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A B S T R A C T

Basic tools for exploration and interpretation of Principal Component Analysis (PCA) results are well-known and
thoroughly described in many comprehensive tutorials. However, in the recent decade, several new tools have
been developed. Some of them were originally created for solving authentication and classification tasks. In this
paper we demonstrate that they can also be useful for the exploratory data analysis.

We discuss several important aspects of the PCA exploration of high dimensional datasets, such as estimation of
a proper complexity of PCA model, dependence on the data structure, presence of outliers, etc. We introduce new
tools for the assessment of the PCA model complexity such as the plots of the degrees of freedom developed for the
orthogonal and score distances, as well as the Extreme and Distance plots, which present a new look at the
features of the training and test (new) data. These tools are simple and fast in computation. In some cases, they are
more efficient than the conventional PCA tools. A simulated example provides an intuitive illustration of their
application. Three real-world examples originated from various fields are employed to demonstrate capabilities of
the new tools and ways they can be used. The first example considers the reproducibility of a handheld spec-
trometer using a dataset that is presented for the first time. The other two datasets, which describe the authen-
tication of olives in brine and classification of wines by their geographical origin, are already known and are often
used for the illustrative purposes.

The paper is written in the form of tutorial; however, we do not touch upon the well-known things, such as the
algorithms for the PCA decomposition, or interpretation of scores and loadings. Instead, we pay attention pri-
marily to more advanced topics, such as exploration of data homogeneity, understanding and evaluation of an
optimal model complexity. The tutorial is accompanied by links to free software that implements the tools.
1. Introduction

Principal component analysis (PCA) [1,2] is a primary method used
for analysis of multivariate signals, spectra of various origin, physico-
chemical data, hyperspectral images, and other high-dimensional data-
sets which contain hidden information. PCA is available in almost all
chemometric software packages and often applied automatically as a
routine technical procedure. In this paper, we offer new and easy-to-use
tools that help to get a better understanding of the data under study.

PCA can be applied either solely, for the exploratory data analysis, or
it can be utilized as the first step of classification (e.g. in SIMCA), or of
calibration (e.g. in principal component regression, PCR) [3–5]. PCA is
also often applied as a data compression algorithm [6].

When PCA is used for the exploratory analysis, the following con-
ventional tools are employed:
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1. Scores (score plot) — to explore the relationship between individual
measurements or observations, e.g. for revealing of trends, groups,
extreme objects, etc.

2. Loadings (loading plot) — to explore the relationship between vari-
ables and to find the influence of variables on the principal compo-
nents (PCs).

3. Distances (distance plot)— to find extreme objects and outliers in the
PCA model with a given number of components.

4. Residual or explained variance (variance plot) – to find an optimal
number of components in the PCA model.

The first two tools are pretty straightforward while the last two are
rather ambiguous. In particular, the distances (the score and orthogonal
distances to the model) are highly dependent on the number of compo-
nents used in the model. The same object can appear as an outlier or as a
els Bojrs vej 8, Esbjerg, 6700, Denmark.
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regular object depending on the number of PCs. The statistical analysis of
the distances can be done in different ways [7] but analysts often use the
one that is available by default in a software at hand.

Estimation of the model complexity is also not a straightforward issue
[1,2,8–11]. Often, PCA is viewed primarily as a dimensionality reduction
method, so the model complexity is defined as the number of PCs that
explain most of the systematic variation in the data. This variation is
assessed using various characteristics, for example the total explained
variance (TEV). In this case, the complexity is selected as the number of
PCs that explains at least 80% (90%, or any other predefined value) of the
total data variance [1]. There are other rules, e.g. based on eigenvalues
(so called the Kaiser rule) [12], or on the analysis of a scree plot, in which
either eigenvalues or the explained variance are presented for each PC
(so called “elbow” rule) [13] as well as based on cross-validation [14,15].

This leads to a vicious circle in PCA— the correct interpretation of the
distances depends on the optimal number of PCs, which, in turn, depends
on the data complexity that can be revealed by analysis of the distances.
In addition, the complexity of a PCA model also depends on the purpose
for which the PCA results are used.

If we consider a data set obtained from a single population, it usually
fits one of the following cases:

1. Noise or fully random data (in this case any number of PCs may be
considered as optimal)

2. Structure þ noise (so only the PCs explaining structural part are
important)

3 Structure þ noise þ outliers

Sometimes, a data set consists of individual measurements associated
with different populations. An example is a set of spectra obtained in
different experimental rounds (e.g. the same instrument, but different
days). Another example is a case of two mixed populations that results in
two structural and two noise parts: Structure 1þ Noise 1þ Structure 2þ
Noise 2. Moreover, the structural parts can also overlap, that means they
contain shared information which is common for both groups. Those can
be the spectra of the same sample collection acquired using two similar
spectrometers. In such cases, the selection of the optimal number of
components is not straightforward.

Recently, several new tools have been developed in the frame of DD-
SIMCA (Data Driven Soft Independent Modelling of Class Analogy)
method [16] aimed at solving the authentication and classification tasks.
These tools rely mainly on the analysis of distribution of the object dis-
tances (the orthogonal and the score distances), assuming that their pa-
rameters should be estimated from the data (hence the name). In this
paper, we show that these tools can also be useful for the PCA exploration
of datasets, especially for complicated cases, in which the conventional
methods are not very effective.

We confirm the efficiency of these tools using several case studies
based on the data of different nature and various modelling objectives
(e.g. detection of extreme objects and outliers, working with data
comprised two or more populations, etc.). All examples and plots are
developed in R (v. 4.0.2) supplemented withmdatools package (v. 0.11.2)
[17], so readers can easily reproduce them and apply the tools to their
own data. A brief description ofmdatools functionality related to the topic
of the paper is given in supplementary materials (S4). Most of the tools
are also available in the DD-SIMCA GUI toolbox for MATLAB [18]. It was
also decided to share the simulated spectral dataset used in Section 2 and
the related R code; both are available via GitHub repository: https://gith
ub.com/svkucheryavski/newpcatools.

2. Theory

2.1. Principal component analysis

PCA operates with matrix X ¼ {xij} of size I � J (I samples described
by J variables), which is obtained from the original data matrix Xraw by
2

some preprocessing – centering, scaling, etc. The matrix is decomposed
using a formula

X¼TAPt
A þ E (1)

where A is the number of principal components (PCs), TA ¼ {tia} (I � A)
and PA ¼ {pja} (J� A) are the matrices of scores and loadings respectively,
and E ¼ {eij} is the residuals matrix. The columns of the loadings matrix
are the unit vectors which define the direction of PCs. The rows of the
scores matrix are the coordinates of the projections of data points on the
PC space. The residual matrix contains a part of the data that is not
explained by the PCs.

The PCA model is the first term in Eq. (1) which explains the data
using the selected number of PCs, A. The relative residual variance:

RA ¼ SSerr
SStot

¼
PI

i¼1

PJ
j¼1e

2
ijPI

i¼1

PJ
j¼1x

2
ij

(2)

is used as a measure of the PCA model performance. The complementary
explained variance is computed as 1 – RA. Both values can be obtained for
the entire PCAmodel (giving correspondingly total residual variance, TRV,
and total explained variance, TEV) as well as for the individual contribu-
tion of each PC. The values are usually shown in a plot in dependence on
the number of PCs.

The relationship between the PCA model and each object can be
characterized by two distances: the orthogonal distance and the score
distance. The orthogonal distance (OD), q (often denoted as Q),

qi ¼
XJ

j¼1

e2ij (3)

is the squared Euclidean distance between a data point, corresponding to
the object, and the PC space computed in the original variable space.

The score distance (SD), h:

hi ¼
XA
a¼1

t2ia
λa

(4)

is calculated in the PCA score subspace as the squared Mahalanobis
distance (T2) between the projection of the point and the subspace origin.

It was shown [19] that both distances are well approximated by the
scaled chi-squared distributions:

Nq
q
q0

∝ χ2ðNqÞ; Nh
h
h0
∝χ2ðNhÞ (5)

where h0 and q0 are the scaling factors, whereas Nh and Nq are the
numbers of the degrees of freedom (DoF). The scaling factors and DoFs
are the distribution parameters which are unknown and estimated using
a data driven approach. In case of a regular (no outliers) data, the esti-
mates are based on the conventional mean and variance values calculated
for ODs and SDs. Explicit formulae are presented in Supplementary ma-
terials (Eq. (S14–S15)).
2.2. Irregular data, robust estimates

The term “irregular data” is used to refer to datasets which contain
outliers and/or comprise samples from several populations. In these
cases, the classic estimators, which are based on the conventional mean
and variance values (Eq.(S14–S15)), are not appropriate.

For irregular data, a robust approach has been proposed [16,19], in
which the mean and variance of the corresponding distance are replaced
with their robust analogues, namely median (Mu) and interquartile range
statistics (Su). All calculation details are presented in Supplementary
materials (Eqs. (S16–S17)).

In practice, it is useful to compare the classic and robust estimates of
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DOFs Nh, and Nq. If the corresponding values (e.g., classic bNh and robust
~Nh) differ considerably, this indicates that the data set is irregular and
testifies that the robust method is preferable. Below it is shown that
behavior of the DoFs in dependence on the number of PCs, both in reg-
ular and irregular cases, is an important characteristic of the data
complexity.

2.3. Full distance

To estimate how well an object is fitted by the PCA model a full dis-
tance (FD), f, is introduced [20]. This is a weighted sum of the OD and SD
statistics computed as:

f ¼Nq
q
q0

þ Nh
h
h0

(6)

FD also follows the chi-squared distribution with DoF equals

Nf ¼Nq þ Nh (7)

Using distance f we can split the samples into three groups:
Regular samples are those for which the full distance is smaller than a

critical value (regular limit) computed for a significance level, α. The
limit can be obtained using the inverse cumulative distribution function
(ICDF, or quantile function) for the chi-squared distribution with a given
DoF and probability p¼ 1 – α. The threshold can be shown in the distance
plot as a line:

fα ¼ χ�2ð1�α;Nq þNhÞ (8)

Outliers are the data objects which are significantly different from the
regular ones. The outliers can be detected by comparing the full distances
with another critical value, an outlier limit, computed using ICDF func-

tion for probability p ¼ ð1� γÞ
1
=I .

fγ ¼ χ�2ð1� p;Nq þNhÞ (9)

Here γ is the outlier significance level and I is the number of samples
in the training set. Outliers are always harmful for a PCA model and
therefore they must be identified and removed.

Extreme samples are the samples which full distance is located be-
tween the regular limit and the outlier limit. These samples always exist
in a data set and their amount depends on the number of samples and
levels α and γ.
Fig. 1. The scores (left) and Distance (right) plots for the first two PCs of decompos
shows the 95% Hotelling ellipse. The lines on the distance plot represent critical lim

3

3. New tools for exploratory PCA. Simulated example

We introduce the capabilities of the new PCA tools using a simulated
dataset. The aim of this dataset is to demonstrate the proposed tools for
the data with known complexity. Moreover, this data is close in structure
to real spectroscopic data. It is based on real NIR spectra of Amlodipine
tablets [5].

The simulated data is prepared using the following procedure:

1. The first six loading vectors are taken from the PCA decomposition of
the NIR spectra of Amlodipine. This results in the (200 � 6) ortho-
normal matrix V.

2. The (100 � 6) orthonormal score matrix U is obtained as the PCA
scores of the normally distributed random numbers.

3. The diagonal matrix of singular values S is designed using a set of
values: 7.5; 5; 2.5; 1; 0.5; 0.0001.

4. The (100 � 200) clean data matrix Xb is calculated as USVt þ Dmean,
where Dmean is a row vector that contains values (individual for each
column) that simulate a spectral baseline. Thus, the exact rank of Xb is
equal to six.

5. Finally, the (100 � 200) data matrix X is calculated as Xb þ Gσ. Here
the (100 � 200) matrix Gσ contains the Gaussian noise, N (0; σ2).

6. Matrix X is divided into two subsets, the (80 � 200) training set Xc
and the (20 � 200) test set Xt.

The noise level σ (in step 5) can be varied to track how the actual
model complexity is changed and then estimated using the proposed tool.
In particular, σ ¼ 0.005 masks the systematic variations originated from
the 5th and 6th components and in this way, reduces an effective data
rank down to A ¼ 4. In case of σ ¼ 0.025, the effective rank decreases
down to A ¼ 2.

3.1. Distance plot

The distance plot, in which the score distances are plotted versus the
orthogonal distances, is a well-known tool. We propose several im-
provements, which can potentially extend the use of the plot and make it
more efficient. They include the following points:

1. The distance values are normalized (q/q0, h/h0) using either the
classic or robust estimates of the scaling factors, q0 and h0. If the
distances are spread, a simple log transformation of the axes can
improve the plot visibility.
ition of the simulated dataset without noise. The dashed line on the scores plot
its for extreme objects (dashed) and outliers (dotted).



Fig. 2. Distance plots for the simulated dataset contaminated with six moderate outliers. The left-side plots are developed using the classic approach for estimation of
the distance distribution parameters. The right-side plots are developed using the robust approach.
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2. The critical limits (for the extreme objects and outliers) should be
computed using the distance values in accordance with the selected
approach. If outliers are present, the classic estimate often does not
reveal them clearly, therefore it is important to study the plot using
both the classic and robust estimates.

3. In many cases, the Distance plot can be used complementary to the
conventional tools. For example, the scores plot with the Hotelling
ellipse can be used for detection of the extreme objects, or for esti-
mation of the optimal model complexity when observations are
grouped.

Fig. 1 demonstrates the use of the Distance plot as a tool comple-
mentary to the score plot. Both plots represent different ‘points of view’

on the same data, which are the spectral data simulated without noise,
both the training (80� 200) and test (20� 200) sets. Using the same α¼
0.05 for the critical levels in both plots, we can see three samples located
outside the Hotelling ellipse in the scores plot (Fig. 1, left), and six objects
beyond the regular threshold in the distance plot (Fig. 1, right).

The Scores plot is developed using the score values only, and it pre-
sents only two selected PCs. The Distance plot is created compositionally
using both the SD and OD values, and it provides a cumulative result up
to the selected number of PCs.

The critical thresholds are important members of the Distance plot.
Their position depends on the proper estimation of DoFs for the OD and
4

SD distributions. In ideal case, the number of samples, which are located
inside the regular area, corresponds to the selected significance α for any
number of PCs. The choice of estimators (robust or classic) is also
important when dataset is contaminated with outliers.

Let us contaminate the simulated training set with six moderate
outliers (Fig. 2). In this case, the thresholds should be calculated using
the robust approach.

Plots in the left part of Fig. 2 are developed using the classic estimates,
while the right plots are based on the robust approach. As one can notice,
the classic estimates fail to detect all outliers, and this leads to a wrong
evaluation of the extreme observations. Application of the robust
approach solves this issue — all six outliers are detected correctly, and
the number of extremes, four objects, corresponds to the expected
number (5% of 80, as α ¼ 0.05 and I ¼ 80) precisely. The bottom plots
show the same results after the log transformation of the axes. This
modification makes the plots more convenient for exploration of outliers
and extremes.
3.2. DoF plot

The robust, ~Nq, and classic bNqestimates of the Degrees of Freedom for
the orthogonal distance can be utilized for evaluation of the optimal
number of components, A, as well as for early indication whether a



Fig. 3. Dependence of DoF for orthogonal distance on the number of PCs. Calculated for data simulated with various level of introduced noise σ ¼ 0; 0.005; 0.010;
0.025; 0.05. Left plot: Nq vs PC; right plot TRV vs. PC.

Fig. 4. Dependence of DoF for orthogonal distance on the number of PCs. Left plot is made using ‘clean’ data, right plot — for data with six moderate outliers.
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dataset is contaminated with outliers.
The DoF parameter refers to a statistic, which is the sum of the

squared random values. In classical mathematical theory, these random
variables are independent, so DoF is equal to the number of terms in the
sum. In PCA, this can only happen with a data without structure, which
contains only noise. Corresponding plots are shown in Supplementary
materials (S2).

Any data structure implies the internal connections and links, which
reduce the effective number of independent variables, and thus DoF. By
increasing the number of PCs in PCA, we obtain the residuals that are
progressively depleted in structures up to the limiting state of the white
noise. This leads to an increase of the DoF value. Therefore, by examining
the plot of DoF versus PC (which we will call the DoF plot), we can notice
changes and jumps, which reflect the data complexity.

In order to demonstrate this effect, five datasets are simulated using
the procedure described at the beginning of this section. The datasets
have the identical structure but various noise levels, σ ¼ {0, 0.005, 0.01,
0.025, 0.05}, which effectively mask a part of the structure that exists in
the “clean” data. In this way, the actual complexity is decreased. This
mimics real cases in which measurements are always accompanied with
noise. Depending on the level of the noise, the part of data structure,
which can be explained by the PCA model, is changed.

The left plot in Fig. 3 shows the DoF plot developed for each dataset.
As one can see, the dependence of Nq (in this case the classic estimate is
5

shown) on the number of PCs reflects the real data complexity very well.
For example, in case of the noise with σ¼ 0.005, we can see a clear break
between A ¼ 4 and A ¼ 5, where Nq jumps from 2 to 185. This indicates
that for A¼ 5 there is no structure left in the residuals but only noise. The
greater the noise level the less data structure can be explained by the PCA
model. For comparison, the corresponding total residual variance plots
have no evident signs that indicate the model complexity (Fig. 3, right).

As it was already mentioned, the conventional way to estimate bNq is
sensitive to possible outliers and thus can lead to a wrong estimation. To
overcome this problem the robust approach should be used. This gives an
opportunity of employing the DoF plot for indication of possible
contamination. Therefore, it is necessary to investigate the behavior of
both estimates— classic and robust as it is shown in Fig. 4. Both plots are
built for the dataset simulated using σ ¼ 0.005, so A ¼ 4 explains the
structural part of the data. The left plot is developed using the PCA
decomposition of the clean, outlier free data. The right plot is built using
the PCA model for the data contaminated with six outliers (same as used
in Fig. 2). Both classic (blue color) and robust (shown in red) estimates
for Nq are plotted.

As one can see, there is a very a good agreement between the classic
and the robust estimates for all important components in case of the
outlier free data (left plot). Also, both statistics show a clear jump be-
tweenA¼ 4 andA¼ 5 indicating that the optimal number of components



Fig. 5. Extreme plots for simulated dataset with effective rank A ¼ 4 (σ ¼ 0.005). The left plots show observations from the calibration set for A ¼ 4 (top) and A ¼ 5
(bottom). The right plots show observations from the test set.
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is four. It should be noted that starting from Nq > 50 there is no point in
evaluating and explaining the exact DoF value, so the difference between
Nq ¼ 100 and Nq ¼ 150 is insignificant here.

In case of the contaminated data (right plot), the classic estimate does
not show any clear changes up to A ¼ 7. In case the robust approach is
used, the DoF values increase after A ¼ 2. Thus, we observe a significant
discrepancy in the behavior of these curves, which signals the presence of
outliers. We recommend removing outliers for establishing a correct
cutoff level.

3.3. Extreme plot

The Extreme plot is another effective tool, which helps to analyze the
model complexity or to assess the model performance. The idea behind
this plot is to verify the PCA performance for various α-values at a fixed
number of PCs. Since n ¼ aI is the theoretically expected number of
extremes, it is possible to track the relationship between the observed
number of extremes and the expected one. This can be done graphically
by means of the Extreme plot, which shows the empirical number of
extremes vs. the theoretical number together with the corresponding
tolerant intervals. The abscissa axis shows the expected number of ex-
tremes. For example, if α ¼ 0.25 (Fig. 5, top plots), we can expect that
25% of samples are extremes. For the training set (I ¼ 80) the expected
number of extremes is 20 and for the test set (I ¼ 20) it equals 5. The
6

ordinate axis shows the actual number of extremes detected by the PCA
model for this α value. For example, for A ¼ 4 this number is 18 for the
training set (you can see that the corresponding point, marked with a red
circle, is slightly below the theoretically expected value on the top left
plot) and it is 5 for the test set (top right plot, also marked with a red
circle). The light blue ellipse shows the 95% tolerance intervals for the
observed number of extremes. So, if points are located within the ellipse,
the PCA model performance is satisfactory for a given complexity.

The Extreme plot is sensitive to overfitting and thus can be efficient
for estimation of the model complexity regarding the test set. This is
illustrated in Fig. 5, in which four extreme plots are developed using the
PCA model for the simulated data with the noise level σ¼ 0.005. The left
plots represent the training set, and the right plots show the test set. Plots
on the top correspond to the PCA model with A ¼ 4 PCs, the bottom two
plots are for A ¼ 5.

We know that the optimal complexity of the model is A¼ 4. The plots
that represent the training set (left plots) are similar regardless the
number of components. All blue points are located within the tolerance
intervals.

The plots for the test set (right) demonstrate a different behavior. In
the top-right plot, for A ¼ 4, all points are also located within the
tolerance intervals indicating that the test set is well described by the
model. However, on the bottom-right plot, for A ¼ 5, the most of the
points are located outside which is a sign of the lack of fit. In other words,



Fig. 6. Extreme plots for the simulated dataset with effective rank A ¼ 4 (σ ¼ 0.005). Both plots show results obtained for the pseudo-validation set using PCA model
with A ¼ 4 (left) and A ¼ 5 (right).

Fig. 7. Case 1: The SNV-corrected spectra of 50 tablets collected by two NIR instruments during two days (top); the Distance plots built for 2 PCs (bottom left) and 3
PCs (bottom right). Dashed line is the border of regular objects (α ¼ 0.01).
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Fig. 8. Extreme plot for test set S1D2 and test set S2D1 (for PC2-PC4).
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if we use 5 PCs, the PCA model starts explaining noise in the training set,
which makes the test set modelling worse.

3.4. Procrustes cross-validation

Some of the proposed tools, e.g. the Extreme plots require a test set,
which is not always available. This limits the applicability of the pro-
posed tools to a certain degree. Recently, the authors proposed a method
that generates a new data set (called pseudo-validation set), which can
successfully replace an independent test set during the optimization
phase, including estimation of the model complexity. The method is
called Procrustes Cross-Validation (PCV) [21]. This approach also avoids
splitting the data into the training and test, or application of a
non-representative test set.

To demonstrate the applicability of the PCV set, we take the training
set from the previous section (left plots in Fig. 5), generate the corre-
sponding pseudo-validation set, and use it as a test set. Fig. 6 depicts the
Extreme plots for the PCV set. It can be seen that the plots demonstrate
the same pattern as the plots created for the independent test set — the
decent fit for A ¼ 4 and the clear sign of overfitting for A ¼ 5.

4. Real case studies

In this section we demonstrate the application of the tools for several
real-life cases, in which the objectives of the exploratory analysis are
different. The choice of a tool is made depending on the objective of the
study.

4.1. Case 1. NIR data acquired using two handheld instruments

This case study demonstrates the application of the Distance and
Extreme plots for the analysis of the instrument reproducibility.

4.1.1. Dataset description
The dataset consists of the NIR spectra of an anti-inflammatory

medicine obtained for 50 tablets from 5 different batches. The spectra
are acquired using handheld NIR instruments in the diffuse reflectance
mode in the range of 908–1670 nm. Fig. 7 (upper plot) depicts the spectra
collected by two spectrometers during two days. Subset S1D1 presents
spectra of 50 tablets acquired by Spectrometer 1 during the first day.
Subset S1D2 contains spectra, acquired by Spectrometer 1 during the
second day, and subset S2D1 contains spectra collected by Spectrometer
2 during the first day.

The aim of the study is to compare these three data sets of 50 spectra
each. The spectra are corrected using the standard normal variate (SNV)
method.
8

4.1.2. Results
Subset S1D1 is used for the model training; S1D2 and S2D1 are uti-

lized as the test sets. The idea behind these experiments is absolutely
clear – we have to be sure that a classification model established on one
day is valid for other days. Moreover, the model should be valid for the
spectra acquired by another instrument of the same brand. The Distance
plots constructed for the S1D1 model with 2 PCs (Fig. 7, left) and 3 PCs
(Fig. 7, right) show that the S1D2 samples (the open triangles) are
attributed as regular objects in both plots. The samples measured by the
second instrument, S2D1 (open green dots), are located irregularly.
Despite the fact that most of the samples for the model with 2 PCs are
located in the regular region, all of them have the higher OD values. This
abnormality can be observed in the corresponding Extreme plot (Fig. 8,
right).

For the model with three PCs, the abnormal behavior is evident for
both Distance and Extreme plots.

Analyzing the Extreme plot for the subset S1D2 (Fig. 8, left plot) we
can conclude that the PCA model is reliable for the routine day-by-day
application of Spectrometer 1, when the model complexity is not
greater than three. The extreme plot for four PCs goes beyond the
tolerance corridor, meaning that a model with A > 3 should be applied
with caution.

In contrast, the Scores plots for PC1 vs.PC2 and PC1 vs. PC3
(Figure S3 in supplementary materials) do not reveal any visible devia-
tion of subsets S1D2 and S2D1 from the training samples. This case study
also demonstrates that the Extreme plot is a more sensitive tool than the
Distance plot when it comes to assessing the hypothesis that the training
and test sets belong to the same population.

It can also be concluded that the complexity of PCA depends on the
objectives of the study. In this example, compression of the training set is
not the primary concern. The goal is to understand to what extent the
complexity can be increased in face of the day-to-day and instrument-to-
instrument comparability. From a practical point of view, it can be
concluded that the day-to-day reproducibility is acceptable, but a cali-
bration transfer between two instruments is necessary.
4.2. Case 2. olives data

This example is used to illustrate sensitivity of DoF to the optimal
complexity in a PCA model. It also shows how the Procrustes Cross-
Validation procedure works.

4.2.1. Dataset description
The data consists of 75 spectra of one selected species of green olives.

The spectra are taken by FT-NIR Thermo Scientific spectrometer (Antaris
IITM FT-NIR Analyser) and cover the range between 1110 and 2410 nm.



Fig. 9. Nq vs PCs plot (left) and Total explained variance plot (right) for the Olives data.

Fig. 10. Olives data. The Extreme plots for the training (left) and pseudo-validation sets (right).
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More details about the data and classification models can be found
elsewhere [22,23]. The spectra are SNV corrected prior to the analysis.

4.2.2. Results
From the previous investigations of this dataset, we know that the

optimal number of PCs is 4 or 5. Using A ¼ 6 or higher leads to
overfitting.

This can also be demonstrated by the DoF plot for the orthogonal
distance, as shown in Fig. 9 (left plot). Apparently, the DoF plot clearly
shows a first small increase between A¼ 4 and A ¼ 5. A big jump for A¼
6, indicates an overfitted model.

In contrast, the total explained variance plot (shown on the right)
does not clearly reveal the optimal number of components. The first two
Table 1
Comparison of the Nq values computed using classic and robust approaches for
the initial Wine data and after outliers removing.

PCs Original data, Nq Outliers free data, Nq

Classic Robust Difference Classic Robust Difference

1 8 13 �5 9 12 �3
2 7 10 �3 11 14 �3
3 8 9 �1 11 14 �3
4 9 15 �6 15 17 �2
5 10 13 �3 14 15 �1
6 12 14 �2 13 11 3
7 13 13 0 13 13 0
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PCs explain about 93% of the data variation and contribution of other
PCs is very small. This leads us to a wrong decision that A ¼ 2.

Instead of an independent test set, we can employ the Procrustes
Cross-Validation to create a PCV set for estimation the optimal number of
PCs. Fig. 10 shows the Extreme plots for the training (left) and PCV
(right) sets, for A ¼ 4, 5, 6.

For A ¼ 6 the PCV-set clearly shows the signs of overfitting. This is in
accordance with the method discussed above and the previous analysis
[23].

4.3. Case 3. wine data

The data is utilized to illustrate the importance of the robust approach
for the data contaminated with outliers.

4.3.1. Dataset description
The dataset [24] has been widely used in various publications mostly

related to the classification methods, for example [25,26]. The data
consists of 27 variables (chemical and physical characteristics) of 178
wine samples from three different origins: Barolo (59 samples), Grigno-
lino (71 samples), and Barbera (48 samples). Only Grignolino subset is
used in this paper. The values are autoscaled prior to the PCA
decomposition.

4.3.2. Results
From the original research [24] it is known that each data subset has



Fig. 11. Distance plots for Wine data set, α ¼ 0.05 and γ ¼ 0.05. The left is for the classic method; the right is for the robust one.
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several outliers. This can be revealed by the comparison the classic and
robust estimators of Nh and Nq. In case of a regular data both estimators
give quite similar values. On the contrary, the difference can be large
when outliers are present. The column “Original data” in Table 1 shows
Nq values vs. the number of PCs computed for the initial Wine data
(Grignolino subset) using classic (subcolumn 1) and robust (subcolumn
2) methods as well as their difference (subcolumn 3).

The “Outliers free data” column shows the DoF values for the OD
obtained after removing the outliers. There is a clear improvement over
the original data.

Fig. 11 shows two Distance plots for A ¼ 4. The left plot is built using
the classic estimators. The right one is developed using the robust
approach. The cut-off levels are calculated for α ¼ 0.05 and γ ¼ 0.05.

Obviously, the DoF values estimated using the classic approach (Nq ¼
9, Nh¼ 3) and the corresponding thresholds do not help to reveal outliers
— all samples are located below the outlier limit shown by the dotted
line. The thresholds calculated using the robust DoF values (Nq ¼ 15, Nh
¼ 4) identify three samples as outliers (see in the right plot).

The classic method is not sensitive to outliers, so it leads to biased
estimates of DoFs, and, as a result, to expanded outlier limit. The robust
approach gets over this issue and detects the outliers correctly.

When starting data exploration, it is recommended to build the Nq vs.
PCs plots for classical and robust estimates as it is shown in section 2.2.

5. Conclusions

In this paper we proposed the new tools that could be useful for the
analysis of multivariate data by PCA, especially when it comes to the
evaluation of the PCA complexity. Summarizing the presented informa-
tion, we can conclude the following.

1. The PCA complexity is not just a choice of the number of components,
but a broader characteristic, which tells us how well PCA model de-
scribes both the training set and the samples from other (test or new)
sets.

2. In addition to the conventional tools, the PCA complexity can be
investigated and evaluated using the statistics of the score and
orthogonal distances. Parameters of their distributions should be
estimated using the training set in the same way that is used to esti-
mate other parameters, such as the PLS regression coefficients. This
can be referred to as the data driven approach.

3. The model complexity depends on the data peculiarities. The analysis
of regular data (the data without outliers, one population) and
irregular data (the data with outliers and/or a mixture of several
10
populations) requires specific methods. The proposed robust
approach can be helpful in latter case.

4. The goodness of fit can be assessed using Extreme plots, which are
proven to be a more sensitive tool comparing to e.g. Distance plots.

5. The proposed statistical tools are useful when solving various prac-
tical problems of the multivariate data analysis regardless of the
analytical instruments used for the data collection and the ultimate
goal of a specific study.
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