Aalborg Universitet

The Combination of Preoperative Pain, Conditioned Pain Modulation, and Pain Catastrophizing Predicts Postoperative Pain 12 Months After Total Knee Arthroplasty

Larsen, Dennis Boye: Laursen, Mogens: Edwards, Robert R: Simonsen, Ole: Arendt-Nielsen, Lars: Petersen, Kristian Kjær

Published in: Pain Medicine

DOI (link to publication from Publisher): 10.1093/pm/pnaa402

Publication date: 2021

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

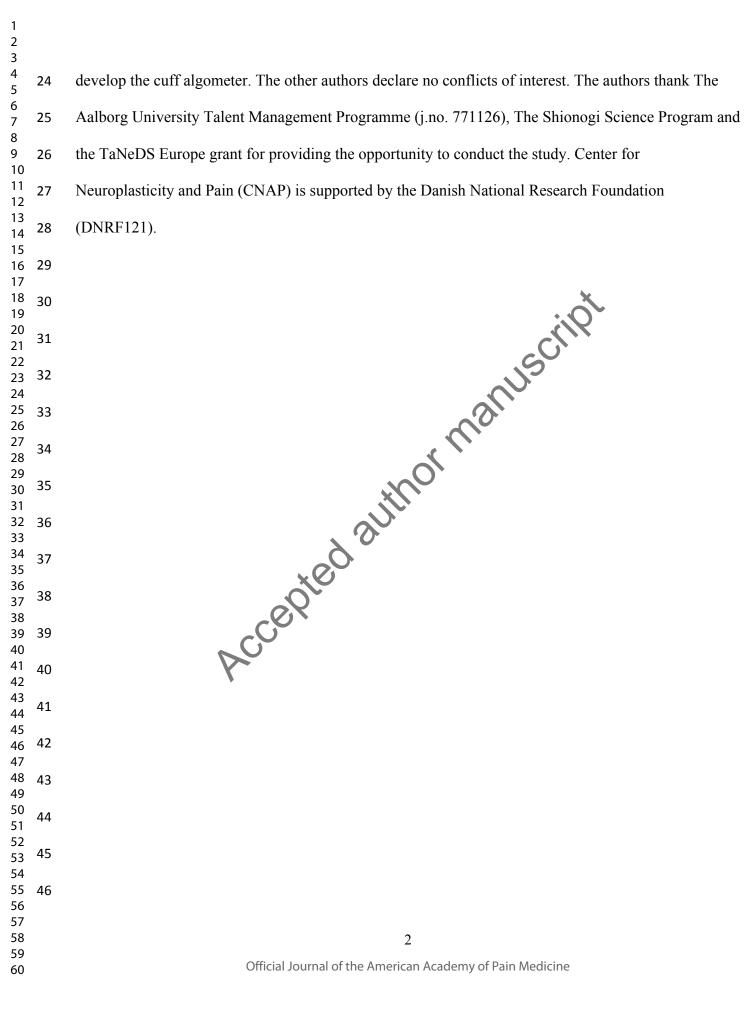
Citation for published version (APA):

Larsen, D. B., Laursen, M., Edwards, R. R., Simonsen, O., Arendt-Nielsen, L., & Petersen, K. K. (2021). The Combination of Preoperative Pain, Conditioned Pain Modulation, and Pain Catastrophizing Predicts Postoperative Pain 12 Months After Total Knee Arthroplasty. Pain Medicine, 22(7), 1583-1590. Advance online publication. https://doi.org/10.1093/pm/pnaa402

General rights

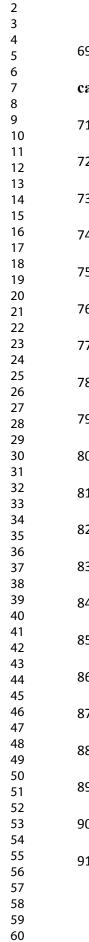
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -


Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

This is a pre-copyedited, author-produced version of an article accepted for publication in Pain Medicine following peer review. The version of record Dennis Boye Larsen, PhD, Mogens Laursen, MD, Robert R Edwards, PhD, Ole Simonsen, MD, Lars Arendt-Nielsen, PhD, Kristian Kjær Petersen, PhD, The Combination of Preoperative Pain, Conditioned Pain Modulation, and Pain Catastrophizing Predicts Postoperative Pain 12 Months After Total Knee Arthroplasty, Pain Medicine, Volume 22, Issue 7, July 2021, Pages 1583–1590, is available online at: https://doi.org/10.1093/pm/pnaa402


Accepted authormanuscript

2 3		
4 5	1	TITLE: The combination of preoperative pain, conditioned pain modulation, and pain
6 7 8 9 10	2	catastrophizing predicts postoperative pain <u>12 months after total knee arthroplasty</u>
	3	Dennis Boye Larsen, PhD ^{1,2} , Mogens Laursen, MD ³ , Robert R. Edwards, PhD ⁴ , Ole Simonsen, MD ³ ,
11 12	4	Lars Arendt-Nielsen, PhD ^{1,2} , Kristian Kjær Petersen, PhD ^{1,2*}
13 14	5	¹ SMI, Faculty of Medicine, Department of Health Science and Technology, Aalborg University,
15 16	6	Aalborg, Denmark
17 18 19	7	² Center for Neuroplasticity and Pain (CNAP), SMI, Faculty of Medicine, Department of Health
20 21	8	Science and Technology, Aalborg University, Aalborg, Denmark
22 23	9	³ Orthopaedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
24 25 26 27 28	10	⁴ Pain Management Center, Brigham & Woman's Hospital, Chestnut Hill, MA 02467, USA
	11	
29 30	12	Original article for: Pain Medicine
31 32	13	ault
33 34 35	14	Running title: Preoperative factors: 12 months postoperative pain
36 37	15	
38 39	16	* Corresponding author
40 41	17	Associate Professor Kristian Kjær Petersen, PhD
42 43 44	18	Center for Neuroplasticity and Pain (CNAP), SMI, Faculty of Medicine, Department of Health Science
45 46	19	and Technology, Aalborg University, Aalborg, Denmark
47 48	20	kkp@hst.aau.dk
49 50	21	
51 52 53	22	Conflicts of Interest and Sources of Funding: Kristian Kjær Petersen received a grant from the
54 55	23	Danish Ministry of Higher Education and Science in collaboration with Cortex Technology Aps to
56 57	-	
58 59		1 Official Journal of the American Academy of Pain Medicine
60		Official Journal of the American Academy of Pain Medicine

1 2	
2	
4 5	47
6 7	48
8 9	49
10 11	50
12 13	51
14 15	
16 17	52
18 19	53
20 21 22	54
22 23 24	55
24 25 26	56
27 28	57
29 30	58
31 32	59
33 34	60
35 36	61
37 38	01
39 40	62
41 42	63
43 44	64
45 46 47	65
47 48 49	66
50 51	67
52 53	68
54 55	
56 57	
58	
59 60	

47	Abstract
48	Objectives: Approximately 20% of knee osteoarthritis (OA) patients undergoing total knee
49	arthroplasty (TKA) report chronic postoperative pain. Studies suggests that preoperative variables such
50	as impaired descending pain control, catastrophizing, function, and neuropathic-like symptoms may
51	predict postoperative pain <u>12 months</u> after TKA, but the combined prediction value of these factors
52	has not been tested. The current prospective cohort study aimed to combine preoperative risk factors to
53	investigate the predictive value for postoperative pain 12 months after TKA.
54	Design: Prospective cohort with follow-up 12 months after surgery.
55	Patients: A consecutive sample of 131 knee OA patients undergoing TKA.
56	Methods: Pain intensity, Pain Catastrophizing Scale (PCS) scores, PainDetect, conditioned pain
57	modulation (CPM), and Oxford Knee Score (OKS) were obtained before and 12 months after TKA.
58	Results: TKA improved pain (p<0.001), PCS score (p<0.001), PainDetect Questionnaire scores
59	(p<0.001), and OKS scores (p<0.001). Preoperative pain correlated with preoperative PCS (r=0.38,
60	p < 0.001), PainDetect (r=0.53, $p < 0.001$), and OKS (r=-0.25, $p = 0.001$). Preoperative PainDetect was
61	associated with preoperative PCS (r=0.53, p <0.001), and OKS (r=-0.25, p =0.002). Higher
62	postoperative pain was correlated with high preoperative pain (r=0.424, p<0.001), PCS (r=0.33,
63	<i>p</i> <0.001), PainDetect (r=0.298, <i>p</i> =0.001), and lower CPM (r=-0.18, <i>p</i> =0.04). <u>The combination of</u>
64	preoperative pain, PCS score, and CPM explained 20.5% of variance in follow-up pain. PCS had a
65	significant effect on pain trajectory when accounting for patient variance (t=14.41, p<0.0005).
66	Conclusion: The combination of high preoperative clinical pain intensity, high pain catastrophizing
67	thoughts, and impaired CPM, may predict long-term postoperative pain <u>12 months after surgery</u> .
68	

cata	strophizing, total knee 70 arthroplasty, knee osteoarthritis
71	
72	
73	
74	
75	
76	crit
77	Accepted author manuscript
78	al.
79	
80	.XIO
81	an
82	×eo
83	e R
84	
85	Y
86	
87	
88	
89	
90	
91	
	4

1 2		
3 4 5	92	Introduction
6 7	93	Knee osteoart
8 9	94	the end-stage
10 11 12	95	after TKA (2)
13 14	96	important to d
15 16	97	A recent trans
17 18 19	98	diffuse noxiou
20 21	99	be a measure of
22 23	100	compared to h
24 25 26	101	chronic postor
26 27 28	102	conflicting evi
29 30	103	associated wit
	104	suggested to b
33 34 35	105	indicates that
36 37	106	Preoperative p
	107	after TKA (18
40 41 42	108	cognitive facto
42	109	A recent study
45 46		pain six month
	111	have been rep
49 50 51	112	with knee OA
52	113	These studies
	114	and may be pr
56 57 58 59		

93	Knee osteoarthritis (OA) is a highly prevalent painful musculoskeletal disorder in the elderly (1) and
94	the end-stage treatment is total knee arthroplasties (TKA). 20% of patients suffer from chronic pain
95	after TKA (2) and since the number of TKA surgeries is expected to grow in the coming years (3), it is
96	important to delineate potential preoperative factors for chronic postoperative pain.
97	A recent translational study on the assessment of conditioned pain modulation (CPM) in humans and
98	diffuse noxious inhibitory control in rodents reported similar responses (4), indicating that CPM might
99	be a measure of descending pain inhibitory function. CPM is impaired in severe knee OA pain
100	compared to healthy subjects (5-7) and impaired preoperative CPM has been associated with the
101	chronic postoperative pain following thoracotomy (8), abdominal surgery (9), and TKA (10) although
102	conflicting evidence exists (11-13). Furthermore, preoperative widespread pressure hyperalgesia was
103	associated with chronic postoperative pain after TKA (7,14,15) and widespread hyperalgesia has been
104	suggested to be a result of impairment of descending pain inhibitory control (16), which further
105	indicates that preoperative CPM might be a predictor for chronic postoperative pain after TKA.
106	Preoperative pain catastrophizing was shown to predict the presence of pain six (17) and 24 months
107	after TKA (18) and pain catastrophizing may impact CPM (18,19), indicating an interplay between
108	cognitive factors and descending pain inhibitory control.
109	A recent study found preoperative neuropathic pain-like symptoms predictive of chronic postoperative
110	pain six months after TKA (11) and knee OA patients with positive neuropathic pain-like symptoms
111	have been reported to present with widespread pressure hyperalgesia and impaired function compared
112	with knee OA patients who show negative neuropathic pain-like symptoms (20).
113	These studies indicate an interaction between CPM, PCS, neuropathic pain-like symptoms and function
114	and may be predictive of chronic postoperative pain after TKA. It is currently unknown if these

preoperative risk factors hold independent predictive value for postoperative pain 12 months after TKA and therefore, the aim of this exploratory study was to investigate the impact of the combination of preoperative factors CPM, PCS, neuropathic pain-like symptoms, and function on pain 12 months after TKA. Methods Patients A total of 185 knee OA patients (82 men and 103 women; mean age \pm SD: \pm 8.92 years) scheduled for unilateral TKA were included in the current study. The patients included here were enrolled in a randomized controlled trial to assess the effect of acute and 7 days postoperative administration of chlorzoxazone on postoperative pain 12 months after TKA. In short, chlorzoxazone is a muscle relaxant aimed to enhance acute postoperative pain recovery (21), which may improve postoperative pain (22), but the study demonstrated no effect of chlorzoxazone on acute and chronic postoperative pain compared to placebo (see (23)) and the patient groups were pooled for the current analysis. Sample size calculation was based on pain intensity after 5 mins of walk 48 hrs after TKA. Exclusion criteria involved use of gabapentinoids, glucocorticoids, opioids, anxiolytics, antipileptics or antidepressants; alcohol abuse; other pain treatments outside of standard care; malignant conditions; pregnancy; BMI > 40 kg/m²; suffering from other peripheral or central acting diseases; allergy towards chlorzoxazone; per-operative complications (e.g. fractures) and liver diseases. All patients signed an informed consent prior to inclusion. The study was approved by the Danish Medicines Agency, the local ethics committee (VN-20150024) and Danish Data Protection Agency, preregistered at Clinicaltrials.gov (identifier number: NCT02405104) and conducted in accordance to the Declaration of Helsinki.

2 3		
Λ	138	
,	139	Quantitative Sensory Testing
8 9 10	140	Pressure pain sensitivity was evaluated by cuff pressure using a computer-controlled cuff algometer
	141	(Cortex Technology and Aalborg University, Denmark). A 13-cm wide tourniquet cuff (VBM, Sulz,
	142	Germany) was placed at the head of the gastrocnemius muscle of both legs. An electronic visual
15 16 17	143	analogue scale (VAS) was used to continuously rate the pain on a 10 cm long sliding resistor and
	144	sampled at 10 Hz; 0 cm indicated "no pain" and 10 cm indicated "maximum pain".
20	145	First, the pressure in kPa was increased at a rate of 1 kPa/s at the ipsilateral lower leg to the surgical
	146	knee and patients were instructed to rate the pain on the electronic VAS until a pressure tolerance
24 25 26	147	threshold (PTT) was reached. At this point, the patients were instructed to press a stop button. The
27	148	pressure pain detection threshold (PDT) was defined as the pressure at which the VAS score exceeded
	149	1 cm (24,25), which is similar to previous studies within this field. Following this, the same procedure
31 32 33	150	was conducted on the contralateral lower leg.
	151	
	152	Conditioned pain modulation
	153	CPM was performed by having the tourniquet on the contralateral lower leg inflated to a level of 70%
40 41 42	154	of PPT. Simultaneously, the cuff on the ipsilateral lower leg to the surgical knee was inflated by 1
13	155	kPa/sec and the patients were asked to rate their pain intensity on the electronic VAS. CPM was
	156	calculated as the absolute change for the conditioned versus non-conditioned PDT ($PDT_{conditioned}$ -
47 48 49	157	PDT _{non-conditioned}) where a negative value reflects inefficient CPM whereas a positive value reflects
50	158	efficient CPM. Test-retest reliability on cuff algometry for CPM measures have shown interclass
	159	correlation coefficients (ICCs) of 0.75 – 0.87 (26) indicating good-to-excellent reliability.
	160	
56 57 58		7
59 60		/ Official Journal of the American Academy of Pain Medicine
00		

Pre- and postoperative pain catastrophizing thoughts were assessed by the Pain Catastrophizing Scale

1 2	
3	
4	161
5	101
6 7	162
8	
9	163
10	
11	164
12 13	
14	165
15	
	166
17	
18 19	167
20	
21	168
22	4.00
	169
24 25	170
26	170
27	171
28	1/1
29	172
30 31	1/2
32	173
33	
34	174
35	
36 37	175
38	
39	176
40	
41	177
42 43	
43 44	178
45	
46	179
47	
48	180
49 50	
50	181
52	465
53	182
54	102
55 56	183
57	
58	
59	
60	

Cognition, function, and pain intensity measures

163	(PCS) (27). The PCS contains 13 items (each scored from 0-4) reflecting the frequency of
164	catastrophizing cognitions and is based on three subscales on rumination, magnification, and
3 165	helplessness. PCS scores range from 0-52 and the PCS is validated in both chronic pain patients, pain-
5 5 166 7	free samples (28,29) and the Danish version in clinical and non-clinical cohorts (30).
³ 167	Preoperative pain and function were tested by the 12-item Oxford Knee Score (OKS) questionnaire
) 168	which assesses everyday activity. The combined OKS score for function (5/12 items) and pain
2 3 169	subscales (7/12 items) was used and have been shown to demonstrate excellent internal consistency
+ 5 170 5	(31). The 12 questions were rated on a 5-point Likert-scale ranging from "None" (4) to "Severe" (0).
, 3 171	The total score ranges from 0-48 with higher values reflecting better outcome.
) 172	To detect possible neuropathic pain-like symptoms, the PainDetect (32) was completed preoperatively.
2 173	The total score can range from 0-38, where PanDetect scores \geq 19 indicates neuropathic pain-like
, 174 5	symptoms, scores \leq 12, representing nociceptive pain symptoms, and scores between 13 and 18,
5 7 175	indicative of unclear symptoms (32). The PainDetect has been shown to have fair test-retest reliability
3 9 176)	in OA patients undergoing JKA(33).
, 177 <u>2</u>	Clinical pain was assessed as the pain intensity after 20 mins of rest and was rated on a visual analogue
3 178	scale (VAS; 0-10 cm; referred to as pain from hereon). Clinical pain was assessed pre- and 12 months
5 5 179 7	postoperatively.
, 3 180 9	
) 181	Statistics
2 3 182	All data were assessed for normality by Shapiro-Wilk test. Additional assumptions for multiple
4 5 183	backward linear regressions were tested based on Durbin-Watson values and collinearity variance
7 3	8
))	Official Journal of the American Academy of Pain Medicine

Page 9 of 30

1

Pain Medicine

2			
3			
4	1	Q	л
5	1	0	4
6			
7	1	8	5
8			
9	1	Q	б
10	1	0	v
11			
	1	8	7
12			
13	1	Q	Q
14			
15	1		
16	1	8	9
17			
18	1	b	0
19	-	٢	v
20		L	
20	1	9	1
22	1	ו ה	`
23	T	9	2
24			
25	1	9	3
26			
27		L	
28	1	þ	4
29			
30	1	9	5
		Γ	Ū
31		L	_
32	1	P	6
33			
34	1	9	7
35	-	Γ	`
36			
37	1	P	8
38			
39	1	' 9	9
	-	2	2
40			
41	2	0	0
42			
43	2	ሶ	1
44	2	U	T
45			
46	2	0	2
47			
48	~	~	~
49	2	υ	3
50			
	2	ი	Δ
51	-	ĺ	ſ
52			
53	2	0	5
54			
55			
56			
57			
58			
59			
60			
$\mathbf{v}\mathbf{v}$			

inflation factor (VIF) and tolerance. Paired samples t-tests were performed to assess changes between pre and postoperative clinical pain, PCS scores, OKS score, PainDetect, and CPM. Pearson correlation analyses were used to investigate the associations between the preoperative factors as well as correlations between preoperative factors and postoperative pain. A multiple backward linear regression was performed with postoperative pain as the dependent factor and utilizing preoperative CPM, PCS scores, PainDetect, and OKS score as the potential predictors. Backwards selection was applied to the linear regressions to identify predictors using cut-offs for statistical independence and inclusion of 0.05 and exclusion of 0.157, respectively, according to Akaike's Information Criterion for prognostic models (34). For the analysis, all collinearity tolerance and VIF levels were above 0.1 and below 10 (35), respectively, indicating no collinearity or multicollinearity among the independent variables. To take into account patient variability and the effects of PCS and CPM on the individual patient pain trajectories, a mixed effect model was performed, with patients as random factor and baseline PCS and CPM as putative moderator variables on pain intensity change over time. Maximum likelihood estimation was used to estimate the parameter probability distribution and -log2 likelihood was used for information criterion. All analyses were performed in Statistical Package for Social Sciences (v. 25, IBM). A *p*-value < 0.05 was considered statistically significant. All data is presented as mean ± SEM unless otherwise stated. **Results** A total of 131 of the 185 knee OA patients (mean age \pm SD: 67.73 \pm 8.98 years; 73 women) had all preoperative data available and were included in the analyses. The included patients did not differ from the excluded patients on gender ratio ($\chi^2 < 0.001$, p = 0.98) but the included group (mean ± SD: 67.73 ±

8.98 years) was significantly younger than the excluded group (mean \pm SD: 71.41 \pm 8.28, t_{183} = -2.6, p = 0.01). Missing preoperative data included pain intensity (n=4), PCS score (n=21), PainDetect (n=15), CPM (n=12), and OKS score (n=17). TKA significantly reduced clinical pain intensity ($t_{130} = 13.1$, p < 0.001), PCS score ($t_{125} > 15.143$ p < 0.001) 0.001), PainDetect scores ($t_{120} = 9.6$, p < 0.001), and improved OKS scores ($t_{130} = -2.5$, p = 0.013). No ₁₄ 210 significant changes were found when comparing CPM ($t_{125} = -0.26$, p = 0.79), see TABLE 1. The 16 211 number of patients reporting postoperative pain 12 months after surgery is presented in TABLE 2, where different cut-offs have been included with their associated percentage out of the full cohort. Correlations between preoperative risk factors 23 214 ²⁵ 215 Preoperative clinical pain intensity correlated with preoperative PCS (r = 0.38, p < 0.001), PainDetect (r = 0.53, p < 0.001), and OKS (r = -0.25, p = 0.001). Furthermore, preoperative PainDetect was 30 217 associated with preoperative PCS (r = 0.53, p < 0.001), and OKS (r = -0.25, p = 0.002). <u>Preoperative</u> 32 218 <u>PCS and CPM did not correlate (r = -0.02)</u> p = 0.92) 37 220 Correlations between preoperative risk factors and postoperative pain 39 221 Higher postoperative clinical pain intensity was associated with higher preoperative clinical pain intensity (r = 0.424, p < 0.001, $R^2 = 0.1798$, Figure 1A), higher preoperative PCS score (r = 0.33, all p) ≤ 0.001 , R² = 0.1089, Figure 1B), lower preoperative CPM (r = -0.18, p = 0.04, R² = 0.0324, Figure 46 2<mark>2</mark>4 ⁴⁸ 225 1C), and higher preoperative PainDetect scores (r = 0.298, p = 0.001, $R^2 = 0.0889$, Figure 1D). Conversely, preoperative OKS score (r = -0.13, p = 0.13) was not significantly associated with 53 227 postoperative pain. Official Journal of the American Academy of Pain Medicine

3	
4 5 228	
6 7 229	Independent preoperative factors for 12 months postoperative pain
8 9 230 10	Model 1 of the multiple regression analysis was significant ($F_{5,125} = 7.26$, $p < 0.001$) and explained
¹¹ 231 12	19.4% of postoperative clinical pain intensity variance. After applying backwards selection, model 2
13 14 232	(F _{3,127} = 12.17, $p < 0.001$) explained 20.5% (Adj. R ² = 0.205) of the variance in postoperative clinical
15 16 233 17	pain intensity, with significant independent predictors preoperative clinical pain intensity ($\beta = 0.32$, $p < 0.32$)
¹⁸ 234 19	0.01), and preoperative PCS score ($\beta = 0.196$, $p = 0.025$). Preoperative CPM ($\beta = -0.124$, $p = 0.122$)
20 21 235 22	contributed to the variance explanation, but was not an independent factor (TABLE 2).
23 236 24	
25 237 26	Parameter estimation of PCS and CPM on pain trajectory after surgery
27 28 288	The mixed effect model demonstrated that PCS remained a statistically significant moderator variable
29 30 239 31	for pain intensity change over time ($t = 14.41$, $p < 0.0005$) with a 1-unit increase in PCS resulting in an
32 240 33	estimated increase of 0.128 in pain intensity. Conversely, CPM did not significantly impact pain
³⁴ 241 35	intensity change over time when taking into consideration patients as a random factor ($t = -0.91$, $p =$
36 37 242	<u>0.36). No interaction between PCS and CPM was found ($t = -0.458$, $p = 0.65$).</u>
38 39 243	CO.
40 41 244 42	Discussion
43 44 245	The current study is the first larger report to show that preoperative impaired CPM, higher preoperative
45 46 246 47	clinical pain intensity, higher preoperative PainDetect scores and higher preoperative PCS are all
47 48 247 49	associated with postoperative pain 12 months after TKA. When using these preoperative factors in a
⁵⁰ 248 51	backward regression analysis only higher preoperative clinical pain intensity and higher preoperative
52 53 249	PCS were shown to be independent predictors for higher postoperative pain intensities 12 months after
54 55 250 56	TKA with preoperative CPM contributing to the prediction value.
57 58	11
59 60	Official Journal of the American Academy of Pain Medicine
00	· · · · · · · · · · · · · · · · · · ·

3	
4 5 251	
6 7 252 8	Preoperative pain and pain catastrophizing predict pain 12 months after surgery
9 253 10	It is well-documented that preoperative pain is associated with chronic postoperative pain after TKA
11 254 12	(36) but recent studies have provided contradicting results (15,37), indicating that other preoperative
13 14 255	factors may be important. The current study corroborates earlier findings that preoperative pain
15 16 2 56 17	intensity is predictive of postoperative pain <u>12 months after TKA</u> , and further extends this by showing
18 257 19	that preoperative inefficient CPM and high pain catastrophizing are important factors to consider. This
20 21 258	supports the notion that combining a range of preoperative risk factors yields a more comprehensive
22 23 259 24	<u>understanding of useful preoperative parameters to consider when predicting postoperative pain 12</u>
25 260 26	months after surgery (7,13,38).
27 28 261	A recent study demonstrated that high pain catastrophizing and pain expectation were associated with
29 30 262 31	reduced CPM effect (39). It is generally accepted that chronic pain patients (18) who report high pain
32 263 33	catastrophizing also report higher pain intensity and poorer pain-related outcomes possibly due to e.g.
³⁴ 264 35	maladaptive coping approaches and increased central pain processing (29,40). At present, pain
36 37 265 38	catastrophizing is considered an important factor to consider when predicting poor outcome after
39 266 40	surgery (41), though some past reports have questioned its influence (42). A recent study demonstrated
41 267 42	that increased preoperative PCS scores were predictive for moderate-to-severe postoperative pain 24
43 44 45	hours after TKA (43). Prospectively, Forsythe et al. (18) reported that those suffering from higher
45 46 269 47	chronic postoperative pain 24 months after TKA had higher preoperative PCS. Additionally, a study
48 270 49	found that high preoperative pain catastrophizing was associated with worse preoperative function and
⁵⁰ 271	predicted poor pain outcome 6 months after TKA (17). These studies are supported by the current
52 53 272 54	findings, in that preoperative PCS score was an independent factor for postoperative pain. Preliminary
55 273 56	evidence suggests that interventions targeted at reducing catastrophizing thoughts may improve
57 58 59	12

Official Journal of the American Academy of Pain Medicine

2	
2 3	
, 4	
5	274
5	
7	275
3	
9	276
10	270
11	277
12	277
13	
14	278
15	
16	279
17	
18	280
19	200
20	
21	281
22	
23	282
24	
25	283
26	205
27	
28	284
29	
30	285
31	
32	286
33	200
34	a a a
35	287
36	
37	288
38	
39	289
40	_00
41	200
42	290
43	
44	291
45	
46	292
47	
48	293
49	255
-0	ah .
51	294
52	294 295
53	295
54	
55	296
56	
57	
58	
59	

60

outcomes such as self-reported pain and function (44). However, a recent large multisite randomized clinical trial demonstrated that preoperative reduction of PCS by pain coping therapy did not decrease the prevalence of chronic postoperative pain when compared to a non-treated group and this does question if modifying preoperative pain catastrophizing improves the postoperative outcome (45). This is supported by a recent study demonstrating that cognitive behavioral therapy based pain education did not improve postoperative pain compared to usual care at three or 12 months after TKA (46). Therefore, strategies aimed at enhancing recovery after TKA in the most vulnerable subgroup of SCI patients remain unclear and require further studies. Preoperative CPM contribute to variance explanation in postoperative pain after TKA Descending pain pathways, have been studied in animals and humans for decades and in patients with chronic pain it seems evident that impairment of descending pain pathways is associated with higher pain intensities (47) and impaired CPM has been found in patients suffering knee OA (5-7). Furthermore, CPM has been shown predictive of chronic postoperative pain six months after thoracic surgery (8), abdominal surgery (9), and TKA (10,48), and CPM predicted pharmaceutical treatment effect of duloxetine in painful diabetic neuropathy (49) and non-steroidal anti-inflammatory drug treatment in knee osteoarthritis (50,51). Two studies in OA patients undergoing TKA found that in 14 (10) and 47 (48) knee OA patients, impaired preoperative CPM was correlated with postoperative pain 6 months after TKA. However, the majority of studies including CPM as a preoperative predictor for chronic postoperative pain after TKA report poor prediction value and several studies have been unable to demonstrate associations between preoperative CPM and chronic postoperative pain (52). The current study supports this in that preoperative CPM and postoperative pain 12 months after TKA were correlated, but CPM was not an independent risk factor for chronic postoperative pain after TKA. This

finding may indicate that identification of additional preoperative risk factors is needed to better predict chronic postoperative pain 12 months after TKA.

The interaction between preoperative risk factors for chronic postoperative pain

Preoperative clinical pain intensity has been shown to predict chronic postoperative pain in multiple lines of evidence (7,13,53,54). High pain catastrophizers in general report higher pain intensity (18) and preoperative pain catastrophizing has been shown to predict presence of pain six (17) and 24 months after TKA (18). Furthermore, chronic postoperative pain after TKA is associated with preoperative widespread pressure hyperalgesia (13–15,55). Since impairment of descending pain inhibitory control may lead to widespread hyperalgesia (16) this further supports the notion that CPM may be important to consider when predicting chronic postoperative pain. The reliability of CPM assessment have been questioned (56,57) and it is evident that different CPM paradigms will yield different results (26), which complicates the generalizability of the current evidence. The predictive value of have been highlighted in a few studies (8,10,49-51) but a recent systematic review questions this predictive value (52). The current findings demonstrated an association between preoperative CPM and pain assessed at 12-months follow-up, but CPM was not an independent predictor and therefore the current study adds to the ongoing debate whether CPM holds predictive value for future pain. Additionally, neuropathic pain-like symptoms predict chronic postoperative pain six months after TKA (11), and knee OA patients with signs of neuropathic pain-like symptoms also exhibit widespread pressure hyperalgesia and impaired function when comparing with patients with no signs of neuropathic pain-like symptoms (20). This study supports that preoperative clinical pain intensity and PCS are independent predictors for chronic postoperative pain following TKA and there might be an association between preoperative CPM and PainDetect and chronic postoperative pain after TKA.

1 2	
3	
4 5 320	
6 7 321	Limitations
8 9 322 10	The current study is limited by missing data from approx. 30% of the patients, which resulted in
¹¹ 323 12	exclusion, however, this is a common phenomenon in these longitudinal studies (12,42,45). The
13 14 324	excluded patients were significantly older than the included and it is known that younger age prior to
15 16 325 17	TKA is associated with higher risk of chronic postoperative pain. It was, however, recently shown in a
¹⁸ 326 19	large-scale study that CPM is unaffected by age (58) but the results from the current study should be
20 21 327	interpreted with care due to this limitation. The total variance explained by the included preoperative
22 23 328	factors was 20.5% indicating only a modest prediction value but is the first to demonstrate the potential
24 25 329	in combining readily available variables such as preoperative pain and PCS, with mechanistic pain
26 27 28 330	profiling such as CPM.
29	
₃₀ 331	
- 31	
31 32 332 33	Conclusions
32 332 33 34 333 35	profiling such as CPM. Conclusions The current study demonstrates correlations between high preoperative clinical pain intensity, high
32 332 33 34 333 35 36 37 334	Conclusions The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and
32 332 33 34 333 35 36 37 334 38 39 335	The current study demonstrates correlations between high preoperative clinical pain intensity, high
32 332 33 34 333 35 36 37 334 38	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 43 337 45 46 338	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 45 46 338 47 48 339	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 44 337 45 46 338 47	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore,
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 44 337 45 46 338 47 48 339 49 50 340 51 340 52 53 341	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore, how adding additional preoperative risk factors could increase the prediction value and if modification
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 45 46 338 47 48 339 49 50 340 51 52 53 341 54 55	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore, how adding additional preoperative risk factors could increase the prediction value and if modification
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 44 337 45 46 338 47 48 339 49 50 340 51 341 52 53 341 54	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore, how adding additional preoperative risk factors could increase the prediction value and if modification
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 44 337 45 46 338 47 48 339 49 50 340 51 340 52 53 341 54 55 56 57 58	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore, how adding additional preoperative risk factors could increase the prediction value and if modification
32 332 33 34 333 35 36 37 334 38 39 335 40 41 336 42 43 337 45 46 338 47 48 339 49 50 340 51 54 55 56 57	The current study demonstrates correlations between high preoperative clinical pain intensity, high preoperative pain catastrophizing thoughts, high preoperative neuropathic pain-like symptoms and impaired CPM and high clinical pain intensity 12 months after TKA. The combination of preoperative high clinical pain scores, high levels of pain catastrophizing thoughts, and impaired descending pain modulation predicted 20.5% variance in pain at rest 12 months after TKA with preoperative clinical pain intensity and pain catastrophizing scores as independent predictors. Future studies should explore, how adding additional preoperative risk factors could increase the prediction value and if modification of these preoperative risk factors in combination reduces the risk of chronic postoperative pain.

Conflict of interest and disclosure: Kristian Kjær Petersen received a grant from the Danish Ministry of Higher Education and Science in collaboration with Cortex Technology Aps to develop the cuff algometer. The other authors declare no conflicts of interest. The authors thank The Aalborg University Talent Management Programme (j.no. 771126), The Shionogi Science Program and the TaNeDS Europe grant for providing the opportunity to conduct the study. Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121). 16 347 18 348 **Author contributions** KKP, ML, OS, and LAN contributed to the conceptual development of the study. Data were collected 25 351 by ML and OS and analyzed by DBL. All authors interpreted and discussed the data. DBL wrote the ed author first draft which was critically revised by KKP, RRE, LAN, OS, and ML. All authors approved the final version. 32 354 35 355 References Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, (1)and national incidence, prevalence, and years lived with disability for 328 diseases and injuries ₄₀ 357 42 358 for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211-59. https://doi.org/10.1016/S0140-6736(17)32154-2. Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of patients (2)report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review 49 361 of Prospective studies in unselected patients. BMJ Open 2012;2:1–12. https://doi.org/10.1136/bmjopen-2011-000435. Official Journal of the American Academy of Pain Medicine

2 3			
Λ	64	(3)	Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee
,	65		arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg - Ser A 2007;89:780-5.
8 9 3 10	66		https://doi.org/10.2106/JBJS.F.00222.
	67	(4)	Cummins TM, Kucharczyk M, Graven-Nielsen T, Bannister K. Activation of the descending
17	68		pain modulatory system using cuff pressure algometry: Back translation from man to rat. Eur J
15 16 3 17	69		Pain 2020. https://doi.org/10.1002/ejp.1580.
18 3 ⁻ 19	70	(5)	Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, et al.
20	71		Sensitization in patients with painful knee osteoarthritis. Pain 2010,149.573-81.
22 23 3	72		https://doi.org/10.1016/j.pain.2010.04.003.
24 25 3 26	73	(6)	Graven-Nielsen T, Wodehouse T, Langford RM, Arendt Nielsen L, Kidd BL. Normalization of
27	74		widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee
29 30 3	75		osteoarthritis patients after knee replacement. Arthritis Rheum 2012;64:2907–16.
31 32 3 33	76		https://doi.org/10.1002/art.34466.
34 3 ⁻ 35	77	(7)	Petersen KK, Graven-Nielsen T, Simonsen O, Laursen MB, Arendt-Nielsen L. Preoperative pain
36 37 3	78		mechanisms assessed by cuff algometry are associated with chronic postoperative pain relief
38 39 3 40	79		after total knee replacement. Pain 2016;157. https://doi.org/10.1097/j.pain.000000000000531.
40 41 3 42	80	(8)	Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, Sprecher E, et al. Prediction of
43 44 3	81		chronic post-operative pain: Pre-operative DNIC testing identifies patients at risk. Pain
45 46 3	82		2008;138:22-8. https://doi.org/10.1016/j.pain.2007.10.033.
47 48 3: 49	83	(9)	Wilder-Smith OH, Schreyer T, Scheffer GJ, Arendt-Nielsen L. Patients with chronic pain after
50	84		abdominal surgery show less preoperative endogenous pain inhibition and more postoperative
52 53 3	85		hyperalgesia: A pilot study. J Pain Palliat Care Pharmacother 2010;24:119–28.
54 55 3 56	86		https://doi.org/10.3109/15360281003706069.
50 57 58			17
59			
60			Official Journal of the American Academy of Pain Medicine

1

Page 18 of 30

2 3		
4 5 38	37 (10) Vaegter HB, Handberg G, Emmeluth C, Graven-Nielsen T. Preoperative Hypoalgesia after Cold
6 7 38	88	Pressor Test and Aerobic Exercise is Associated with Pain Relief 6 Months after Total Knee
8 9 38 10	39	Replacement. Clin J Pain 2017;33:475-84. https://doi.org/10.1097/AJP.00000000000428.
11 39 12	90 (11) Kurien T, Arendt-Nielsen L, Petersen KK, Graven-Nielsen T, Scammell BE. Preoperative
13 14 39	91	Neuropathic Pain-like Symptoms and Central Pain Mechanisms in Knee Osteoarthritis Predicts
15 16 39	92	Poor Outcome 6 Months After Total Knee Replacement Surgery. J Pain 2018;00.
17 18 39 19	93	https://doi.org/10.1016/j.jpain.2018.05.011.
20 21 39	94 (12) Petersen KK, Simonsen O, Laursen MB, Arendt-Nielsen L. The Role of Preoperative
22 23 39	95	Radiological Severity, Sensory Testing, and Temporal Summation on Chronic Postoperative
24 25 39 26	96	Pain following Total Knee Arthroplasty. Clin J Pain 2018.
27 28 39)7	https://doi.org/10.1097/AJP.000000000000528.
29 30 39	98 (13) Petersen KK, Arendt-Nielsen L, Simonsen Q, Wilder-Smith O, Laursen MB. Presurgical
31 32 39 33	99	assessment of temporal summation of pair predicts the development of chronic postoperative
34 35	00	pain 12 months after total knee replacement. Pain 2015;156:55–61.
36 37 40)1	https://doi.org/10.1016/j.pam.000000000000022.
38 39 40 40)2 (14) Wylde V, Palmer S, Learmonth ID, Dieppe P. The association between pre-operative pain
40 41 40 42)3	sensitisation and chronic pain after knee replacement: An exploratory study. Osteoarthr Cartil
43 44 40)4	2013;21:1253-6. https://doi.org/10.1016/j.joca.2013.05.008.
45 46 40	05 (15) Wylde V, Sayers A, Lenguerrand E, Gooberman-Hill R, Pyke M, Beswick AD, et al.
47 48 40 49	06	Preoperative widespread pain sensitization and chronic pain after hip and knee replacement: A
50 51 40)7	cohort analysis. Pain 2015;156:47-54. https://doi.org/10.1016/j.pain.000000000000002.
52 53 40	08 (16) Schaible H-G. Spinal mechanisms contributing to joint pain. Osteoarthritic Jt Pain Novartis
54 55 40 56)9	Found Symp 2004;260:4-27. https://doi.org/10.1017/CBO9781107415324.004.
57 58		18
59		
60		Official Journal of the American Academy of Pain Medicine

2 3		
4 5 41	.0 (17)	Riddle DL, Wade JB, Jiranek WA, Kong X. Preoperative pain catastrophizing predicts pain
6 7 41	.1	outcome after knee arthroplasty. Clin Orthop Relat Res 2010;468:798-806.
8 9 41 10	2	https://doi.org/10.1007/s11999-009-0963-y.
¹¹ 41 12	.3 (18)	Forsythe ME, Dunbar MJ, Hennigar AW, Sullivan MJL, Gross M. Prospective relation between
13 14 41	.4	catastrophizing and residual pain following knee arthroplasty: Two-year follow-up. Pain Res
15 16 41 17	.5	Manag 2008;13:335-41. https://doi.org/10.1155/2008/730951.
¹⁸ 41 19	.6 (19)	Weissman-Fogel I, Sprecher E, Pud D. Effects of catastrophizing on pain perception and pain
20 21 41	.7	modulation. Exp Brain Res 2008;186:79–85. https://doi.org/10.1007/s00221-007-1206-7.
22 23 41 24	.8 (20)	Moss P, Benson HAE, Will R, Wright A. Patients with Knee Osteoarthritis Who Score Highly
24 25 41 26	.9	on the PainDETECT Questionnaire Present with Multimodality Hyperalgesia, Increased Pain,
27 28 42	20	and Impaired Physical Function. Clin J Pain 2018;34:15–21.
29 30 42	21	https://doi.org/10.1097/AJP.0000000000000004.
31 32 42 33	.2 (21)	van Tulder MW, Touray T, Furlan AD, Solway S, Bouter LM. Muscle relaxants for non-specific
³⁴ 42 35	.3	low-back pain. Cochrane Database Syst Rev 2003. https://doi.org/10.1002/14651858.CD004252.
36 37 42	.4 (22)	Kehlet H, Jensen TS, Woolf CJ, Centre M. Persistent postsurgical pain: risk factors and
38 39 42 40	25	prevention. Lancet (London, England) 2006;367:1618-25. https://doi.org/10.1016/S0140-
41 42 42	26	6736(06)68700-X.
43 44 42	. (23)	Skrejborg P, Petersen KK, Beck J, Ulrich M, Simonsen O, Nielsen PT, et al. Investigating the
45 46 42 47	.8	effect of perioperative chlorzoxazone on acute postoperative pain after total hip and knee
47 48 42 49	29	replacement surgery (Accepted for Publication). Clin J Pain 2020.
⁵⁰ 43	80 (24)	Petersen KK, Olesen AE, Simonsen O, Arendt-Nielsen L. Mechanistic pain profiling as a tool to
52 53 43	31	predict the efficacy of 3-week nonsteroidal anti-inflammatory drugs plus paracetamol in patients
54 55 43 56	32	with painful knee osteoarthritis. Pain 2019;160:486–92.
57 58		19
59 60		Official Journal of the American Academy of Pain Medicine

1 2		
3 4 5 433		https://doi.org/10.1097/j.pain.00000000001427.
6 7 434	(25)	Graven-Nielsen T, Vaegter HB, Finocchietti S, Handberg G, Arendt-Nielsen L. Assessment of
8 9 435 10		musculoskeletal pain sensitivity and temporal summation by cuff pressure algometry. Pain
10 11 436 12		2015;156:2193-202. https://doi.org/10.1097/j.pain.000000000000294.
13 14 437	(26)	Imai Y, Petersen KK, Mørch CD, Arendt Nielsen L. Comparing test-retest reliability and
15 16 438 17		magnitude of conditioned pain modulation using different combinations of test and conditioning
18 439 19		stimuli. Somatosens Mot Res 2016;33:169–77. https://doi.org/10.1080/08990220.2016.1229178.
20 21 440	(27)	Sullivan MJL, Bishop SR, Pivik J. The Pain Catastrophizing Scale: Development and
22 23 441 24		Validation. Psychol Assess 1995;7:524-32. https://doi.org/10.1037/1040-3590.7.4.524.
25 442 26	(28)	Osman A, Barrios FX, Gutierrez PM, Kopper BA, Mernfield T, Grittmann L. The pain
27 28 28		catastrophizing scale: Further psychometric evaluation with adult samples. J Behav Med
29 30 444 31		2000;23:351-65. https://doi.org/10.1023/A:1005548801037.
32 445 33	(29)	Edwards RR, Calahan C, Mensing G, Smith M, Haythornthwaite JA. Pain, catastrophizing, and
³⁴ 446 35		depression in the rheumatic diseases. Nat Rev Rheumatol 2011;7:216–24.
36 37 447 38		https://doi.org/10.1038/nrrheum.2011.2.
39 448 40	(30)	Kjøgx H, Zachariae R Pfeiffer-Jensen M, Kasch H, Svensson P, Jensen TS, et al. Pain frequency
41 449 42		moderates the relationship between pain catastrophizing and pain. Front Psychol 2014;5:1–11.
43 44 45		https://doi.org/10.3389/fpsyg.2014.01421.
45 46 451 47	(31)	Harris K, Dawson J, Doll H, Field RE, Murray DW, Fitzpatrick R, et al. Can pain and function
48 452 49		be distinguished in the Oxford Knee Score in a meaningful way? An exploratory and
50 51 50		confirmatory factor analysis. Qual Life Res 2013;22:2561-8. https://doi.org/10.1007/s11136-
52 53 454 54		013-0393-x.
55 455 56	(32)	Freynhagen R, Baron R, Gockel U, Tölle TR. pain DETECT : a new screening questionnaire to
57 58		20
59 60		Official Journal of the American Academy of Pain Medicine

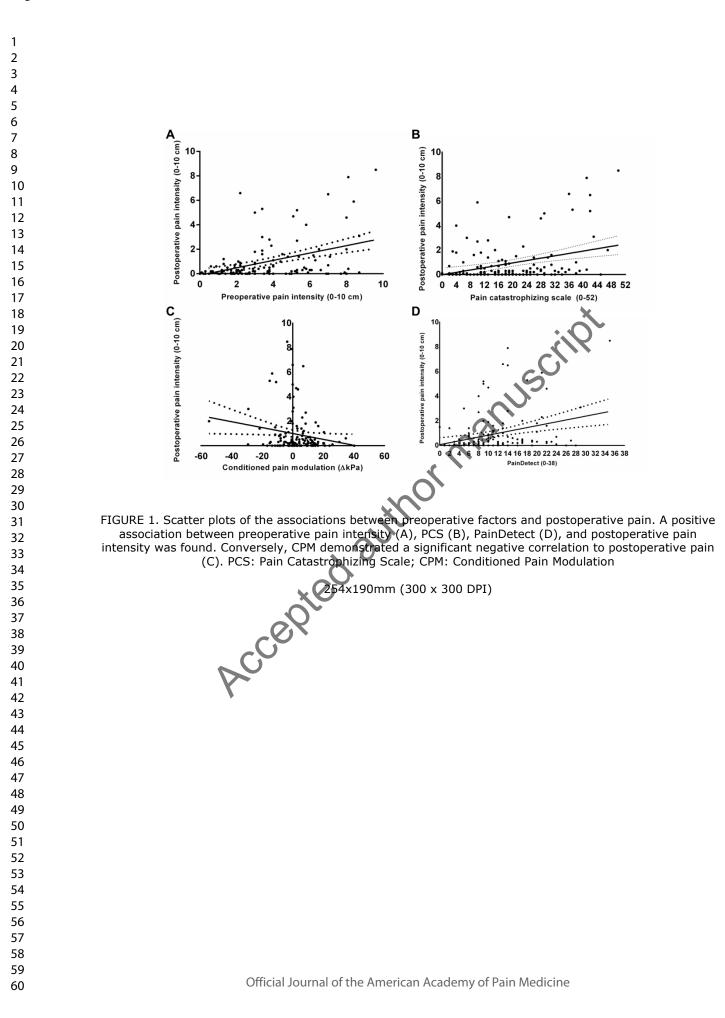
1 2		
3 4 456 5		identify neuropathic components in patients with back pain . Curr Med Res Opin 2006;22:1911-
6 7 457		20. https://doi.org/10.1185/030079906x132488.
8 9 458 10	(33)	Turner K V., Moreton BM, Walsh DA, Lincoln NB. Reliability and responsiveness of measures
11 11 12		of pain in people with osteoarthritis of the knee: a psychometric evaluation. Disabil Rehabil
13 14 460		2017;39:822-9. https://doi.org/10.3109/09638288.2016.1161840.
15 16 461 17	(34)	Heinze G, Dunkler D. Five myths about variable selection. Transpl Int 2017;30:6–10.
18 462 19		https://doi.org/10.1111/tri.12895.
20 21 463	(35)	Hair J., Black WC, Babin BJ, Anderson RE. Multivariate Data Analysis: International version.
22 23 464 24		New Jersey, Pearson; 2010.
24 25 465 26	(36)	Lewis GN, Rice DA, McNair PJ, Kluger M. Predictors of persistent pain after total knee
27 28 466		arthroplasty: A systematic review and meta-analysis. Br J Anaesth 2015;114:551-61.
29 30 467		https://doi.org/10.1093/bja/aeu441.
31 32 468 33	(37)	Kjær Petersen K, Lunn TH, Husted H, Hansen LT, Simonsen O, Laursen MB, et al. The
³⁴ 469 35		influence of pre- and perioperative administration of gabapentin on pain 3-4 years after total
36 37 470		knee arthroplasty. Scand J Pain 2018;18:237-45. https://doi.org/10.1515/sjpain-2018-0027.
38 39 471 40	(38)	Wylde V, Beswick A, Bruce J, Blom A, Howells N, Gooberman-Hill R. Chronic pain after total
41 472 42		knee arthroplasty, EFORT Open Rev 2018;3:461-70. https://doi.org/10.1302/2058-
43 44 473		5241.3.180004.
45 46 474 47	(39)	Traxler J, Hanssen MM, Lautenbacher S, Ottawa F, Peters ML. General versus pain-specific
48 475 49		cognitions: Pain catastrophizing but not optimism influences conditioned pain modulation. Eur J
50 51 476		Pain (United Kingdom) 2019;23:150-9. https://doi.org/10.1002/ejp.1294.
52 53 477 54	(40)	Turner JA, Aaron LA. Pain-related catastrophizing: What is it? Clin J Pain 2001;17:65–71.
55 478 56		https://doi.org/10.1097/00002508-200103000-00009.
57 58		21
59 60		Official Journal of the American Academy of Pain Medicine

1

Page 22 of 30

gical
ND
1B1.BJJ-
ar follow-
-0.
profiling
-87.
raining
A quasi-
Training
nt
nized
694312.
ment and
1

Page 23 of 30


1

2 3		
4 5 502	(48)	Bossmann T, Brauner T, Wearing S, Horstmann T. Predictors of chronic pain following total
6 7 503		knee replacement in females and males: an exploratory study. Pain Manag 2017;7:391-403.
8 9 504 10		https://doi.org/10.2217/pmt-2017-0023.
¹¹ 505 12	(49)	Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain
13 14 506		modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 2012;153:1193-8.
15 16 507		https://doi.org/10.1016/j.pain.2012.02.021.
17 18 508 19	(50)	Edwards RR, Dolman AJ, Martel MO, Finan PH, Lazaridou A, Cornelius M, et al. Variability in
²⁰ 21 ⁵⁰⁹		conditioned pain modulation predicts response to NSAID treatment in patients with knee
22 23 510		osteoarthritis. BMC Musculoskelet Disord 2016;17:284. https://doi.org/10.1186/s12891-016-
24 25 511 26		1124-6.
20 27 28 512	(51)	Petersen KK, Simonsen O, Olesen AE, Mørch CD, Nielsen LA. Pain inhibitory mechanisms and
29 30 513		response to weak analgesics in patients with knee osteoarthritis. Eur J Pain 2019:1904–12.
31 32 514		https://doi.org/10.1002/ejp.1465.
33 ³⁴ 515 35	(52)	Petersen KK, Vaegter HB, Stubhaug A, Wolff A, Scammell BE, Arendt-Nielsen L, et al. The
36 37 516		predictive value of quantitative sensory testing. vol. Publish Ah. 2020.
38 39 517		https://doi.org/10.1097/jpain.000000000002019.
40 41 518 42	(53)	Lundblad H, Kreicbergs A, Jansson K-å. Prediction of persistent pain after total knee
43 44 519		replacement for osteoarthritis. J Bone Jt Surg 2008;90-B:166-71. https://doi.org/10.1302/0301-
45 46 520		620X.90B2.19640.
47 48 521	(54)	Rice DA, Kluger MT, McNair PJ, Lewis GN, Somogyi AA, Borotkanics R, et al. Persistent
49 ⁵⁰ 522 51		postoperative pain after total knee arthroplasty: a prospective cohort study of potential risk
52 53 523		factors. Br J Anaesth 2018;121:804–12. https://doi.org/10.1016/j.bja.2018.05.070.
54 55 524	(55)	Arendt-Nielsen L, Simonsen O, Laursen MB, Roos EM, Rathleff MS, Rasmussen S, et al. Pain
56 57 58		22
58 59 60		23 Official Journal of the American Academy of Pain Medicine

al treatment in patients with knee
t 12 months. Eur J Pain
Reliability of conditioned pain
7/j.pain.0000000000000689.
view on the reliability of different
n. Pain 2017:158:988.
critte
Carstensen T, Graven-Nielsen T.
in the Adult Danish General
Pain Medicine

1	
2 3	
4 5 548	
6 7 549	
8	
9 550 10	Figure legends:
¹¹ 551 12	FIGURE 1. Scatter plots of the associations between preoperative factors and postoperative pain.
13 14 552	A positive association between preoperative pain intensity (A), PCS (B), PainDetect (D), and
15 16 553 17	postoperative pain intensity was found. Conversely, CPM demonstrated a significant negative
18 554 19	correlation to postoperative pain (C). PCS: Pain Catastrophizing Scale; CPM: Conditioned Pain
20 21 555	Correlation to postoperative pain (C). PCS: Pain Catastrophizing Scale; CPM: Conditioned Pain Modulation Table legends
22 23 556	JSC
24 25 557	
26 27 28 558	Table legends
29	
30 31 559	TABLE 1. Preoperative versus postoperative differences in included variables - Mean \pm SD. 12
32 33 560 34	months after TKA, patients had significantly lower pain, PCS scores, PainDetect scores, and OKS
35 561 36	scores. CPM did not change after TKA. TKA: Total knee arthroplasty; PCS: Pain Catastrophizing
³⁷ 562 38	Scale; OKS: Oxford Knee Scale, CPM: Conditioned Pain Modulation.
39 40	Scale; OKS: Oxford Knee Scale, CPM: Conditioned Pain Modulation.
41 563 42	
43 44 564	TABLE 2. Ratio of patients presenting with pain > 0, 1, 2, and 3 at 12 months follow-up after TKA.
45 46 565	Considerable difference in the percentage of patients that were classified as having postoperative pain 12 months
47 48 566	after TKA, depending on threshold for pain presence. TKA: Total knee arthroplasty
49 50	
51 567 52	
53 54	
55 56	
57 58	25
59	Official Journal of the American Academy of Pain Medicine
60	Official Journal OF the American Academy of Pall Medicine

568	TABLE 3. Multiple backward linear regression analysis including 131 patients. Model 1
569	containing all preoperative predictors explained 19.4% of the postoperative pain variance. Model 2
570	explained 20.5% of the postoperative pain variance and revealed preoperative pain and PCS score as
571	significant independent predictors for postoperative pain, whereas preoperative CPM contributed non-
572	significantly to the variance explanation. PCS: Pain Catastrophizing Scale; CPM: Conditioned Pain
573	Modulation; OKS: Oxford Knee Score, R^2 : R-squared, proportion of variance explained by
574 575	independent predictors
	Modulation; OKS: Oxford Knee Score, R ² : R-squared, proportion of variance explained by independent predictors
	26 Official Journal of the American Academy of Pain Medicine

TABLE 1.

	Preoperative	Postoperative	<i>p</i> *
Pain	3.5 ± 2.35	0.94 ± 1.67	< 0.001
Total PCS score	19.99 ± 11.48	4.01 ± 6.94	< 0.001
PainDetect	11.41 ± 6.71	4.91 ± 4.89	< 0.001
СРМ	2.27 ± 12.56	2.64 ± 13.39	0.79
OKS scores	33.47 ± 9.17	35.03 ± 12.59	0.013
	cepted auti	35.03 ± 12.59	

TABLE 3.

	Yes	No	Percentage of patients with postoperative pain 12 months after surgery
Pain intensity at rest > 0	94	37	71.8%
Pain intensity at rest > 1	32	99	24.43%
Pain intensity at rest > 2	16	115	13.9%
Pain intensity at rest > 3	13	118	9.92%

Accepted author manuscript

TABLE 3.

<u>Model</u>	Pre-operative factor	Pain after 20 mins of rest (follow- Standardized coefficient	<u>up)</u> <i>P</i>	R ²
1				0.194
	Pain	0.29	0.003	
	СРМ	-0.133	0.113	
	Total PCS score	0.175	0.07	
	PainDetect	0.059	0.58	
	OKS	0.008	0.93	
2				0.20
	Pain	0.32	< 0.001	
	СРМ	-0.124	0.12	
	Total PCS score	0.196	0.025	
	Accepte	0.32 -0.124 0.196		
		l of the American Academy of Pain Medicine		