue and (a/p) the area associated
with each test point38,39. The areal shrinkage was estimated as:

Areal shrinkage ¼ ½ð area beforeÞ � ðarea after Þ�=ð area before Þ ð9Þ

Statistics and reproducibility. Biopsies were obtained and examined from three
subjects (n= 3), as stated throughout the article. The average, standard deviation,
and coefficient of variation were used for the morphological measurements of
pyramidal cells in layer III of BA46 for each subject. Calculations of the pixelwise
and objectwise performance of the UNetDense architecture are described in the
“Methods” section. Figures, tables, and histograms of this data were done using
custom code via MATLAB. Statistical analysis of the spatial point pattern for each
subject was performed using R Core Team (2019) and figures were produced using

the package ggplot281. We employed the extreme rank length global envelope test
with level 95% to determine whether Ku(r, t) was significantly different from
complete spatial randomness using 4000 simulations when constructing the
envelopes. Statistical significance was defined as a p-value <0.05. All data sets
presented in this work are available for download in our GitHub repository, https://
doi.org/10.5281/zenodo.428746972,82.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data used to produce graphs and figures, and tables of quantitative
measurements that support the current study’s key findings are available from the
corresponding author on reasonable request or in the GitHub repository, https://doi.org/
10.5281/zenodo.428746972,82.

Code availability
Source code of custom MATLAB and R scripts that support the findings of this study
with image examples are available in the GitHub repository, https://doi.org/10.5281/
zenodo.428746972,82.
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