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Transparent decision support for mechanical 
ventilation using visualization of clinical 
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Stephen Edward Rees1*  , Savino Spadaro2, Francesca Dalla Corte3, Nilanjan Dey4, Jakob Bredal Brohus5, 
Gaetano Scaramuzzo2, David Lodahl6, Robert Ravnholt Winding4, Carlo Alberto Volta2 and 
Dan Stieper Karbing1 

Background
Selecting the appropriate mechanical ventilation for patients residing at the inten-
sive care unit (ICU) is a difficult task. Inappropriate settings have been correlated with 
mortality [1], and the presence of guidelines to modify clinical practice are not always 

Abstract 

Background:  Systems aiding in selecting the correct settings for mechanical ventila-
tion should visualize patient information at an appropriate level of complexity, so as 
to reduce information overload and to make reasoning behind advice transparent. 
Metaphor graphics have been applied to this effect, but these have largely been used 
to display diagnostic and physiologic information, rather than the clinical decision at 
hand. This paper describes how the conflicting goals of mechanical ventilation can be 
visualized and applied in making decisions. Data from previous studies are analyzed to 
assess whether visual patterns exist which may be of use to the clinical decision maker.

Materials and methods:  The structure and screen visualizations of a commercial 
clinical decision support system (CDSS) are described, including the visualization of the 
conflicting goals of mechanical ventilation represented as a hexagon. Retrospective 
analysis is performed on 95 patients from 2 previous clinical studies applying the CDSS, 
to identify repeated patterns of hexagon symbols.

Results:  Visual patterns were identified describing optimal ventilation, over and under 
ventilation and pressure support, and over oxygenation, with these patterns identi-
fied for both control and support modes of mechanical ventilation. Numerous clinical 
examples are presented for these patterns illustrating their potential interpretation at 
the bedside.

Conclusions:  Visual patterns can be identified which describe the trade-offs required 
in mechanical ventilation. These may have potential to reduce information overload 
and help in simple and rapid identification of sub-optimal settings.
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effective [2]. Selecting the appropriate settings for mechanical ventilation appears then 
to be an area where computer-based clinical decision support systems (CDSS) could be 
beneficial.

This potential has resulted in the development of CDSS [3–15]. These systems are 
based on differing technologies for generating advice, including production rules [3–7], 
or physiological mathematical models [8–13] and artificial neural networks [14, 15] 
combined with production rules, or utility functions. In addition, these systems function 
either as closed loop systems directly controlling the ventilator [5–10], or open loop pro-
viding advice to the clinician who then controls the ventilator [3, 4, 11–15].

The technological complexity of such systems is, however, not limited to the approach 
used to determining appropriate settings. Of significant importance is the presentation 
of information to the user. Indeed, this might be of particular importance in the case 
of open loop systems, which require a greater level of interaction between the user and 
system. It is well known that monitoring the patient’s state in the ICU is characterized 
by information overload [16, 17], and that simple line graph type illustrations are inade-
quate to effectively present patient state, and therefore, support decisions [18]. Cole pro-
posed the use of metaphor graphics [18], such that the area of rectangles illustrated the 
status and progression of measured respiratory variables such as depth and frequency of 
breathing. Horn et al. further developed this approach [19], using metaphor graphical 
objects including combination of multiple shapes and color into a single object. In this 
way, they extended the dimensionality of Cole’s approach allowing for representation of 
measured variables relating to circulation, respiration and fluid balance.

Metaphor graphics may then address the problem of ‘how’ to represent information, 
but it does not explicitly address the issue as to which information to present and for 
what purpose. As noted by Seiver and Holtzmann [16], when understanding decisions in 
the ICU, we should be precise in our use of terms relating to the decision-making pro-
cess. To understand the patient’s condition, requires presentation of information suitable 
for diagnosis. To understand decisions, requires representation of information related to 
the preferences of the decision maker. The difference between these can be illustrated 
by an example. The presence of acute lung injury may result in poor lung mechanics 
and gas exchange, and monitoring the presence of these is important in understanding 
the patient and monitoring their disease progression. In contrast, selecting the correct 
level of inspired oxygen is a balance between the risks of over oxygenation, e.g. oxygen 
toxicity, with the risks of under oxygenation, e.g. hypoxaemia. The presence of poor gas 
exchange in the lungs will affect this balance, but the visualization of the decision might 
best be presented in relation to the preference toward the competing goals of over and 
under oxygenation rather than the physiological explanation of the cause of oxygenation 
problems.

Metaphor graphical representation have been applied in studies primarily to visual-
ize diagnostic information concerning physiological function for the respiratory or car-
diovascular system [20–24], in particular from the Westenskow group, with this having 
illustrated improved clinical performance in detecting critical events. Indeed, such visu-
alizations, e.g. pictures of the lung annotated for mechanical properties are displayed 
on the screens of commercial ventilators. In contrast, little work has been performed on 
visualizing the preferences of decision makers when providing clinical decision support 
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for mechanical ventilation. Such information is not intended to identify critical events, 
but rather to visualize the balances necessary when making clinical decisions, with the 
aim of visualizing the care delivered and the restoration of the patient to an optimal state 
[16].

This paper describes the application of metaphor graphics to represent clinical pref-
erences related to mechanical ventilation. To do so, it describes the design of the Bea-
con Caresystem (Mermaid Care A/S, Nørresundby, Denmark), a commercial open loop 
CDSS for providing advice on the settings of mechanical ventilation based on physio-
logical models and decision theory [25]. The paper describes the structure of the sys-
tem, with focus on the use of decision theory and the graphical representation of clinical 
preference, with the physiological model structure having been described previously 
[11]. The design of this system presents a graphical representation of clinical preferences 
and their balance. It is postulated that this representation results in a number of graphi-
cal patterns which characterize situations where patients are, or are not, in optimal 
state. Here, optimal state is defined as the best balance between the competing goals of 
mechanical ventilation given the individual patient’s physiologic state. It should be noted 
that the optimal state defined here is not necessarily the best settings for the individual 
patient, but only the best given the specification of the physiologic and decision theo-
retic models used in the system. Identification of the graphical patterns may be impor-
tant, as they may allow rapid evaluation of the need for, or lack of need for, changes in 
ventilator settings. To evaluate this hypothesis, i.e. that such patterns exist, the graphical 
presentations of patients taken from two previously conducted studies [13, 26] are ana-
lyzed retrospectively.

Results
Figure 1 illustrates the typical patterns of the clinical decision space seen in the stud-
ies. Optimally controlled patients in control mode ventilation (Fig. 1a, b) presented as a 
square or semi-circular picture on the right hand side of the hexagon (Additional file 1: 
Figs. S1–S3). Additional file 1: Figs. S1–S3 present such patterns for volume and pressure 
control modes in patients where adequate pressures, pH levels and oxygenation can be 
obtained. In contrast, Additional file 1: Fig. S3 illustrates a patient with extreme illness 
where the balance between pressure and pH level is achieved and hence optimal, but 
with severely abnormal values of both pressure and arterial pH, and a necessary use of 
permissive hypercapnia and hence low pH so as to reduce the dangerously high ventila-
tor pressures.

Optimally controlled patients ventilated in pressure support presented either a circu-
lar pattern (Fig. 1c, Additional file 1: Figs. S4, S5), or as a bow tie (Fig. 1d, Additional 
file 1: Figs. S6, S7). These optimal patterns, could be seen at both low (Additional file 1: 
Figs. S4, S6) and moderate (Additional file 1: Figs. S5, S7), levels of support illustrating 
that the correct balance is individual patient specific. The yellow color of the hexagon on 
Additional file 1: Fig. S7 is due to the higher level of inspired oxygen and hence elevated 
risk of oxygen toxicity.

Sub-optimal control ventilation was seen for both volume and pressure control as over 
ventilation (Fig. 1e, f, Additional file 1: Figs. S8–S11), typically without oxygenation prob-
lems (Fig. 1e, Additional file 1: Figs. S8, S9) as an upwards spike; or with under oxygenation 
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(Fig. 1f, Additional file 1: Figs. S10, S11) as spikes upward and to the lower right. Sub-opti-
mal control ventilation was also seen as under ventilation (Fig. 1g, Additional file 1: Fig. 
S12) as a downward spike. The color coding in these examples reflects the severity of the 
spikes, with top pressures exceeding 25  cmH2O coded yellow, and the extremely low pH 
value (Additional file 1: Fig. S12) coded red. In these examples, advice was to counteract the 
direction of the spikes.

Sub-optimal pressure support ventilation was seen as over ventilation, as a left-upwards 
diagonal spike (Fig. 1h, Additional file 1: Figs. S13, S14). For patients with both over sup-
port, elevated pressure and over oxygenation, a quadrilateral presented above all three axes 
(Fig. 1i, Additional file 1: Figs. S15, S16), either at low (Additional file 1: Fig. S15) or high 
(Additional file 1: Fig. S16) pressure support (PS) levels. Additional file 1: Fig. S15 illustrates 
that simulated reduction in PS, from 8 to 6 cmH2O, results in a bow tie pattern, suggesting 
that 6 cmH2O is optimal for this patient.

Sub-optimal ventilation was also seen as under ventilation, as a left-downwards diagonal 
spike (Fig. 1j, Additional file 1: Figs. S17, S18) at both moderate (Additional file 1: Fig. S17) 
and high (Additional file 1: Fig. S18) pressure support levels. Additional file 1: Fig. S17 illus-
trates that simulated increase in PS, from 6 to 7 cmH2O, results in a predicted bow tie pat-
tern, suggesting that 7 cmH2O is optimal for this patient.

Isolated patterns of over oxygenation present in both control and support mode ventila-
tion as a right upward spike (Fig. 1k, Additional file 1: Figs. S19, S20). Under oxygenation 

Fig. 1  Patterns of clinical trade-offs identified in clinical data
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without other sub-optimal settings was not observed in the data, but would present as a 
right downward spike.

Discussion
This paper has presented a metaphor graphics approach to visualization of the decision 
space in mechanical ventilation. It has been shown that when designed using decision 
theory to represent the competing goals of mechanical ventilation, standard patterns 
emerge which visualize the decision space and hence the appropriateness of the current 
management strategy according to the CDSS.

Several patterns have been identified which visually represent the current compro-
mises in the patient state and mechanical ventilation management. These include, semi-
circular, round or bow tie patterns symbolizing optimal control, and then primarily 
spikes, in various directions, along with a rectangle above all axes for over support and 
over oxygenation in pressure support.

The most important part of this work is to highlight the known [16], but infrequently 
applied knowledge that presenting physiologic status and presenting the clinical deci-
sion space are not the same. There are currently few medical decision support algo-
rithms or closed loop systems that adopt presentation of the decision space as a method 
to make transparent clinical goals and compromises. This paper illustrates that this is 
possible, that clear patterns appear, and provides numerous examples of these patterns 
from patient examples.

Recently, Shortliffe and Sepúlveda discussed the requirements for clinical decision 
support given the rapidly expanding volume of work in artificial intelligence (AI) [27]. 
They proposed six criteria which must be present if decision support systems are to be 
accepted and integrated into routine workflow. These are (1) Black boxes are unaccep-
table; (2) Time is a scarce resource; (3) Complexity and lack of usability thwart use; (4) 
Relevance and insight are essential; (5) Delivery of knowledge and information must be 
respectful; (6) Scientific foundation must be strong. These criteria present an excellent 
framework for discussing the potential benefit of the approach suggested in this paper.

When considering the approach taken here in relation to black-box technology, the 
approach can be considered in the context of the recent trend toward explainable artifi-
cial intelligence. Currently, AI is often used synonymously with machine learning tech-
niques applied to big data. This has not always been the case, and historically AI was 
considered to include decision support tools based upon production rules or causal 
models and decision theoretic approaches [28]. When used synonymously for machine 
learning, the challenges of providing transparent reasoning are clear. Machine learn-
ing techniques generate associations, which are not necessarily understood from the 
inferred model structure. When applying models with causal reasoning, such as physi-
ologic mathematical models, combined with decision theoretic models of preference, 
reasoning becomes transparent as illustrated by the examples included in this paper.

When considering the use of CDSS technology in relation to its requirements for 
clinical time, its complexity, and the relevance and appropriateness of the support, 
i.e. points 2–5 from Shortliffe and Sepúlveda, it is important to understand who the 
decision maker is, what is the nature of the decision and what is the experience of 
the decision maker. Deciding upon appropriate ventilator settings is a decision that 
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can occur at several levels of expertise and in different conditions. Senior intensiv-
ists may discuss ventilator strategy for the patient at morning meetings or on ward 
rounds. Such discussion may involve deep physiological understanding as well 
as clinical trade-offs. In such a situation, detailed diagnostic information is likely 
required. At the bedside, decision making may be taken by the intensive care nurse, 
the respiratory therapist, or the junior doctor, dependent on the severity and com-
plexity of the patient’s condition, and local and national norms. Here, depending on 
the expertise of the individual medical practitioner, diagnostic information may not 
be the major consideration, and visualization of clinical trade-offs may be a more 
appropriate level of complexity to integrate into clinical workflow. In addition, the 
ability to hide or expose the physiological measures at the corner of the hexagon 
allows the user to adjust the system to their own degree of expertise, providing them 
with a transparent link from a symbolic to a physiologic representation and a vary-
ing level of complexity. Transparency might be further enhanced by the simulation 
function. This is unlikely to be used by the busy bedside practitioner, but may allow 
for bedside teaching on ward rounds exploring the different options for the patient. 
Given the increasing role of high-fidelity mannequin-based training of critical inci-
dences [29, 30], it would seem appropriate to incorporate bedside technology allow-
ing exploration and discussion of transparent clinical decisions in a teaching setting. 
The most detailed diagnostic information—shunt fractions, blood parameters and 
respiratory drive—might only be viewed by the most experienced clinicians.

A flexible structure providing illustration of the clinical decision space and diag-
nostic information, available through causal models and decision theory, allowing 
the user to choose the level of detail they view, may, therefore, be an ideal approach 
to provide relevant complexity. It may reflect the time constraints and expertise of 
the individual user, and ensure transparency and prevent black-box systems. In addi-
tion, the physiologic approach may ensure scientific rigor, as physiological models at 
the organ level are well founded and can be tuned to represent the individual patient 
[11]. Preference functions are, by their nature, subjective. However, displaying the 
effects of these as compromises may promote rational clinical reasoning, acknowl-
edge different opinions and allow for debate and potentially modification of prefer-
ence functions. Such functionality would be important if a learning culture is to be 
promoted [31].

This paper has presented a series of patterns from clinical examples in previously 
conducted studies. It has not been the intention of this paper to report the outcomes 
of using the system, which have been described previously [13, 30]. While these pat-
terns appear intuitive, and are used to illustrate the more general point that pres-
entation of the decision space may be illustrative, this paper has not evaluated the 
acceptability of the patterns presented here or evaluated their implications on clini-
cal decision making or workflow. In this context, comparing the ease and speed of 
interpretation for standard data presentation compared with displays illustrating the 
decision space might be useful. Indeed, this has been applied previously when com-
paring standard data presentation with data describing physiological interpretation 
[20]. Randomized controlled trials are underway evaluating the clinical efficacy of 
the advice provided by the decision support system presented here [32], but it is 
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clear that routine use of such a system will not depend on efficacy alone [27], and 
evaluation of the usability of the system is important if this, and other such systems, 
are to be integrated into routine clinical workflow.

Conclusions
This study illustrates that visual patterns can be identified which describe the trade-offs 
required in mechanical ventilation. These patterns may have potential to reduce infor-
mation overload, and help in simple and rapid identification of sub-optimal settings.

Physiologic/diagnos�c screen Advice and preference visualisa�on screen

Blood gas Flow, pressure capnography, 
calorimetry

Pulse oximetry

Fig. 2  The structure of the Beacon Caresystem and output screens illustrating physiologic state and advice/
preference visualisation screen illustrating a patient in control mode ventilation. The following abbreviations 
are used on the physiologic screen (all others in text): Shunt: pulmonary shunt; ΔPO2: partial pressure 
O2 drop due to low V/Q; ΔPCO2: partial pressure CO2 drop due to high V/Q; EELV: end expiratory lung 
volume; Vd: serial dead space; COMP: respiratory system compliance; SID-CSF: model estimated strong ion 
difference of the CSF; Tc: Threshold to central respiratory drive; BE: base excess; Hb: haemoglobin; DPG: 2,3 
diphosphoglycerate; VO2: oxygen consumption; VCO2: carbon dioxide production; CO: cardiac output. For 
the physiologic screen where values are missing, they were not necessary for this specific patient and not 
estimated by the system
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Methods
CDSS description

Figure 2 illustrates the structure of the Beacon Caresystem and two of the CDSS’s screen 
outputs. The system provides advice on changes in mechanical ventilator settings based 
upon mathematical physiological models and mathematical models of clinical prefer-
ence. The system functions by individualizing the mathematical physiological models to 
the patient’s state by tuning physiologic model parameters to fit measurements taken by 
the system. These measurements come from built in sensors measuring flow, pressure, 
volumetric capnography, indirect calorimetry and pulse oximetry; as well as user input 
blood gas values. The system connects to the ventilator to obtain information about ven-
tilator settings and ventilation mode. These mathematical models and their tuning have 
been described in detail previously [11].

Following tuning of the physiologic models, the system then calculates patient spe-
cific predictions of changes in ventilation and calculates the preference values associated 
with competing goals. These competing goals are described in detail below in relation 
to Fig. 3, but are represented as quantitative values of penalty associated with each of 
the detrimental effects of mechanical ventilation shown on the axes of a hexagon. The 
net detrimental effect of any strategy is then the total, unweighted, sum of the penal-
ties for each of the individual detrimental effects in a decision theoretic approach [12]. 
Searching through possible combinations of ventilator settings then allows identification 
of the settings with the least total penalty, i.e. the optimal settings. As optimal settings 
may be substantially different from current settings, advice is then generated to take a 
step toward these. Following change of ventilator settings by the clinician, a period of 
5–20 min is waited to ensure the full effects of the ventilator changes are complete, and 
new advice then generated. If the patient is in the optimal state, described by a minimum 
total penalty, then no further advice is generated until the patient state changes. In this 
way, the frequency of advice depends upon the stability of the patient and the difference 

Fig. 3  Balances necessary when setting the appropriate levels of mechanical ventilation
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between current and optimal ventilator settings. The screens illustrated in the Addi-
tional file 1 of this manuscript each present a single piece of advice, as such they reflect a 
step change in ventilation toward the goal. For each step, the maximum change advised 
upon for each setting is: for inspired oxygen 5%; for pressures 2 cmH2O (3 cmH2O for 
advice to increase positive end expiratory pressure (PEEP) if the value of PEEP is less 
than 10  cmH2O); for tidal volume 50 ml and for respiratory frequency 3 breaths/min. 
As noted above, these individual advice steps usually occur to move the patient toward 
an optimal state. If, for example, the system believes the optimal pressure support to 
be 5 cmH2O lower than the current value, then this will be presented as three steps of 
reduction in levels of 2, 2 and 1 cmH2O over a period of about 30 min. Following each 
change, the system will learn from the patient’s response to that change, modifying ther-
apy if necessary.

The visualization of the patient state is performed using three different screens, two of 
which are illustrated in Fig. 2. The first is a diagnostic screen which illustrates the values 
of model parameters describing each of the relevant physiological systems, analogous 
to those described in the introduction. This is not considered further in this paper. The 
second is the screen visualizing advice, and the hexagon representation of clinical pref-
erence. The third screen is a history screen, presenting the progression of the patient as 
multiple hexagon displays. The hexagon displayed on the second screen, is designed to 
reflect the competing goals of mechanical ventilation, as illustrated in Fig. 3 where each 
vertical axis of the hexagon represents a competing goal of mechanical ventilation. Fig-
ure 3 illustrates the competing goals when adjusting pressure support; pressures, volume 
or frequency in control mode ventilation; or inspired oxygen. For oxygen, too little is 
associated with low oxygenation or hypoxia, too much is associated with oxygen toxicity 
[33]. For pressures, volume or frequency in control mode ventilation, too little of these 
is associated with reduced levels of minute ventilation and carbon dioxide elimination, 
and hence blood acidosis. Too high settings of volume, pressure or frequency are associ-
ated with lung trauma due to ventilator-induced lung injury [1]. Patients with spontane-
ous breathing activity are often ventilated in pressure support mode. Too much pressure 
support reduces the patient’s drive to breathe, resulting in lower respiratory frequency 
and respiratory muscle effort and consequently risk of respiratory muscle atrophy [34]. 
Too little pressure support can result in stressful breathing patterns due to inappropri-
ate demands on the patient’s respiratory muscles or cardiovascular system. These six 
conflicting goals, illustrated in Fig.  3, are the axes of the hexagon presented in Fig.  2. 
Each axis is associated with a mathematical preference function which assigns penalty to 
physiological variables describing the risks associated with each axis. These variables are 
as follows: for oxygen toxicity, penalty is assigned to elevated levels of inspired oxygen 
fraction; for low oxygenation, penalty is assigned to a combination of simulated arterial 
and mixed venous oxygen saturation, the latter representing systematic deprivation of 
oxygenation in relation to tissue utilization. For lung trauma, penalty is assigned to a 
combination of tidal volume, driving pressure and respiratory frequency, i.e. in line with 
current thinking that increase in any of these increase the mechanical power of breath-
ing and hence the potential lung damage [35]. For acidosis, penalty is assigned to the 
simulated arterial pH. For the risk of respiratory muscle atrophy, penalty is associated 
with low levels of respiratory frequency, with modification made for high values of tidal 
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volume in situations where it is clear that respiratory muscles are active. For the risk of 
stress due to low levels of pressure support, penalty is assigned to the ratio of respiratory 
frequency to tidal volume, adjusted to predicted body weight, as described previously 
[36].

The hexagon, the symbols drawn on it, and the whole of the advice and preference visu-
alization screen can be interpreted with reference to Fig. 2, or to the many patient examples 
included in the Additional file 1 for this manuscript, as follows. Advice screens (Additional 
file 1: Figs. S1–S20), are separated into a left and right hand side. The left hand side gives val-
ues of the current ventilator settings (in blue), and those advised (in grey), along with simu-
lated values (in black). Simulated values allow the user to click on these fields and simulate the 
changes in physiological variable and associated penalties for any ventilator settings. The set-
ting variables shown on the left hand side depend on the ventilator mode, and the ventilator 
settings for which advice is available. The right hand side of the screen represents the hexagon 
description of the balances necessary to make decisions. Drawn on the hexagon are two sym-
bols in blue and grey, respectively. The blue symbol is that which represents the penalties for 
the current ventilator settings. The grey is that representing advice, or when the simulation 
function of the left hand side is activated, represents the user simulated preferences for any 
ventilator settings. The blue and grey symbols are drawn by joining the points representing 
the different penalty values for each of the competing goals. For patients in control mode ven-
tilation without spontaneous breathing activity, the symbol fills only the right hand side of the 
hexagon, as values related to respiratory muscle atrophy or respiratory stress are not shown 
for patients who do not have respiratory muscle activity (Additional file 1: Figs. S1–S3, S8–
S12). For patients with spontaneous breathing activity, the symbol is drawn to join the penalty 
values across all axes on the hexagon (Additional file 1: Figs. S4–S7, S13–S20). Three colors 
are used for the background of the hexagon (green, yellow, red) with red symbolizing situa-
tion where penalty is high, yellow medium, and green low on at least one of the axes. Axes are 
rescaled dependent upon the highest penalty, so that a smaller area shown on the red part of a 
hexagon can be a higher penalty than a larger area on hexagon where axes have been rescaled 
to only show only the green area. In addition to the symbols, the physiologic values of vari-
ables describing each preference can be displayed by touching the corners of each hexagon 
axis. The values associated with current, simulated and advised ventilator settings are shown 
for each variable on the respective axis. These are shown for all figures in Additional file 1, but 
will not be at the bedside unless the user activates them.

Data and analysis

Data from 95 patients from previously published studies [13, 26] were retrospectively 
analyzed. Study [13] applied the advice of the Beacon Caresystem to 72 patients venti-
lated in control and support modes over 4–8 h. Study [26] studied 23 patients in pres-
sure support mode, and investigated the advice following interventions to over and 
under support the patients by modifying pressure support levels.

In this study, the hexagons representing each piece of advice from the previous two 
studies were analyzed visually. In doing so, it was investigated whether there were 
repeated patterns of shapes drawn on the hexagons and whether these represented spe-
cific clinical scenarios. It was assessed whether it was possible to tabulate these exam-
ples so as to provide a clinical understanding of these repeated patterns, supported by 



Page 11 of 13Rees et al. BioMedical Engineering OnLine            (2022) 21:5 	

numerous patient examples of the nature of these patterns. Where patterns were seen 
frequently, two examples were included in Additional file 1, where these illustrated the 
same pattern at different conditions of ventilator mode and level. This strategy was taken 
to illustrate as many different patterns as possible without an overwhelming number of 
clinical examples.
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