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ARTICLE OPEN

Determining clinical course of diffuse large B-cell lymphoma
using targeted transcriptome and machine learning algorithms
Maher Albitar 1,23✉, Hong Zhang1,23, Andre Goy 2,23, Zijun Y. Xu-Monette3,23, Govind Bhagat 4, Carlo Visco5,
Alexandar Tzankov 6, Xiaosheng Fang3, Feng Zhu3, Karen Dybkaer7, April Chiu8, Wayne Tam 9, Youli Zu10, Eric D. Hsi11,
Fredrick B. Hagemeister12, Jooryung Huh13, Maurilio Ponzoni14, Andrés J. M. Ferreri 14, Michael B. Møller 15, Benjamin M. Parsons16,
J. Han van Krieken17, Miguel A. Piris18, Jane N. Winter19, Yong Li 20, Bing Xu 21✉ and Ken H. Young 3,22✉

© The Author(s) 2022

Multiple studies have demonstrated that diffuse large B-cell lymphoma (DLBCL) can be divided into subgroups based on their
biology; however, these biological subgroups overlap clinically. Using machine learning, we developed an approach to stratify
patients with DLBCL into four subgroups based on survival characteristics. This approach uses data from the targeted transcriptome
to predict these survival subgroups. Using the expression levels of 180 genes, our model reliably predicted the four survival
subgroups and was validated using independent groups of patients. Multivariate analysis showed that this patient stratification
strategy encompasses various biological characteristics of DLBCL, and only TP53 mutations remained an independent prognostic
biomarker. This novel approach for stratifying patients with DLBCL, based on the clinical outcome of rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone therapy, can be used to identify patients who may not respond well to these types of
therapy, but would otherwise benefit from alternative therapy and clinical trials.
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INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is the most common
subtype of lymphoma. However, this disease is heterogeneous
[1–4], i.e., its outcome and course may vary significantly between
patients [1]. More than 60% of patients with DLBCL can be cured
with rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone (R-CHOP) treatment [1]. Multiple new combinations of
therapeutic strategies, including cell therapy, are being tested to
improve survival, especially in patients who may not respond to
the standard cyclophosphamide, doxorubicin, vincristine, and
prednisone therapy [5]. Considering the known heterogeneity of
DLBCL, a single therapeutic approach is unlikely to work with all
patients with DLBCL [1]. Therefore, multiple approaches have
been used to subclassify DLBCL into various subgroups based on
biological characteristics. The earliest subclassification was based
on expression profiling using microarrays [6–9]. This classification
divides DLBCL into two major groups, namely germinal center B-
cell-like (GCB) and activated B-cell-like (ABC) DLBCL, based on the
cell of origin (COO). In this classification, 15% of DLBCL cases were
classified into the other group. Based on subsequent refining of

this classification, the GenClass algorithm was developed. In this
algorithm, genetic abnormalities are divided into four groups:
MYD88 and CD79B mutations (MCD), BCL6 fusions and NOTCH2
mutations (BN2), NOTCH1mutations (N1), and EZH2mutations and
BCL2 translocations (EZB); nevertheless, this algorithm can classify
only 54% of DLBCL cases. To cover more cases, this algorithm was
later extended as the LymphGen algorithm which divides genetic
abnormalities into seven groups: MCD, N1, and BN2, as in the
GenClass algorithm; MYC-negative and MYC-positive EZB; TP53
abnormality (A53) and mutations in TET2, P2RY8, or GSK1 (ST2) [6].
Using mutation profiling and chromosomal structural abnorm-

alities (chromosomal gains and losses), Chapuy et al. classified
DLBCL into five subgroups [9]. Recent FISH tests (double or triple
hit) demonstrated that the rearrangement of MYC (Avian
Myelocytomatosis Viral Oncogene Homolog) when co-present
with BCL2, BCL6, or both leads to a significantly more aggressive
DLBCL, making R-CHOP ineffective [10, 11].
While existing strategies for the subclassification of DLBCLs can

distinguish biologically distinct subgroups of DLBCLs, they cannot
effectively predict the overall survival or progression-free survival

Received: 18 July 2021 Revised: 10 January 2022 Accepted: 18 January 2022

1Genomic Testing Cooperative, LCA, Irvine, CA 92618, USA. 2John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ 07601, USA. 3Duke University
Medical Center, Durham, NC 27710, USA. 4Columbia University Medical Center, New York, NY 10027, USA. 5University of Verona, 37129 Verona, Italy. 6Institute of Pathology,
University Hospital Basel, 4054 Basel, Switzerland. 7Aalborg University Hospital, Aalborg 5000–5270, Denmark. 8Mayo Clinic, Rochester, MN 55905, USA. 9Weill Medical College of
Cornell University, New York, NY 10065, USA. 10The Methodist Hospital, Houston, TX 77030, USA. 11Wake Forest University Medical Center, Winston-Salem, NC 77055, USA. 12The
University of Texas MD Anderson Cancer Center, Houston, TX 22030, USA. 13Asan Medical Center, Ulsan University College of Medicine, Seoul 05505, Korea. 14San Raffaele H.
Scientific Institute, 20132 Milan, Italy. 15Odense University Hospital, Odense 5000–5270, Denmark. 16Gundersen Lutheran Health System, La Crosse, WI 54601, USA. 17Radboud
University Nijmegen Medical Centre, 6500 Nijmegen, Netherlands. 18Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain. 19Feinberg School of Medicine,
Northwestern University, Chicago, IL 60611, USA. 20Baylor College of Medicine, Houston, TX 77030, USA. 21The First Affiliated Hospital of Xiamen University, 361004 Xiamen,
Fujian, China. 22Duke Cancer Institute, Durham, NC 27710, USA. 26These authors contributed equally: Maher Albitar, Hong Zhang, Andre Goy, Zijun Y. Xu-Monette.
✉email: malbitar@genomictestingcooperative.com; xubingzhangjian@126.com; ken.young@duke.edu

www.nature.com/bcjBlood Cancer Journal

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00617-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00617-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00617-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-022-00617-5&domain=pdf
http://orcid.org/0000-0002-0050-2030
http://orcid.org/0000-0002-0050-2030
http://orcid.org/0000-0002-0050-2030
http://orcid.org/0000-0002-0050-2030
http://orcid.org/0000-0002-0050-2030
http://orcid.org/0000-0001-5125-6522
http://orcid.org/0000-0001-5125-6522
http://orcid.org/0000-0001-5125-6522
http://orcid.org/0000-0001-5125-6522
http://orcid.org/0000-0001-5125-6522
http://orcid.org/0000-0001-6250-048X
http://orcid.org/0000-0001-6250-048X
http://orcid.org/0000-0001-6250-048X
http://orcid.org/0000-0001-6250-048X
http://orcid.org/0000-0001-6250-048X
http://orcid.org/0000-0002-1100-3819
http://orcid.org/0000-0002-1100-3819
http://orcid.org/0000-0002-1100-3819
http://orcid.org/0000-0002-1100-3819
http://orcid.org/0000-0002-1100-3819
http://orcid.org/0000-0003-4283-0005
http://orcid.org/0000-0003-4283-0005
http://orcid.org/0000-0003-4283-0005
http://orcid.org/0000-0003-4283-0005
http://orcid.org/0000-0003-4283-0005
http://orcid.org/0000-0001-9606-6124
http://orcid.org/0000-0001-9606-6124
http://orcid.org/0000-0001-9606-6124
http://orcid.org/0000-0001-9606-6124
http://orcid.org/0000-0001-9606-6124
http://orcid.org/0000-0003-2041-3630
http://orcid.org/0000-0003-2041-3630
http://orcid.org/0000-0003-2041-3630
http://orcid.org/0000-0003-2041-3630
http://orcid.org/0000-0003-2041-3630
http://orcid.org/0000-0001-8838-1714
http://orcid.org/0000-0001-8838-1714
http://orcid.org/0000-0001-8838-1714
http://orcid.org/0000-0001-8838-1714
http://orcid.org/0000-0001-8838-1714
http://orcid.org/0000-0002-7271-4438
http://orcid.org/0000-0002-7271-4438
http://orcid.org/0000-0002-7271-4438
http://orcid.org/0000-0002-7271-4438
http://orcid.org/0000-0002-7271-4438
http://orcid.org/0000-0002-5755-8932
http://orcid.org/0000-0002-5755-8932
http://orcid.org/0000-0002-5755-8932
http://orcid.org/0000-0002-5755-8932
http://orcid.org/0000-0002-5755-8932
https://doi.org/10.1038/s41408-022-00617-5
mailto:malbitar@genomictestingcooperative.com
mailto:xubingzhangjian@126.com
mailto:ken.young@duke.edu


and their distinction performance is not satisfactory [1]. Further-
more, the clinical implementation of these classifications in
routine laboratory testing is complicated by the need for
performing whole-exome sequencing.
We rationalized that chromosomal structural analysis and

mutation profiling eventually lead to changes in RNA profiling and
activation or suppression of various pathways through relative RNA
changes; thus, the RNA-based classification of DLBCL might be more
practical. RNA quantification by next-generation sequencing (NGS)
has numerous advantages over quantification methods based on
microarrays and hybridization. RNA quantification by NGS is more
specific and reproducible and can be performed reliably on
formalin-fixed paraffin-embedded (FFPE) tissue. Furthermore, tar-
geted RNA sequencing has the potential to be used in clinical
testing because it is easier to manage and more cost-effective as a
routine clinical test than traditional methods.
In this study, we developed a DLBCL classification strategy for

predicting clinical outcomes using targeted RNA sequencing
combined with machine learning algorithms. The developed
strategy classifies patients with DLBCL into subgroups based on
the clinical course of their disease. To focus on survival, we first used
machine learning and divided the patients into subgroups based on
their overall survival. We used modified Bayesian statistics to select
genes that can predict various survival groups, and then validated
these biomarkers using an independent set of cases.

RESULTS
Naïve model for the survival of patients with DLBCL
Instead of defining biomarkers and then evaluating clinical behavior
based on specific markers, we first grouped patients based on their
survival, and then used biomarkers to predict these groups. We used
a machine learning method to analyze the survival data. For a case
that is not censored, the survival time is known. However, for a
censored case, we do not know the exact survival time. Therefore,
the censored data cannot be used as training data for supervised
learning machine algorithms because they do not have a target
value. However, omitting the censored data would reduce the
sample size. Therefore, we used a machine learning approach to
predict the survival of censored patients. First, we divided the
patients into two groups: short survival (S) and long survival (L)
(Fig. 1a). The hazard ratio was 0.237 (confidence interval:
0.170–0.330), and P-value < 0.00001. The survival of the patients in
each group was not homogeneous. To refine this model, we used
the same approach and divided the patients in each group into two

subgroups, generating four groups: long survival in the long group
(LL), short survival in the long group (LS), long survival in the short
group (SL), and short survival in the short group (SS) (Fig. 1b). The
hazard ratio for this model was 0.174 (confidence interval:
0.120–0.251), and P-value < 0.0001.

Selecting biomarkers for predicting survival groups using
machine learning
After defining the survival groups, a machine learning algorithm
was developed to predict the survival time using the expression
data of 1408 genes from the NGS data. We developed a
generalized naïve Bayesian classifier by applying a geometric
mean to the likelihood product to eliminate underflow. Through
this approach, we ranked the 1408 biomarkers for predicting each
survival group. However, the use of many biomarkers leads to
overfitting. To reduce the effects of noise and avoid overfitting, we
employed 12-step cross-validation to obtain a robust measure. For
an individual gene, a generalized naïve Bayesian classifier was
constructed on the training of one of the 12 subsets and tested on
the other 11 testing subsets. This allowed us to limit the prediction
process to 60 genes for each separation step. Sixty genes were
used to predict S and L; the second set of 60 genes was used to
predict LL and LS, and the third set of 60 genes was used to
predict SL and SS. Table S1 lists the selected genes in each step.
There was very little overlap among the three groups of
biomarkers. As shown in Fig. 1b, the overall survival rates of LS
and SL were similar. However, completely different sets of genes
were used for selecting each group. This indicates that even
though these two groups have similar clinical courses, they are
completely biologically different. This reflects the significant
heterogeneity of DLBCL.

Validation of the survival model and selected biomarkers
After building a survival model solely based on the survival data,
then selecting biomarkers that can specifically correlate with these
survival groups, we tested if these biomarkers could stratify
patients accordingly. Using the selected biomarkers, we first
classified the patients in the original set (379 patients) into LL, LS,
SL, and SS groups and then evaluated the survival pattern of these
groups. The characteristics of these patients are listed in Table S2.
This group of patients included 239 (63%) diagnosed with a nodal
disease and 140 (37%) with extranodal disease. The international
prognostic index (IPI) was >2 in 141 (37%) patients and the rest of
the patients (63%) had IPI ≤ 2. The Eastern Cooperative Oncology
Group performance status (ECOG) score was >1 in 60 (16%)

Fig. 1 Prediction of patient survival using supervised machine learning without biomarkers (379 cases). a Survival when divided into two
group. b Survival when each of the previous group is further divided into two groups. CI confidence interval.
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patients and <2 in 319 (84%) of patients. Of these patients, 210
(55%) were males. As shown in Fig. 2A, the selected biomarkers
predicted survival as expected in the overall survival groups prior
to biomarker selection. The same was true for the predicted
progression-free survival (Fig. 2B).
For additional validation of the system, we used the selected

biomarkers to classify a completely new set of 247 samples of
patients presented with extranodal DLBCL. As shown in Fig. 3,
these selected biomarkers successfully predicted the overall
survival in this group of patients when they were divided into
two groups using the first set of biomarkers (Table S1) with an HR
of 0.26 (confidence interval: 0.278–0.653, P-value= 0.002), as well
as when they were divided into four groups using the three sets of
biomarkers with an HR of 0.530 (confidence interval: 0.234–1.197,
P= 0.005) (Fig. 3). As expected, extranodal DLBCL leads to overall
shorter survival and more aggressive disease. To further test the
reliability of this modeling system, we combined the two groups
of patients (626 patients) and used two-thirds for building the
model and one-third for testing. The overall model remained
substantially the same, especially in the testing group. The testing
group clearly shows two groups of patients with intermediate
survival, but significantly different biological backgrounds (Fig. S1).

Correlation with cell of origin (COO) classification and other
clinical prognostic markers
As previously mentioned, all 379 patients were classified as cells of
origin. We evaluated the prevalence of ABC and GCB groups in our
survival groups. The majority of GCB cases had a good prognosis
(LL and LS; P < 0.0001) (Fig. 4). Furthermore, although the LS and
SL groups showed similar overall survival, there were significantly
more GCB cases in the LS group than in the SL group (P= 0.016).
This also confirms that, despite having similar outcomes, the LS
and SL groups are biologically different.
In Cox proportional hazard regression multivariate model

incorporating the survival classification with COO and the IPI
(IPI ≤ 2 vs IPI > 2), survival classification and IPI were the only
independent predictors of survival. In this model, COO was no
longer a predictor of survival (Table 1). In a multivariate model
incorporating age without IPI, age was a significant indepen-
dent predictor of survival (P= 0.01). Poor survival subgroup
(SS) had a significantly (P= 0.01) higher percentage of patients
at age above 60 (Fig. S2). This raises the possibility that age
and possible death from causes other than lymphoma—and
not only biology-contribute to the poor survival in the SS
subgroup.

Fig. 2 Validation of the machine learning models used for survival grouping and selection of biomarkers. a Actual overall survival (OS)
and b progression-free survival (PFS) of the four groups as predicted by the selected biomarkers.

Fig. 3 Validation of the machine learning models using independent set of 247 extranodal DLBCL samples. a Overallsurvival using two
groups model and b overall survival using four groups model.
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Correlation with TP53 mutation
Of the 379 DLBCL patients, 82 (22%) had TP53 mutations. As
expected, patients with TP53 had significantly shorter survival
rates (p= 0.0019). There were relatively more TP53 mutations in
the short survival groups (P= 0.009) (Fig. S3). More importantly, in
a multivariate model incorporating TP53 mutation with survival
classification, IPI, and COO, TP53 mutations remained strong
independent predictors of survival (Table 1).

Correlation with MYD88 and CD79B mutations
Patients with MYD88 mutations were more common in the S
group (P= 0.001) with aggressive DLBCL. However, there was no
significant difference in the distribution of patients with CD79B
mutations among the various survival groups (P= 0.49). In a
multivariate model incorporating mutations in TP53, CD79B, and
MYD88 along with COO, IPI, and survival classification, the
mutation in CD79B was not a predictor of survival, but MYD88
was an independent predictor of better survival (P= 0.042), and
TP53 mutation remained a predictor of worse survival (P= 0.045)
(Table 1).

Correlation with MYC overexpression
MYC expression was significantly higher in the S groups (P <
0.0001). Higher levels of MYC mRNA were detected in the SL
group than in the LS group (P < 0.0001), although the two groups
showed similar survival (Fig. 5A). Short survival was associated
with high MYC expression when used as a continuous variable
(P= 0.0019) or when patients were grouped as low vs. high based
on the upper quartile (P= 0.0021) (Fig. 5B). However, in the
multivariate model, MYC expression was not an independent
predictor of survival, irrespective of whether it was used as a
continuous and categorical (low vs. high) variable (Table 1).

Correlation with IRF4 overexpression
IRF4 gene translocation is typically associated with overexpression
[12–14]. Recent studies have shown that DLBCL with IRF4
translocation is less damaging. We investigated IRF4 RNA
overexpression and correlated it with the survival groups, as
predicted in our model. Significant overexpression of IRF4 mRNA

was observed in the S group of patients (Fig. S4). As well as lower
levels of MYC, the LS group had significantly lower levels of IRF4
mRNA than the SL group (P= 0.02), although there was no
difference in survival between these two groups. In a multivariate
model incorporating the survival groups, among COO, IPI, MYC,
TP53, and IRF4 mRNA as continuous variables, IRF4 mRNA level
was a borderline (P= 0.067) negative predictor of survival in this
model (Table 1).

DISCUSSION
DLBCL is a heterogeneous disease with complex biological
variations in the form of gene mutations, chromosomal structural
abnormalities, chromosomal translocations, and microenviron-
ment changes. Subclassification of DLBCL must account for
changes in all these driving biological determinants. In principle,
all these biological determinants lead to changes in the RNA
levels of various genes in the tumor and microenvironment.
Existing methods for the evaluation of the RNA expression and
measurements of the RNA levels are highly reliable. In particular,
NGS counts the number of RNA molecules without significant
influence of hybridization or amplification artifacts [15]. Further-
more, targeted RNA sequencing and targeted transcriptome
have a high dynamic range and can determine the biologically
relevant genes and reduce the bias in the sequencing of the
highly expressed genes effectively. Therefore, targeted RNA
expression profiling by NGS can effectively subclassify DLBCLs by
encompassing all biological determinants of clinical behavior
and outcome.
However, the subclassification of disease must reflect its clinical

behavior. This is complicated by the fact that clinical behavior may
be influenced by the therapy selected. The current standard
therapy for DLBCL is R-CHOP. To improve this therapy, patients
should be classified based on the type of response or lack thereof
to this standard therapy. This may allow us to predict the
biomarkers that determine the type of response and target the
biological pathways driving these biomarkers. This approach
might reduce overfitting in the process of selecting biomarkers
that predict various types of responses. In other words, instead of

Fig. 4 Correlation between survival groups and cell of origin classification. The left panel shows that majority of patients classified as
germinal center B-cell-like (GCB) are classified as having long survival (LL) on the survival model. The right panel shows that majority of
patients classified as activated B-cell-like (ABC) are classified as having short survival (SS).
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biomarkers predicting survival, it might be more relevant clinically
to let survival predict biomarkers.
We followed this strategy to classify DLBCL. First, we developed

an approach to predict the survival groups. We predicted the
survival of censored patients using machine learning. Based on this,
we divided the entire patient population into two L and S groups. In
a tree model, we also divided the L group into LL and LS, and the S
group into SL and SS groups; the HR in these groups was 0.174
(Fig. 1B). Then, we explored the ability of targeted RNA expression
data generated from sequencing 1408 genes in predicting these
survival groups using naïve Bayesian statistics. However, prediction
using naïve Bayesian typically shows steep prediction distributions,
making it difficult to compare values. Thus, we smoothed these
distributions to facilitate a comparison between each biomarker, as
described in the methods (Fig. S5). To avoid overfitting, we

randomly divided the 378 patients into 12 different groups. We
cross-validated the selected biomarkers among the 12 subgroups.
This approach allowed us to select 60 biomarkers for the first set of
survival subgroups (Fig. 1A) and 60 for each of the subsequent
survival subgroups (Fig. 1B). Using these biomarkers, we classified
the 378 patients accurately, as predicted by the machine learning
algorithm (Fig. 2). To further validate these biomarkers, we used an
independent group of 247 patients with extranodal DLBCL. As
shown in Fig. 3A and B, these biomarkers efficiently predicted
survival in the extranodal patients despite the shorter overall
survival, as expected in this group of patients.
The classification based on survival correlated with COO

classification, TP53 mutation status, MYC expression, and IRF4
expression. In the multivariate analysis using the survival 4 group
model, only IPI and TP53 mutations were independent in predicting

Table 1. Multivariate survival analysis.

N= 379 Beta Standard error Beta/coefficient p Hazard ratio Hazard ratio

95% lower 95% upper 95% lower 95% upper

Covariates: survival groups, cell of origin, and IPI (>2)

Survival classification 0.55 0.07 0.40 0.69 0.000000 1.73 1.49 2.00

GCB vs ABC −0.03 0.18 −0.37 0.32 0.869145 0.97 0.69 1.37

IPI 0.88 0.17 0.54 1.21 0.000000 2.41 1.72 3.36

Covariates: survival groups, IPI (>2), cell of origin, and TP53 mutation

Survival classification 0.53 0.08 0.39 0.68 0.000000 1.71 1.47 1.98

IPI 0.84 0.17 0.50 1.18 0.000001 2.32 1.66 3.24

COO classification 0.04 0.18 −0.31 0.40 0.816543 1.04 0.73 1.49

Mute.TP53 0.37 0.19 0.00 0.73 0.048156 1.44 1.00 2.08

Covariates: survival groups, IPI (>2), cell of origin, mutations in MYD88, CD79B, and TP53 mutation

Survival classification 0.54 0.08 0.40 0.69 0.000000 1.72 1.49 2.00

IPI 0.87 0.17 0.53 1.21 0.000000 2.39 1.71 3.36

COO classification 0.13 0.19 −0.24 0.50 0.491261 1.14 0.79 1.64

Mute.MYD88 −0.45 0.22 −0.88 −0.02 0.041843 0.64 0.41 0.98

Mute.CD79B 0.06 0.32 −0.55 0.68 0.841714 1.06 0.57 1.98

Mute. TP53 0.38 0.19 0.01 0.74 0.044687 1.46 1.01 2.10

Covariates: survival groups, IPI (>2), cell of origin, TP53 mutation, and MYC expression (above upper 25 percentile)

Survival classification 0.54 0.08 0.39 0.69 0.000000 1.71 1.47 1.99

IPI 0.84 0.17 0.51 1.18 0.000001 2.32 1.66 3.24

Classification 0.04 0.18 −0.31 0.40 0.816151 1.04 0.73 1.49

Mute.TP53 0.37 0.19 0.00 0.74 0.048720 1.45 1.00 2.11

MYC U25% −0.03 0.18 −0.39 0.33 0.878706 0.97 0.68 1.39

Covariates: survival groups, IPI (>2), cell of origin, TP53 mutation, and MYC expresion (continuous variable)

Survival classification 0.55 0.08 0.41 0.70 0.000000 1.74 1.50 2.02

IPI 0.85 0.17 0.52 1.19 0.000001 2.35 1.68 3.28

Classification 0.03 0.18 −0.33 0.38 0.886603 1.03 0.72 1.46

Mute.TP53 0.41 0.19 0.04 0.78 0.028204 1.51 1.04 2.18

MYC 0.00 0.00 0.00 0.00 0.150307 1.00 1.00 1.00

Covariates: survival groups, IPI (>2), cell of origin, TP53 mutation, and expression of MYC and IRF4 (continuous)

Survival classification 0.59 0.08 0.43 0.74 0.000000 1.80 1.54 2.09

IPI 0.85 0.17 0.51 1.18 0.000001 2.33 1.67 3.26

COO classification 0.21 0.21 −0.19 0.61 0.308746 1.23 0.82 1.84

Mute.TP53 0.43 0.19 0.06 0.80 0.022837 1.54 1.06 2.22

MYC mRNA 0.00 0.00 0.00 0.00 0.124518 1.00 1.00 1.00

IRF4 mRNA 0.00 0.00 0.00 0.00 0.066811 1.00 1.00 1.00

GCB germinal center B-cell-like, ABC activated B-cell-like, COO cell of origin, MYC Avian Myelocytomatosis Viral Oncogene Homolog, IPI Iinternational Prognostic
Index, ECOG, Eastern Cooperative Oncology Group performance status.
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the prognosis (Table 1). MYD88 mutation was an independent
predictor of good prognosis in multivariate analysis. This data shows
that our genomic survival model provides important information on
the clinical behavior of DLBCL that is independent of IPI and other
prognostic indicators. Furthermore, this genomic classification
defines specific genes (see Table S1) that are driving each of the
survival groups’ defined models. Potentially this list of genes may
provide useful clues for targeted therapy that can be tailored to
each of the survival groups defined in this model.
These findings suggest that the subclassification of patients using

survival is a reliable approach to define biologically different patients
with DLBCL. In fact, although the LS and SL groups had similar
survival, they had significantly different MYC and IRF4 levels. This
supports our assumption that it is unrealistic to assume that one
biomarker can define specific clinical behavior and that significant
overlap between biomarkers exists in driving the biology of DLBCL.
The objective of this classification is to predict DLBCL patients

who will not respond to R-CHOP so that they can be treated
differently, or they can be entered into clinical trials. It may be
easier to find a new successful therapeutic approach when
patients with similar biology and clinical courses are treated in
clinical trials with new therapeutic regimens. This subclassification
of DLBCL can be automated through simple software that we
developed and can predict the survival subgroup when fed with
RNA sequencing data.

METHODS
Patients
RNA sequencing using a targeted panel was performed on samples from 379
patients with de novo DLBCL and 247 patients with extranodal DLBCL. The
samples from the 379 patients were used to establish the prognostic model,
and those from the 247 patients were used for validation. All patients were
treated with R-CHOP at 22 medical centers. The cases were organized and
collected using the DLBCL Consortium Program, which was approved by the
institutional review board of each participating medical center and conducted
in accordance with the Declaration of Helsinki. The ethics committee waived
the requirement for informed consent owing to the retrospective study
design. Patients with transformed DLBCL, primary mediastinal large B-cell
lymphoma, or primary cutaneous DLBCL were excluded.

RNA library construction and sequencing
The Agencourt FormaPure Total 96-Prep Kit was used to extract DNA and
RNA from the same FFPE tissue lysates using an automated KingFisher Flex
following the protocols recommended by the manufacturers. Samples
were selectively enriched for 1408 cancer-associated genes using reagents

provided in the Illumina® TruSight® RNA Pan-Cancer Panel. cDNA was
generated from the cleaved RNA fragments using random primers during
the first and second-strand synthesis. Sequencing adapters were ligated to
the resulting double-stranded cDNA fragments. The coding regions of the
expressed genes were captured from this library using sequence-specific
probes to create the final library. Sequencing was performed using an
Illumina NextSeq 550 system platform. Ten million reads per sample in a
single run were required, and the read length was 2 × 150 bp. The
sequencing depth was 10×–1739× with a median of 41×. An expression
profile was generated from the sequencing coverage profile of each
individual sample using Cufflinks. Expression levels were measured as
fragments per kilobase of transcript per million.

Machine learning methods for survival analysis
We used a machine learning method to estimate the survival time of a
censored patient, for which we did not know the survival time, using the
Kaplan–Meier curve.

Theorem. Let SðtÞ be the survival function and f ðtÞ be the probability
density function of survival. For a censored case at time t0, the
conditionally expected survival time is

t0 þ 1
Sðt0Þ

Z 1

t0

S tð Þdt:

Proof. Given the censored time t0, the conditional density function is

f ðtÞ
Sðt0Þ ; t � t0;

and the expectation is

R1
t0
t f tð Þ
S t0ð Þ dt ¼ 1

Sðt0Þ
R1
t0
td �S tð Þ½ �

¼ � 1
Sðt0Þ tS tð Þ

���1
t0
þ 1

Sðt0Þ
R1
t0
SðtÞdt

¼ t0 þ 1
Sðt0Þ

R1
t0
S tð Þdt:

However, the conditional expectation given in the theorem may not
be an appropriate label for the machine learning algorithm. The
formula does not consider the confidence of the estimation; it will
always return a value greater than the mean survival and have a bias
toward the long survival class. To address this problem, we estimate the
survival as follows:

survival ¼
mean; if t0 � mean

2

t0 þ 1
S t0ð Þ

R1
t0
S tð Þdt; if t0 > mean

2

(

Fig. 5 MYC overexpression as predictor of survival. a The levels of MYC mRNA in various survival groups. b Kaplan–Meier survival curves of
patients based on MYC expression.
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To select biomarkers for the prediction of survival groups, we used a
naïve Bayesian classifier. However, Bayesian classifiers suffer from severe
numerical underflow problems when the dimension of the data is high.
Even with careful scaling, all but the dominant feature is still likely to
underflow. To solve this problem, we developed a generalized naïve
Bayesian classifier by applying a geometric mean to the likelihood
product. We prove that this approach eliminates the underflow problem,
and the geometric mean is essentially the only function satisfying these
conditions.
The naïve Bayesian classifier is a simple but often effective machine

learning algorithm. It is based on Bayes’ theorem and the assumption that
all attributes are conditionally independent.
Let ðx1; x2; ¼ ; xdÞ be the input attribute vector and ðC1; C2; ¼ ; CkÞ be

the classes. According to Bayes Theorem,

P Cj jx1; x2; ¼ ; xd
� � ¼ PðCjÞP x1; x2; ¼ ; xd ; j;Cj

� �
Pk

i¼1 PðCiÞP x1; x2; ¼ ; xd ; j;Cið Þ
:

With the assumption of conditional independence, we have

P x1; x2; ¼ ; xd ; j;Cj
� � ¼ P x1jCj

� �
P x2jCj
� �

¼ P xd jCj
� �

:

The probabilities P xi jCj
� �

can be easily estimated from training
data. However, when dimension d is large, the products of the
probabilities (likelihood) become extremely small, causing underflows.
If each probability value has an average of 1/2, the likelihood will have
a mean

E P x1jCj
� �

P x2jCj
� �

¼ P xd jCj
� �� � ¼ 1

2d
;

which approaches 0 quickly when d is large.
One typical method to avoid numerical underflow is to scale all the

values using the largest probability product during the computations.
However, this method often produces one value that dominates the
probability products. As a result, one class will have a predicted
probability of 1.0 while all other classes will have a prediction probability
of 0.0. This effect is disadvantageous for most applications because it is
an artifact of the naïve Bayesian assumption and usually does not reflect
the real probability.
We propose a generalization to the standard naïve Bayesian algorithm

to address the underflow problem. Let h(x) be a positive increasing
function. Applying the function to the likelihood produces a new
probability estimate:

P x1; x2; ¼ ; xd ; j;Cj
� � ¼ h½P x1jCj

� �
P x2jCj
� �

¼ P xd jCj
� ��:

In particular, we propose to use the function

h x; dð Þ ¼ x1=d ;

which increases monotonically with d and prevents underflow for any
dimension d.

Lemma. Let x be a uniform random value over the interval [0, 1]; the
expected value of x h x; dð Þ ¼ x1=d for a constant d is 1

ð1þ1=dÞ .

Proof. Because x is uniform, the expected value of x1=d is

Z 1

0
x1=ddx ¼ x1þ1=d

1þ 1=d

����
1

0
¼ 1

ð1þ 1=dÞ :

Theorem. Assume that the probabilities in the likelihood are independent,
uniformly distributed random variables. Then, the expected value of the
likelihood is

E ðP x1jCj
� �

P x2jCj
� �

¼ P xdjCj
� �Þ1=dh i

¼ 1

ð1þ 1=dÞd :

Proof. By the previous lemma and the independence of the random
variables,

E P x1jCj
� �

P x2jCj
� �

¼ P xd jCj
� �� �1

d

h i
¼ E P x1jCj

� �� �1
d

h i
E P x2jCj

� �� �1
d

h i
¼ E P xd jCj

� �� �1
d

h i
¼ 1

ð1þ1=dÞd :

The limit of the expected value is

lim
d!

1

ð1þ 1=dÞd ¼ 1=e:

Therefore, as the dimension increases, the likelihood will never approach
0 uniformly. Applying the function h to the likelihood does not change the
relative order of the probability estimates of the classes. However, the
probabilities will have more reasonable values than 0 and 1.
We can also show that the function h x; dð Þ ¼ x1=d is unique under

certain conditions.

Lemma. Let f xð Þ be a positive continuous function of positive real
numbers. If f is multiplicative, f xyð Þ ¼ f xð Þf ðyÞ, then f xð Þ ¼ xa for some
constant a.

In the case of the functional transform on the likelihood, the assumption
of the multiplicative property on the function h is a natural extension of
the naïve Bayesian assumption.
If we require that the likelihood approaches a non-zero limit as d

approaches infinity, then the function could have the form h x; dð Þ ¼ xc=d

for a constant c.

Theorem. If h is multiplicative and

lim
d!1

E h P x1jCj
� �

P x2jCj
� �

¼ P xd jCj
� �� �� � ¼ L > 0;

then h x; dð Þ ¼ xaðdÞ , where a dð Þ ¼ c 1
d

� �þ O 1
d2

� �
; c > 0.

Proof. The previous lemma shows that

h x; dð Þ ¼ xaðdÞ:

Similar to the previous proof, the expectation is

E h P x1jCj
� �

P x2jCj
� �

¼ P xd jCj
� �� �� �

¼ E P x1jCj
� �

P x2jCj
� �

¼ P xd jCj
� �� �aðdÞh i

¼ E P x1jCj
� �� �aðdÞh i

E P x2jCj
� �� �aðdÞh i

¼ E P xd jCj
� �� �aðdÞh i

¼ 1
ð1þaðdÞÞd :

By the assumption, we have

lim
d!1

1

ð1þ a dð ÞÞd ¼ L > 0:

Letting t ¼ 1=d and f tð Þ ¼ a 1=tð Þ ¼ aðdÞ, then

lim
d!1

1

1þ a dð Þð Þd ¼ lim
t!0þ

1

1þ f tð Þð Þ1t
¼ lim

t!0þ
e
�lnð1þf tð ÞÞ

t :

Furthermore, f 0þð Þ ¼ 0 and

lim
t!0

e
�lnð1þf tð ÞÞ

t ¼ lim
t!0

e
�f 0 ðtÞ
1þ f tð Þ ¼ lim

t!0
e�f 0 ðtÞ ¼ e�c ¼ L:

Therefore,

f tð Þ ¼ ct þ Oðt2Þ;

a dð Þ ¼ c
1
d

	 

þ O

1

d2

	 

; c > 0:

When the dimension d is high, the independence assumption of the
naïve Bayesian classifier is unlikely to be true in most applications.
Consequently, the probability estimates are unrealistic. Our proposed
extension can solve this problem.
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Example. Consider a two-class problem with d-dimensional Gaussian
distributions, with means of. 1; 1; ¼ ; 1ð Þ and �1;�1; ¼ ;�1ð Þ and the
same covariance matrix

1 r � � � r

r 1 � � � r

..

. ..
. . .

. ..
.

r r � � � 1

2
66664

3
77775 ¼ 1� rð ÞI þ rJ;

the inverse matrix is

1
1� r

I � r
1� r þ rd

J

	 

:

Consider the probability estimations for the point t; t; ¼ ; tð Þ. The true
probability for class 1 is

e�0:5dðt� 1Þ2 1� rd
1� rþ rdð Þ

e�0:5dðt� 1Þ2 1� rd
1� rþ rdð Þ þ e�0:5dðtþ1Þ2 1� rd

1� rþ rdð Þ

For the original naïve Bayesian classifier,

e�0:5dðt� 1Þ2

e�0:5dðt� 1Þ2 þ e�0:5dðtþ 1Þ2 ;

and for our proposed classifier,

e�0:5ðt� 1Þ2

e�0:5ðt� 1Þ2 þ e�0:5ðtþ 1Þ2 :

Figure S3 shows the three probability estimates for d= 10 and r= 0.5.
The naïve Bayesian probability estimates change steeply around the
boundary owing to the independence assumption. In contrast, our
proposed method closely approximates the true probabilities.

Feature selection
We used a discriminant measure for single genes to facilitate gene selection.
This method was based on cross-validation to avoid overfitting. This measure
is consistent with the generalized naïve Bayesian classifier. To fully utilize the
survival data, we used a parameter estimation method on the means and
variations for the generalized naïve Bayesian classifier. By modeling the
relationship between survival time and classes, we obtained an improved
formula for estimating the means and variances of the distributions.
A single level of gene selection and classification for this survival analysis

problem is not adequate for detecting groups defined by NGS biomarkers.
Thus, a hierarchical approach was developed to use multiple levels of gene
selection and classification for the prediction of survival as well as the
detection of biomarker-related groups. Owing to the inherent uncertainties
in the survival data, it is usually not feasible to include a large number of
genes in machine learning algorithms. Thus, a subset of genes relevant to
the prediction task was selected.
Standard dimension reduction methods, such as principal component

analysis (PCA) and recursive feature elimination, start with a system with
all features included. It would be difficult to obtain effective features
from noisy survival data in such a highly over-fitted and volatile system. In
PCA-based methods, it is also difficult to extract an explicit gene list
because the mappings would involve the entire set of genes. Following the
same principle applied in the naïve Bayesian classifier, we propose a
feature selection method to select and rank genes based on a discriminant
measure of individual genes.
To reduce the effects of noise and avoid overfitting, we employ k-fold

cross-validation to obtain a robust measure. For an individual gene, a
generalized naïve Bayesian classifier was constructed on the training
subset and tested on the testing subset. The complement d12 of the cross-
validation error rate was used as a discriminant measure for the gene.

d12 ¼ 1� error12

The genes were ranked by d12; higher values corresponded to more
relevant genes for classifying the two classes. The survival data consisted
of continuous values that did not represent a class label directly; however,
the magnitude of the values provide useful information on the class. We
estimated the mean and variance of the distribution in the generalized

naïve Bayesian classifier by weighted averages based on the relationship
between survival time and class membership.
Let y be the survival time and PðCk jyÞ be the conditional probability

function connecting y and class Ck . Assuming that there are two classes
and P yjCkð Þ; k ¼ 1; 2 are Gaussian with equal variances, according to
Bayes’ theorem,

P Ck jyð Þ ¼ P yjCkð ÞP Ckð Þ
P yjC1ð ÞP C1ð Þ þ P yjC2ð ÞP C2ð Þ ¼

1
1þ eaðy�bÞ ;

which is a logistic function.
Given the training cases xi ; yið Þ; i ¼ 1; 2; ¼ ; n, we have the likelihood

function

L ¼ �
Xn
i¼1

ln
X2
k¼1

PðCk jyÞPðxi jCkÞ
" #

:

Maximizing the likelihood, we obtained

∂L
∂mk

¼
Xn
i¼1

PðCk jyiÞPðxi jCkÞP2
k¼1 PðCk jyiÞPðxi jCkÞ

ðxi �mkÞ ¼ 0:

The coefficients involve unknown values P xi ; j;Ckð Þ. If they are set as
constants, we can solve the equations and obtain an explicit formula for
the means:

mk ¼
Xn
i¼1

P Ck jyið ÞxiPn
j¼1PðCk jyjÞ

¼
Xn
i¼1

wixi ;

The weighted average is xi . The weights are proportional to the class
probability on yi :

wi ¼ P Ck jyið ÞPn
j¼1 PðCk jyjÞ

:

Similarly, the variances can be estimated as follows:

σ 2
k ¼

Xn
i¼1

P Ck jyið Þðxi �mkÞ2Pn
j¼1 PðCk jyjÞ

¼
Xn
i¼1

wiðxi �mkÞ2:
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