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This study aimed to investigate the effects of a single session of chiropractic spinal

adjustment on the cortical drive to the lower limb in chronic stroke patients. In a

single-blinded, randomized controlled parallel design study, 29 individuals with chronic

stroke and motor weakness in a lower limb were randomly divided to receive either

chiropractic spinal adjustment or a passive movement control intervention. Before

and immediately after the intervention, transcranial magnetic stimulation (TMS)-induced

motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) muscle

of the lower limb with the greatest degree of motor weakness. Differences in

the averaged peak-peak MEP amplitude following interventions were calculated

using a linear regression model. Chiropractic spinal adjustment elicited significantly

larger MEP amplitude (pre = 0.24 ± 0.17mV, post = 0.39 ± 0.23mV, absolute

difference = +0.15mV, relative difference = +92%, p < 0.001) compared to the control

intervention (pre = 0.15 ± 0.09mV, post = 0.16 ± 0.09mV). The results indicate that

chiropractic spinal adjustment increases the corticomotor excitability of ankle dorsiflexor

muscles in people with chronic stroke. Further research is required to investigate whether

chiropractic spinal adjustment increases dorsiflexor muscle strength and walking function

in people with stroke.

Keywords: chiropractic, stroke, transcranial magnetic stimulation, spinal adjustment, motor evoked potential

INTRODUCTION

Stroke is the second-most common cause of death worldwide (1) and the leading cause of severe
disability in adults (2). It has a high prevalence, affecting ∼200 people per 100,000 (3) and
often requires extensive rehabilitation, with high economic and social costs (4). Stroke-induced
impairment in motor function is common, with almost half of stroke survivors having limitations
in walking ability (5). Weakness in ankle dorsiflexor muscles, such as the tibialis anterior (TA)
muscle, is one of the major causes of gait dysfunction in people with stroke (6, 7).

Multiple rehabilitation techniques, such as physical therapy, brain-computer interface-based
approaches, and motor relearning techniques have been shown to enhance motor recovery after
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a stroke (8–10). Recent research has suggested that chiropractic
spinal adjustment could be another possible approach to
improve post-stroke motor recovery (11–13). Chiropractic spinal
adjustment involves the application of specific high-velocity, low
amplitude (HVLA) adjustments to the site of spinal subluxations,
i.e., a spinal segment that is not moving appropriately and
is characterized by tight vertebral muscles and tenderness to
touch (14–16). The site of the spinal subluxation is identified by
utilizing a combination of pathophysiologic indicators of spinal
dysfunction (17).

In the past two decades, research has demonstrated that
chiropractic spinal adjustment has a neural plastic effect on
the central nervous system (CNS). Multiple studies have
found that (a single session of) chiropractic spinal adjustment
modifies central processing, including somatosensory processing,
sensorimotor integration, motor control, and pain, suggesting
that the chiropractic intervention can rapidly affect neural and
neuromuscular function in multiple ways (11–13, 15, 18–32).
The spine is the biomechanical and neurological connection
between the brain and limbs, and there is evidence that changes
in afferent signals from the spine alter central neural processing
(23), impacting themotor control of the limbs (11, 18, 21, 33–35).
The articles mentioned above are discussed in detail in a recently
invited review (15). In particular, strength increases have been
documented to occur following chiropractic HVLA adjustments
to dysfunctional spinal segments (15).

Multiple studies have explored the mechanism responsible
for such changes in strength following HVLA chiropractic
adjustments. The recruitment patterns of lower motor neurons
has been evaluated using the transcranial magnetic stimulation
(TMS) induced stimulus-response (SR) curves for both upper
limb and lower limb muscles (21). The HVLA spinal adjustments
resulted in significant increases in the maximum motor evoked
potentials (MEPs). The plateau of the SR curve (MEPmax) for
both the upper and lower limb muscle increased significantly,
accompanied by a significant increase for all components of
the movement-related cortical potential (MRCP), including the
early bereitschaftpotential (EBP), late bereitschaftpotential (LBP)
and also the peak negativity (PN). The change in MRCP noted
after the spinal adjustment intervention indicates a change
in motor preparatory activity occurring primarily within the
supplementary motor area of the brain (21). The results of
this study indicate that the changes in muscle force output
following spinal adjustments are at least in part occurring at the
cortical level, because it leads to significantly larger MEPmax
for TMS induced input-output curves for both an upper and
lower limb muscle, with significantly larger amplitudes of MRCP
components following the spinal adjustments, while no changes
were observed in the spinal excitability measures (21). To further
characterize such change in neural excitability observed after
HVLA adjustment, Haavik et al. (36) constructed peristimulus
time histogram (PSTH) and peristimulus frequencygram (PSF)
using single motor unit recordings. This study confirmed
that spinal adjustments induced a consistent shortening of
the TMS-induced cortical silent period (CSP), that had been
documented in multiple previous studies, and demonstrated
increase in the amplitude of individual I-waves, i.e., TMS-evoked

descending corticospinal activity originating from indirect or
trans-synaptic activation of the pyramidal tract or corticospinal
tract upper motor neurons (UMN’s). Another recent study,
using both high density surface electromyography (HD sEMG)
and intramuscular EMG, explored further how chiropractic
adjustments could induce neural excitability and increase muscle
strength (37). This study found a significant increase in strength
of the tibialis anterior (TA) muscle. Further analysis found that
the TAmotor unit action potential conduction velocity increased
without changes in motor unit discharge rate (37). This further
supports the mechanisms that chiropractic adjustment-induced
increase in strength is, in part, due to change in intracortical
neural excitability that leads to increased recruitment of larger,
higher threshold motor units. However, most of these studies
have been conducted in relatively healthy populations. Therefore,
it was unclear exactly why or how increases in strength occurred
in chronic stroke survivors with persistent problems in muscle
activation following chiropractic adjustments. Therefore, this
current study explored changes in TMS induced MEPs in a
chronic stroke population.

The changes in motor control at the cortical level and neural
plasticity can be assessed by TMS. It has been used in studies
exploring the effects of chiropractic spinal adjustment (21, 30,
36). In individuals with subclinical spinal pain (SCSP), the spinal
adjustments have been shown to increaseMEPs for both an upper
and lower limb muscle (21). There was an increase in maximum
MEP (the top of the stimulus-response curve) only for the upper
limb muscles, while for the lower limb, there was a shift of
the entire stimulus-response curve to the left (21), indicating a
change in net excitability (38). This study also recorded MRCPs
which are known to originate at the cortical level. As there
was an increase in MRCPs following spinal adjustment, it was
suggested that the changes after the adjustment occurred at least
partially at the supra-spinal level (21). Other studies have made
the same hypothesis utilizing cortical-based V-waves and spinal
H-reflexes (11, 18, 28). Following spinal adjustment, these studies
showed increased muscle strength, large V-wave increases,
and decreased H-reflexes in individuals with SCSP (28), elite
Taekwondo athletes (18), and stroke survivors (11), suggesting
that spinal adjustment affects motor preparation and commands
from the cortical regions to have more efficient control over force
production. Altogether, these studies suggest that chiropractic
spinal adjustment affects central cortical processing which
thereby increases motor control efficacy.

The improvement in muscle control and strength may be
necessary for a variety of clinical populations but essential
for persons who had a stroke since motor functionality
is often affected by stroke, and its improvement has been
identified as one of the top 10 research priorities by
stroke survivors, caregivers, and clinicians (39). Therefore,
investigating whether chiropractic spinal adjustment can
increase muscle strength and impact walking function in
people with stroke can be important for future research.
In line with this importance, recently, Holt et al. (40) has
found clinically significant improvements in motor function
following a combination of chiropractic spinal adjustment and
physical therapy. It is also postulated that spinal adjustment
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might affect neural functionality (12, 13) in people with
chronic stroke.

Since it has been shown that chiropractic spinal adjustment
affects motor control and its associated cortical processing,
we hypothesized that chiropractic adjustment would affect
the TMS response in stroke patients. To date, the effect of
chiropractic adjustment on MEP has been investigated in people
with sub-clinical spinal pain (21). However, it is unknown if
chiropractic spinal adjustment can alter MEP in people with
stroke. Therefore, this study aimed to elucidate further the neural
plastic effects of a single session of chiropractic spinal adjustment
on corticospinal excitability following spinal adjustment using
MEPs in stroke survivors.

METHODS

We used a double-blinded, randomized controlled, parallel
design in the study. The experiments were conducted at the
Railway General Hospital in Rawalpindi, Pakistan. The study
was approved by the Riphah International University Research

Ethics Committee, Pakistan (ref # Riphah/RCRS/REC/000118).
The New Zealand College Chiropractic Research Committee also
approved the study. The study was conducted in accordance with
the Declaration of Helsinki.

Participants
Twenty-nine stroke patients (22 males, 56.7 ± 11.01 years old)
participated in this study. The participants were recruited from
the outpatient facility of the rehabilitation department at Railway
General Hospital, where they were present for conventional
physical therapy. All participants gave their written informed
consent to participate in the study. The participant details are
shown in Table 1.

Participants were introduced to the lab environment before
enrolling in the study. Participants were eligible to participate
in the study if it had been at least 12 weeks since they had
suffered from a stroke and they had some level of lower limb
motor impairment. Motor performance was assessed by Fugl-
Meyer (FM) motor assessment scale (41). Participants were
ineligible to participate if they showed no evidence of spinal

TABLE 1 | Patients’ characteristics.

No. Group Age (years) Gender Type of Stroke Affected Hemisphere FM Score Time since event (months)

1 Control 49 M Ischemia Right 18 17

2 Control 56 M Ischemia Left 90 3

3 Control 63 M Ischemia Right 24 37

4 Control 49 M Ischemia Right 69 6

5 Control 82 M Ischemia Left 68 14

6 Control 48 M Ischemia Right 88 34

7 Control 48 F Ischemia Right 92 78

8 Control 58 F Hemorrhage Left 73 23

9 Control 62 M Ischemia Left 82 7

10 Control 59 F Ischemia Right 46 60

11 Control 60 M Ischemia Left 64 6

12 Control 60 M Ischemia Left 56 35

13 Control 65 M Hemorrhage Left 83 5

14 Control 67 M Hemorrhage Right 32 154

15 Control 63 M Ischemia Right 85 7

16 Control 53 F Ischemia Left 80 44

17 Intervention 47 M Ischemia Left 64 19

18 Intervention 48 M Ischemia Left 61 47

19 Intervention 34 M Ischemia Left 45 42

20 Intervention 36 M Hemorrhage Right 32 52

21 Intervention 72 F Ischemia Left 83 4

22 Intervention 35 F Ischemia Right 19 3

23 Intervention 62 M Ischemia Left 82 7

24 Intervention 63 M Ischemia Right 68 4

25 Intervention 70 F Ischemia Right 89 179

26 Intervention 52 M Hemorrhage Right 65 71

27 Intervention 59 M Ischemia Left 88 11

28 Intervention 64 M Ischemia Left 88 4

29 Intervention 61 M Ischemia Right 73 34

FM, Fugl-Meyer Score.
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dysfunction (i.e., presence of vertebral subluxation indicators
identified by a chiropractor), had absolute contraindications
to chiropractic spinal adjustment (including spinal fracture,
atlantoaxial instability, spinal infection, spinal tumor, or cauda
equina syndrome), or previously had a significant adverse
response to chiropractic care. Furthermore, they were ineligible
to participate if they had contraindications to magnetic
stimulation, such as a history of epilepsy, pregnancy, or metal
implants in the body. They were also ineligible to participate if
they had no MEPs in response to the TMS for the paretic TA
at rest.

Experimental Protocol
Participants were randomly divided into two groups, chiropractic
(n = 13, age = 54.1 ± 13.1 years, FM score = 65.9 ± 22.2) and
control (n = 16, age = 58.9 ± 8.8 years, FM score = 65.6 ±

24.0), usingminimization tool (QMinim, Telethon Kids Institute,
Australia) based on age and Fugl-Meyer Score after the eligibility
assessment (42). The study was single-blinded; therefore All
participants were blinded to group allocation. The data analyst
was also blinded by using letters A and B instead of the actual
group names in the data files.

Each session consisted of recording MEPs elicited by TMS
before and immediately after the intervention. During each
session, the participants were seated comfortably in a chair and
were asked to keep their eyes open and stay relaxed.

Interventions
The chiropractic spinal adjustment and control interventions
were similar to those used in previous studies (11–13, 23, 27,
28, 43) that have investigated the neurophysiological effects
of chiropractic spinal adjustment. These adjustments were
HVLA thrusts to the spine that rapidly stretch the surrounding
paraspinal tissues and, in particular, the deep small paraspinal
muscles. This results in a “bombardment” of proprioceptive
input to the CNS that elicits the changes in central neural
excitability and motor control changes. The same chiropractor
performed the experimental and control interventions. To test
the effectiveness of participant blinding, at the end of the session,
the participants were asked if they had perceived that they had
undergone active treatment (“yes” or “no”).

Chiropractic Spinal Adjustment
The participants in this trial were checked and adjusted by
a chiropractor using standard chiropractic techniques. The
chiropractor performed manual HVLA spinal adjustment to the
spine or pelvic joints identified as being subluxated (14). The
sites selected for spinal adjustment were based on the clinical
indicators of spinal and pelvic dysfunction (17), which were:
tenderness to palpation of the relevant joints; manual palpation
for the restricted intersegmental range of movement; palpable
asymmetric intervertebral muscle tension, and any unusual or
blocked joint play and end-feel of the joints. Chiropractors
routinely use these biomechanical characteristics as clinical
indicators for chiropractic spinal adjustment (17). Multiple levels
of the spine were adjusted in each participant if required. The
chiropractic spinal adjustment visit lasted∼15 min.

Control Adjustment
The control intervention acted as a physiological control for
possible changes occurring due to the cutaneous, muscular,
or vestibular input that would have occurred with the passive
and active movements involved in preparing a patient for
chiropractic spinal adjustment. The chiropractor performed
the same assessment for spinal and pelvic dysfunction as the
chiropractic adjustment group. However, instead of applying
manual HVLA spinal adjustment, the chiropractor simulated
the spinal adjustment session by providing passive and active
movements to the participant’s head, spine, and body, in
line with what was performed in the actual chiropractic
adjustment session. Thus, the only difference between the
intervention and control is the application of the HVLA thrusts
to the dysfunctional spinal segments. Moreover, the control
intervention acts as a control for the time it takes actually
to perform the HVLA adjustments, and it acts as a control
for the touch and movement of the participant that occurs as
the chiropractor moves a participant into an adjustment setup.
During the adjustment setups for these control interventions,
the chiropractor was careful not to thrust on the spine or take a
vertebral segment to end-range tension. The duration of control
adjustment was similar to that of chiropractic spinal adjustment.

Electromyography
MEPs were recorded from the most affected lower limb using
surface electromyography (EMG) electrodes (20mm Blue Sensor
Ag-AgCl, AMBU A/S, Ballerup, Denmark). Two electrodes were
placed ∼2 cm apart on the belly of the TA muscle, and a ground
electrode was placed on the distal end of the tibia. The EMG
signals from these electrodes were amplified by OT EMG USB
(OT Bioelectronica, Turin, Italy) at 4,000Hz with a gain of 1,000.

Transcranial Magnetic Stimulation
MEPs were elicited using a single-pulse TMS generated using
a Magstim 200 (Magstim Company, Dyfed, UK). A figure-of-
eight double cone-coil, placed in a posterior-anterior current
direction over the cortical motor area, was used to deliver
the magnetic stimulus. Initially, the optimal stimulation site
and resting threshold (RTh) were determined. The optimal
stimulation site was the location where the largest MEPs were
evoked compared to adjacent areas. The optimal stimulation site
was marked on the tightly-fitted neoprene cap with 1× 1 cm grid
secured to the participant’s head to ensure placement of the coil at
the same location throughout the experimental session. The RTh
was defined as the lowest stimulator output, which elicited 5 out
of 10MEPs with a minimum amplitude of 50µV. Twelve stimuli,
separated by 5–7 s, were delivered at 120% of the RTh before and
after the interventions.

Using Signal Software version 4 (CED, UK), the peak-peak
amplitudes were extracted from each MEP and saved in an
Excel (Microsoft Corporation, USA) file. The average of the 12
MEPs was computed for each participant at each time point
(pre, post) and exported to R version 4.0.2 (R Core Team,
Vienna, Austria) for further analysis. Differences across the two
intervention sessions were evaluated on the absolute and relative
scales. Mean MEP amplitude values for individual participants
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were transformed to relative changes in MEP sizes using the
following formula:

100×
MEP

post

abs
−MEP

pre

abs

MEP
pre

abs

(1)

Statistical Analysis
Separate statistical models evaluated MEP amplitudes in absolute
and relative units. A linear regression model was set up for
the absolute units, which included intervention (Chiropractic,
Control) as a dichotomous variable and baseline MEP amplitude
as a continuous variable. The inclusion of baseline scores as a
linear covariate enabled the model to account for any baseline
differences. As the data were not normally distributed for
the relative units, a robust linear regression model was set
up, which included intervention (Chiropractic, Control) as a
dichotomous variable. This model also includedMEP amplitudes
in absolute units at baseline as a linear covariate to adjust
baseline differences.

Intervention-wise mean MEP amplitudes (MEPabs and
MEP%) estimated with the models have been reported, along
with standard errors, 95% confidence intervals, and relevant
hypothesis tests with a significance level set at 0.05. No
adjustments were applied for multiple comparisons as this
reduces type-I errors at the cost of increased type-II errors (44).

RESULTS

All recruited participants were eligible to participate in the study.
Hence, data from all of these were used for the analysis. On
average, 5.25 ± 2.05 levels of the spine were adjusted in the
intervention group.

Participant blinding was considered successful. Only one
participant out of 13 felt that the intervention was not active
(i.e., chiropractic) in the spinal adjustment group. In the control
group, 14 out of 16 considered that the intervention they received
was active, i.e., they perceived that they received chiropractic
adjustments, but in reality, they received control intervention.

Between-Group Differences
The differences between the two groups at the post-intervention
time-point after removing the pre-intervention differences are
given in Table 2. The chiropractic spinal adjustment resulted in

TABLE 2 | Between group MEP amplitude differences.

Units Difference ± SE, 95%

CI [Lower, Upper]

H0: Difference = 0

z-value or t-value [df]

P-value

Absolute (mV) 0.15 ± 0.04, [0.08, 0.23] 3.42 [26] 0.0002

Relative (%) 92.2 ± 25.8, [41.5, 143] 3.568 0.0004

Significant effects (p < 0.05) are in bold text.

The differences were computed from the statistical models with baseline covariate value

set at 0mV. SE, standard error; CI, confidence interval; H0, null hypothesis; df, degrees

of freedom; mV, millivolts.

a larger MEP size (by 0.15mV, 92%, p < 0.001) compared to the
control intervention.

Within-Group Estimates
MEP sizes estimated from the statistical models in both absolute
and relative units at the post-intervention time-point are given
in Table 3. MEP amplitudes from individual participants are
shown in Figure 1. The results suggested that the chiropractic
adjustment elicited larger MEPs compared to the control
intervention (Figure 2).

DISCUSSION

Main Findings
The primary outcome of this study was that chiropractic
spinal adjustment increased the average MEP amplitude in
both absolute (by 0.15mV) and relative (by 126%) units. No
differences in the MEP amplitude were seen after the control
intervention. To the best of our knowledge, this study is the first
to investigate and report changes in MEP following chiropractic
spinal adjustment in people with stroke.

Comparison With Previous Studies
The increased MEP amplitude following chiropractic spinal
adjustment in this study implies increased excitability of motor
pathways to the TA muscle. An increase in MEP size following
chiropractic adjustment has been found in a recent crossover-
designed study in people with SCSP (21). It was found that a
single session of chiropractic adjustment significantly increased
the MEP amplitude for the TA muscle and abductor pollicis
brevis (APB) muscle by ∼45 and 55%, respectively. The study
further suggested that the changes after spinal adjustment were
at the cortical level and could not be explained by changes at the
spinal cord level. MRCPs, known to originate at the cortical level,
were also increased following adjustments suggesting that the
changes after the adjustment occur at least partially at the supra-
spinal level (21). Changes in MEP’s from lower limbs appear
greater than upper limb MEP changes in several populations.
Two crossover studies in people with SCSP found no difference in
MEP amplitude recorded from the APB muscle following spinal
adjustment at 150% activemotor threshold (ATh) (ATh is defined
as the minimal stimulus intensity at which 5 of 10 consecutive
stimuli evoked an MEP with an amplitude of at least 100 µV
while holding a weak isotonic background contraction of 5–10%
ofmaximum voluntary contraction (MVC)) (30, 31). Thus, spinal
adjustment increased the maximum MEP for the upper limb,
whereas, for the lower limb, the entire stimulus-response curve
increased (i.e., the curve shifted to the left) after spinal adjustment
in an SCSP population (21). We, therefore, predicted that the
stroke population would also see an increase in MEPs elicited at
120% of RTh, which is what was found in this study.

Changes in corticomotor excitability following chiropractic
adjustment have also been reported by studies utilizing other
TMS-induced outcome measures, such as the cortical silent
period (CSP), short-interval intracortical inhibition (SICI), and
short-interval intracortical facilitation (SICF). Two crossover
studies in people with SCSP found a significant shortening of the
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TABLE 3 | Within-group MEP amplitude differences.

Units Intervention MEP pre (mean ± SD) MEP post

(mean ± SD)

Mean ± SE, 95% CI

[Lower, Upper]

H0: Mean = 0 z-value

or t-value [df]

P-value

Absolute (mV) Control 0.15 ± 0.09 0.16 ± 0.09 0.001 ± 0.04, [−0.07, 0.08] 0.03 [26] 0.974

Chiropractic 0.24 ± 0.17 0.39 ± 0.23 0.15 ± 0.05, [0.05, 0.25] 3.04 [26] 0.0054

Relative (%) Control – 7.04 ± 43.8 34 ± 22, [−9.2, 77.1] 1.54 0.123

Chiropractic – 98.6 ± 99.8 126 ± 29.3, [68.7, 183] 4.303 <0.0001

Significant effects (p < 0.05) are in bold text.

FIGURE 1 | Motor Evoked Potentials (MEPs) amplitude. Dots represent

individual MEP amplitudes. Boxplots show the median, 25th, and 75th

percentiles. Error bars represent mean ± SD. The distribution plots show the

density distribution estimated by a Gaussian kernel with an SD of 1.5. The

chiropractic manipulation resulted in a larger MEP amplitude (dashed black

line) compared to the control intervention (solid black line). The figure is

inspired by raincloud plots (45).

CSP recorded from the APB muscle following a single session
of chiropractic spinal adjustment (30, 31). The CSP used to be
considered a cortical inhibitory phenomenon; however, using
single motor unit data combined with surface EMG, Haavik et
al. (36) found that chiropractic spinal adjustment increased the
amplitude of I-waves during the shortening of the CSP in people
with SCSP. A single TMS pulse evokes a series of descending
corticospinal volleys that are separated from each other by
about 1.5ms [for review see (46)]. The evoked descending
corticospinal activity has been directly recorded from epidural
electrodes placed over the high cervical cord in animals and
humans (46). The first wave is thought to be due to the direct
activation of the axons or the axon hillock of fast-conducting
pyramidal tract neurons (PTN) and is called the “D” wave (for
direct activation) (47). The subsequent waves are thought to
originate from indirect (i.e., trans-synaptic) activation of PTNs

and are therefore termed “I” waves (48). These increased I
wave amplitudes were shown to be actual excitatory events by
constructing peristimulus frequencygram (PSF) (49, 50) from
single motor unit recordings and noting that the discharge
rates underlying these peaks were higher than the background
(36). This, therefore, indicates that chiropractic adjustment can
significantly increase the excitability of the motor pathways to
low threshold motor units. Another study reported that a single
session of chiropractic adjustment decreased SICI and increased
SICF in the APB muscle and increased SICI and decreased
SICF in the extensor indicis proprius (EIP) muscle (30). This
study suggested a muscle-specific effect of chiropractic spinal
adjustment on corticomotor excitability. Taken together, these
findings suggest that chiropractic spinal adjustment leads to
increased corticomotor excitability by modulating the balance of
intracortical inhibitory and excitatory outputs to muscles, which
can be the reason for the increased MEP amplitude found in
this study and increased muscle strength and force production
in previous studies (11, 18, 28, 37).

The evidence that chiropractic adjustment increases cortical
drive is also supported by studies that have reported an
increase in V-wave/Mmax ratio and V-wave amplitude for lower
limb muscles following a single session of chiropractic spinal
adjustment (11, 18, 28). The V-wave reflects supra-spinal input
or cortical drive to the motor neuron pool (51, 52). Two
crossover-designed studies reported an increase of 54 and 45%,
respectively, in V-wave/Mmax ratio for the soleus muscle after
a single session of chiropractic spinal adjustment in people with
chronic stroke (11) and subclinical spinal pain (28). Another
crossover-designed study in elite taekwondo athletes found that
a single session of chiropractic adjustment significantly increased
V-wave amplitude to the soleus muscle compared to a control
intervention, and this change lasted for at least 60min (18).
Combined, the results of these studies and the current study
show that chiropractic spinal adjustment can increase the cortical
excitability of both plantar and dorsiflexor muscles. This increase
in cortical excitability is probably the reason behind increased
muscle strength following chiropractic spinal adjustment found
in various populations such as Taekwondo athletes (18), people
with SCSP (28, 37) and people with chronic stroke (11).
Interestingly, in people with chronic stroke, the muscle strength
increased by 65% after the adjustment (11).

Furthermore, chiropractic spinal adjustment-induced changes
in all the above measures occurred with minimal or no change in
the H-reflex (11, 18, 28) with no change in F-wave (21, 30). The
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FIGURE 2 | Estimated means of MEPs. Error bars represent mean ± 95 CI.

The marginal means were estimated with pre-intervention values set to 0
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MEPs size was found after the chiropractic spinal manipulation by (A) 0.15mV

in absolute units and (B) 92% in relative units.

H-reflex represents the excitability of the synapse between large,
fast-conducting Ia fibres and lower motor neurons (53) and is
mainly altered by presynaptic inhibition and lower motoneuron
excitability (54). The F wave represents the antidromic activation
of a portion of the lower motor neurons at the spinal cord level
(53). This indicates that the changes seen are due to supra-spinal
neuroplastic changes rather than changes in spinal excitability.

The increased MEP amplitudes found in this study can
also indicate improved sensorimotor integration and functional
connectivity in stroke survivors following spinal adjustment.
The early peaks of somatosensory evoked potentials (SEPs)
are severely decreased or even absent in stroke populations
(55–59). However, Navid et al. (12) found increased N30 SEP
peak amplitude in stroke survivors following spinal adjustment,
implying improved early sensorimotor function. In addition,
increased functional connectivity was found in the default mode
network (DMN) in stroke survivors after a single session of spinal
adjustment (13). Generally, decreased functional connectivity
has been reported in the stroke population compared to
healthy people (60–64). Therefore, an increased resting-state
functional connectivity in the DMN is likely to be related to
relieving of pain and improved memory (13) since decreased
functional connectivity of the DMN is associated with chronic
pain development and maladaptive neural plasticity (65, 66).

Altogether, these cortical changes can also be the reason for
increased MEPs measured at the TA muscle of the paretic limb.

Possible Mechanisms
Motor recovery following a stroke depends on adaptive and
maladaptive neural plasticity changes. As vertebral subluxations
are central segmental motor control problems that cause ongoing
maladaptive neural plastic changes in the CNS, correction of
vertebral subluxation by chiropractic spinal adjustments results
in central neural plastic changes (15, 23, 67, 68). Therefore,
it is possible that the increase in MEP following chiropractic
spinal adjustment observed in this study was due to changes in
maladaptive neural plasticity.

The control intervention acted as a physiological control for
possible changes occurring due to the cutaneous, muscular, or
vestibular input that would have occurred with the passive and
activemovements involved in preparing a patient for chiropractic
spinal adjustment. This was chosen to determine if the difference
in outcome measure was due to the application of HVLA thrust
or other cutaneous, muscular, or vestibular input caused by
passive and active movements occurring during a chiropractic
session. As is done before spinal adjustment, loading a joint
has been shown to alter paraspinal proprioceptive firing in
anaesthetized cats (69). Therefore, this was carefully avoided by
stopping the movement before the end-range-of-motion when
passivelymoving the participants, making the control adjustment
appropriate.

Study Considerations
There was no restriction on the type of stroke and the affected
brain regions in the inclusion criteria. Therefore, there are
possible differences in the brain morphology of the stroke
patients and non-uniformity of the kind of stroke and affected
brain regions. Thus, it is possible that we could have found
even larger changes in MEPs if more homogenous patients with
respect to stroke type and location were recruited. This would,
of course, make the recruitment of individuals more difficult and
limit the generalizability of the study. Furthermore, the onset of
stroke was quite variable in the participants of the current study.
Following a stroke, neuroplasticity is more pronounced in the
first 3 months (70). Therefore, the effects of spinal adjustment
may be different for different stages of stroke progression, which
needs to be further investigated in future studies. Moreover, it
is unknown if the observed changes in MEP depend on the
severity or time since stroke and possibly contribute to the
large variability observed in MEP amplitude. Therefore, future
studies can explore this relationship and confirm the finding with
other measures.

This was an exploratory study with a sample size of 29.
However, previous studies based on stroke survivors have used
sample sizes smaller than this study (10–21 participants) (11–13,
71–75). Future studies exploring the potential changes following
chiropractic care for this population can consider increasing and
diversifying the sample size to have more generalizable results.

This is a basic science study; therefore, the results from this
study should not be extrapolated to clinical implications for
the chronic stroke population. For clinical implication, Holt
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et al. (40) has found clinically significant improvements in
motor function following a combination of chiropractic spinal
adjustment and physical therapy. Further work is required to
explore what potential clinical implications chiropractic care may
have for different stages of stroke progression, which needs to be
further investigated in future studies.

CONCLUSION

The study results suggest that a single session of chiropractic
spinal adjustment increases the corticomotor excitability in
chronic stroke survivors by increasing the TA MEPs. Along with
the previous findings, it can be postulated that such changes
in corticospinal excitability improve muscle strength efficiency
and function. Future studies should investigate the long-term
effects of the adjustment in different stages and types of stroke
for a better understanding of the impact of chiropractic care on
stroke rehabilitation.
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