

Aalborg Universitet

Applied Physical Modeling for Sound Synthesis: The Yaybahar

Juul Christensen, Pelle; Willemsen, Silvin; Serafin, Stefania

Published in:
Interdisciplinary Perspectives on Research in Sound and Music Computing

DOI (link to publication from Publisher):
10.5281/zenodo.5717860

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Juul Christensen, P., Willemsen, S., & Serafin, S. (2021). Applied Physical Modeling for Sound Synthesis: The
Yaybahar. In Interdisciplinary Perspectives on Research in Sound and Music Computing: Proceedings of the
2nd Nordic Sound and Music Computing (NordicSMC) Conference (pp. 11-16). Nordic Sound and Music
Computing. https://doi.org/10.5281/zenodo.5717860

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 03, 2024

https://doi.org/10.5281/zenodo.5717860
https://vbn.aau.dk/en/publications/110d6ed7-e3ad-4a69-a4bb-a52ff574407c
https://doi.org/10.5281/zenodo.5717860

APPLIED PHYSICAL MODELING FOR SOUND SYNTHESIS: THE YAYBAHAR

Pelle J. CHRISTENSEN1, Silvin WILLEMSEN1, and Stefania SERAFIN1

1Multisensory Experience Lab, CREATE, Aalborg University, Copenhagen, Denmark

ABSTRACT

In this paper, finite-difference time-domain methods are
adopted to model a specific instrument, the Yaybahar, in-
vented by Turkish artist Görkem Şen. Each part of the in-
strument is simulated independently and its physical be-
havior is explained in an intuitive yet accurate manner.
The models are implemented in C++ to form an interac-
tive, real-time application. Code and sound samples are
available online.

1. INTRODUCTION

The Yaybahar is a novel acoustical instrument invented by
Turkish artist Görkem Şen. It consists of a string connected
to two drum heads via a couple of springs as seen in Figure
1. It is played by bowing the string and striking the springs
and drums using a mallet. The combination of the springs
and the drums create a reverberant sound that is unusual for
acoustical instruments. A video of Görkem Şen playing the
Yaybahar can be viewed on YouTube 1 .

This paper presents a real-time sound synthesis algorithm
that mimics the Yaybahar by modeling its physical be-
haviour. To accomplish this we employ finite-difference
time-domain (FDTD) methods in the form of finite differ-
ence schemes (FDSs).

The basic concept of FDTD is to describe our system as
a set of differential equations, which are then descritized
to form a FDS, which may then be implemented. In the
descritization we use various finite difference operators [1,
Chapter 2.2]. For example, the difference operators

𝛿𝑡−𝑢
𝑛 =

1

𝑘
(𝑢𝑛 − 𝑢𝑛−1) 𝛿𝑡+𝑢

𝑛 =
1

𝑘
(𝑢𝑛+1 − 𝑢𝑛) (1)

where 𝑘 is the sample period, compute an approximation
of the first order time derivative of 𝑢, and

𝛿𝑡𝑡𝑢
𝑛 = 𝛿𝑡+𝛿𝑡− =

1

𝑘2
(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) (2)

approximates the second order time derivative.
To exemplify FTDT methods we take the simple har-

monic oscillator, described by the differential equation

𝑢𝑡𝑡 = −𝜔2
0𝑢 (3)

1 https://youtu.be/_aY6TxC1ojA

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. A screenshot of a video1 of Görkem Şen playing
the Yaybahar by bowing the string.

and descritize it by replacing the derivative with a suitable
difference operator to get the FDS

𝛿𝑡𝑡𝑢 = −𝜔2
0𝑢. (4)

If we expand the difference operator

1

𝑘2
(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) = −𝜔2

0𝑢 (5)

we can isolate 𝑢𝑛+1 to get our update rule

𝑢𝑛+1 = −𝑘2𝜔2
0𝑢 + 2𝑢𝑛 − 𝑢𝑛−1 (6)

which we can use to compute the state of the system at the
next time step from the current and previous state.

The application of finite difference schemes (FDSs) to
sound synthesis is quite mature, see e.g. Numerical Meth-
ods for Sound Synthesis [1] for an in-depth examination of
the topic. We assume the reader is familiar with the basic
concepts and notation found in [1].

Despite their maturity, FDSs have not been readily ap-
plied to real-time synthesis because they are computation-
ally demanding. This is especially true for non-linear sys-
tems. One example of a real-time FDS implementation can
be found in [2], which also covers expressive real-time in-
teraction with the model. While this paper does not expand
upon the theory of FDSs, it does show how the theory may
be applied in the hope that it may be used as a pedagogical
resource or as a starting point for newcomers to the topic.

In Section 2, we examine all the elements of the instru-
ment and discuss their physics in an intuitive manner, and
show how they may be discretized and connected to one

https://youtu.be/_aY6TxC1ojA
http://creativecommons.org/licenses/by/4.0/

another. In Section 2.6 we touch upon the important topic
of stability. Then, in Section 3 we link to the C++ applica-
tion and discuss the optimizations that were needed to get
everything running in real-time. Lastly, we conclude the
paper in Section 4.

2. THE ELEMENTS OF THE YAYBAHAR

In this section we will go through each element of the Yay-
bahar individually: the string, springs, drum heads, the
bow, and the connections between those, and cover their
physics and how to simulate them. A block diagram of the
Yaybahar model can be viewed in Figure 2. An overview
of all parameters (and their units) used for the models pre-
sented in this section is shown in Table 1.

Bow String

Spring

Spring

Membrane

Membrane

Excitation Connection

Figure 2. Block diagram of the Yaybahar. A bowed string
is connected to two springs that connect to two drum heads.

2.1 String

Parameter Description Unit
𝑢 Displacement m
𝜌 Material density kg·m−3

𝑇0 Tension N
𝐸 Young’s modulus Pa
𝐴 Area m2

𝐿 Length m
𝐼 Area moment of inertia m4

𝜎0 Freq. independent damping s−1

𝜎1 Freq. dependent damping m2·s−1

𝜅 Spring dispersion parameter m4·s−2

𝑀 Mass kg
𝜇 Linear density kg·m−1

𝐻 Membrane thickness m
𝑣b Bow speed m·s−1

𝐾 Spring constant kg·s−2

Table 1. Table of the parameters of the elements of the
Yaybahar.

To model the string of the Yaybahar we will use the equa-
tions found in [1, Chapters 6,7, and 8], [3], and [4]. A non-
linear damped stiff string with externally supplied forces is

defined by the partial differential equation

𝑢𝑡𝑡 =
1

𝜌𝐴

(︃
𝑇0 +

𝐸𝐴

2𝐿

∫︁ 𝐿

0

𝑢2
𝑥𝑑𝑥

)︃
𝑢𝑥𝑥 − 𝐸𝐼

𝜌𝐴
𝑢𝑥𝑥𝑥𝑥

− 2𝜎0𝑢𝑡 + 2𝜎1𝑢𝑡𝑥𝑥 +
1

𝜌𝐴

∑︁
𝑓

𝛿(𝑥− 𝑥𝑓)𝐹𝑓 ,

(7)

where 𝑢 = 𝑢(𝑥, 𝑡) is the displacement of the string at point
𝑥 and time 𝑡. See Table 1 for a description of all the param-
eters. The last term is the sum of external forces 𝐹𝑓 acting
on the string, localized at positions 𝑥𝑓 along the string via
the Dirac delta function 𝛿(𝑥− 𝑥𝑓).

The first term of (7) is the force arising due to the ten-
sion of the string. We see that this force is determined by
𝑢𝑥𝑥, the curvature of the string, a result that is arrived at by
analysing the tension forces acting on an infinitesimal sec-
tion of the string, see e.g. [5, Chapter 2] or [1, Chapter 6].

We can understand what this means by looking at Figure
3, where the solid line is the displacement of the string and
𝑢𝑥𝑥 is indicated with the dashed line. Notice that 𝑢𝑥𝑥 is
somewhat opposite of 𝑢, meaning that the string will be
pulled towards the middle (as one would expect).

Figure 3. Plot of a part of a string 𝑢 = 𝑢(𝑥, 𝑡) (solid line)
, its second derivative 𝑢𝑥𝑥 (dashed line), which determines
the force due to tension, and 𝑢𝑥𝑥𝑥𝑥 (dotted line), which
determines the force due to stiffness. 𝑢𝑥𝑥 and 𝑢𝑥𝑥𝑥𝑥 has
been scaled for them to fit in the plot.

The curvature is scaled by 𝑇0 + 𝐸𝐴
2𝐿

∫︀ 𝐿

0
𝑢2
𝑥𝑑𝑥. The in-

clusion of 𝑇0 means that a higher tension will result in a
stronger restoring force and thus higher pitch. The integral
can be interpreted as the increase in tension that occurs
at large displacements [5, Chapter 5]. This give rises to
phenomena such as downwards pitch glides which can be
experienced by strongly plucking e.g. a guitar string.

The next term is the one involving 𝑢𝑥𝑥𝑥𝑥, which is an ex-
pression of the force due to the stiffness of the string ma-
terial. A derivation of this can be found in [5, Chapter 2].
Looking at Figure 3 we see that 𝑢𝑥𝑥𝑥𝑥 points in the same
direction as 𝑢. The minus sign in front of the term in equa-
tion (7) means that the stiffness will somewhat counteract
the displacement of the string trying to make it straight.
Stiffness causes dispersion which gives rise to inharmonic
overtones, which can be observed in e.g. a low frequency
piano string or metal rods.

The term −2𝜎0𝑢𝑡 causes damping of the system that,
greatly simplified, occurs due to viscous air flow, internal

friction, and radiated energy [5, Chapter 2]. 𝑢𝑡 is the ve-
locity of 𝑢, and is a scalar pointing in the direction that 𝑢
is currently moving. Thus, adding a force opposite of this
will cause damping. Higher velocities will cause a stronger
damping force which results in a exponential decrease in
volume over time.

The term 2𝜎1𝑢𝑡𝑥𝑥 causes frequency dependent damping
of the string. Intuitively we expect 𝑢𝑥𝑥 to be larger when
the string is vibrating at higher frequencies and thus cause
a stronger damping. The physical justification for this term
is weak, but it causes the correct perceptual phenomena of
higher frequencies dying out more quickly [4].

Proceeding with the discretization of Equation (7), we re-
place the derivative operators with suitable finite difference
operators to get

𝛿𝑡𝑡𝑢
𝑛
𝑙 =

1

𝜌𝐴

(︃
𝑇0 +

𝑁−1∑︁
𝑖=0

(𝛿𝑥+𝑢
𝑛
𝑖)2

)︃
𝛿𝑥𝑥𝑢

𝑛
𝑙 − 𝐸𝐼

𝜌𝐴
𝛿𝑥𝑥𝑥𝑥𝑢

𝑛
𝑙

− 2𝜎0𝛿𝑡·𝑢
𝑛
𝑙 + 2𝜎1𝛿𝑡−𝛿𝑥𝑥𝑢

𝑛
𝑙 +

1

𝜌𝐴

∑︁
𝑓

𝐽𝑙(𝑥𝑓)𝐹𝑓 .

(8)

In addition to time we have also descritized space by in-
troducing a number of grid points 𝑁 with grid spacing ℎ,
where 𝑙 is the grid point under consideration. The function
𝐽𝑙(𝑥𝑓), the discrete counterpart of 𝛿(𝑥 − 𝑥𝑓), is a spread-
ing operator scaling 𝐹𝑓 by 1/ℎ whenever ⌊𝑥𝑓/ℎ⌋ = 𝑙 and
by 0 otherwise [1, Chapter 5].

We now derive the update rule for the spring by expand-
ing all operators that contain 𝑢𝑛+1

𝑙 and then proceed isolate
𝑢𝑛+1
𝑙 to get

𝑢𝑛+1
𝑙 =

1

1 + 𝑘𝜎0
(𝐹t + 𝐹s + 𝐹d + 𝐹e + 2𝑢𝑛

𝑙 − 𝑢𝑛−1
𝑙)

(9)

where

𝐹t =
𝑘2

𝜌𝐴

(︃
𝑇0 +

𝑁−1∑︁
𝑖=0

ℎ(𝛿𝑥+𝑢
𝑛
𝑖)2

)︃
𝛿𝑥𝑥𝑢

𝑛
𝑙 (10)

𝐹s = −𝑘2𝐸𝐼

𝜌𝐴
𝛿𝑥𝑥𝑥𝑥𝑢

𝑛
𝑙 (11)

𝐹d = 𝑘𝜎0𝑢
𝑛−1
𝑙 + 2𝑘𝜎1(𝛿𝑥𝑥𝑢

𝑛
𝑙 − 𝛿𝑥𝑥𝑢

𝑛−1
𝑙) (12)

𝐹e =
𝑘2

𝜌𝐴

∑︁
𝑓

𝐽𝑙(𝑥𝑓)𝐹𝑓 . (13)

Notice that we did not expand the spatial difference op-
erators because they have no influence on the isolation of
𝑢𝑛+1
𝑙 .
For implementation purposes to bound the domain of our

string by choosing an integer 𝑁 to be the number of points
on our string, evenly spaced by ℎ. Assuming that the length
of our string is 𝐿 = 1 we have 𝑁 = 1/ℎ.

Special care needs to be taken at the boundaries — the
points 𝑙 = 0 and 𝑙 = 𝑁 − 1. There are multiple ways of
doing this depending on what behavior we want. We will
use a clamped boundary condition, which means that the
points at each end must satisfy [1, Chapter 7]

𝑢 = 𝑢𝑥 = 0, (14)

which can be implemented by introducing virtual points at
positions −1 and 𝑁 .

To implement 𝑢 = 0 in Equation (14) we set the virtual
points

𝑢0 = 𝑢𝑁−1 = 0. (15)

To implement 𝑢𝑥 = 0 on the left end of the string we apply
𝛿𝑡· at 𝑙 = 0 to get

𝛿𝑡·𝑢
𝑛
0 =

1

2ℎ
(𝑢𝑛

1 − 𝑢𝑛
−1) = 0, (16)

which means that setting the virtual point

𝑢𝑛
−1 = 𝑢𝑛

1 , (17)

will satisfy the condition. The same is done for the right
end which gives us 𝑢𝑛

𝑁 = 𝑢𝑛
𝑁−2.

2.2 Spring

The springs that connect the string to the drum membranes
are modeled using [6]

𝑢𝑡𝑡 = −𝜅2𝑢𝑥𝑥𝑥𝑥 − 2𝜎0𝑢𝑡 + 2𝜎1𝑢𝑡𝑥𝑥

+
1

𝜇

∑︁
𝑓

𝛿(𝑥− 𝑥𝑓)𝐹𝑓 .
(18)

In this model 𝜅 is a constant that determines the dispersive
behaviour of the spring [3] [6]. 𝜇 = 𝐿/𝑀 is the linear
density of the spring where 𝐿 is the length and 𝑀 the total
mass of the spring.

Equation (18) actually describes the dynamics of a lin-
ear stiff bar [3] [1, Chapter 7]. However, it was used
by Parker, Penttinen, and Bilbao to model wave propaga-
tion on a slinky — a long, large diameter spring — so it
should be suitable for modeling the springs of the Yayba-
har as well [6]. More accurate models of springs exist, see
e.g. [7], but the one used here has the benefit of simplicity
and ease of implementation for real-time purposes.

The terms of Equation (18) should look familiar as they
are also found in Equation (7) and explained in Section 2.1.
Note there is no force due to tension — the only restoring
force in the spring is the material stiffness.

We discretize Equation (18) by applying the suitable dif-
ference operators to get

𝛿𝑡𝑡𝑢
𝑛
𝑙 = −𝜅2𝛿𝑥𝑥𝑥𝑥𝑢

𝑛
𝑙 − 2𝜎0𝛿𝑡·𝑢

𝑛
𝑙 + 2𝜎1𝛿𝑡−𝛿𝑥𝑥𝑢

𝑛
𝑙

+
1

𝜇

∑︁
𝑓

𝐽𝑙(𝑥𝑓)𝐹𝑓 .
(19)

Then, expanding the operators and isolating 𝑢𝑛+1
𝑙 we get

𝑢𝑛+1
𝑙 =

1

1 + 𝑘𝜎0
(𝐹s + 𝐹d + 𝐹e + 2𝑢𝑛

𝑙 − 𝑢𝑛−1
𝑙) (20)

where

𝐹s = −𝑘2𝜅2𝛿𝑥𝑥𝑥𝑥𝑢
𝑛
𝑙 (21)

𝐹d = 𝑘𝜎0𝑢
𝑛−1
𝑙 + 2𝑘𝜎1(𝛿𝑥𝑥𝑢

𝑛
𝑙 − 𝛿𝑥𝑥𝑢

𝑛−1
𝑙) (22)

𝐹e =
𝑘2

𝜇

∑︁
𝑓

𝐽𝑙(𝑥𝑓)𝐹𝑓 . (23)

At each end, a spring is attached either to the string or to
a drum head. We will model this by using free bound-
ary conditions and the connections covered in Section 2.5.
Free boundary conditions mean that at either end of the
spring we must satisfy [1]

𝑢𝑥𝑥 = 𝑢𝑥𝑥𝑥 = 0. (24)

This is implemented by first discretizing Equation (24) us-
ing finite difference operators to get

𝛿𝑥𝑥𝑢
𝑛
𝑙 = 𝛿𝑥−𝛿𝑥𝑥𝑢

𝑛
𝑙 = 0. (25)

Expanding Equation (25) for 𝑙 = 0 we get

1

ℎ2
(𝑢𝑛

−1 − 2𝑢𝑛
0 + 𝑢1) = 0 (26)

1

ℎ3
(−𝑢𝑛

−2 + 3𝑢𝑛
𝑙−1 − 3𝑢𝑛

0 − 𝑢𝑛
1) = 0. (27)

we then take Equation (26) and solve for the first virtual
point 𝑢𝑛

−1 to get

𝑢𝑛
−1 = 2𝑢𝑛

0 − 𝑢𝑛
1 . (28)

This is inserted into Equation (27) to solve for 𝑢𝑛
−2

𝑢𝑛
−2 = 3𝑢𝑛

0 − 2𝑢𝑛
1 . (29)

Doing the same for the other end of the spring we get

𝑢𝑛
𝑁 = 2𝑢𝑛

𝑁−1 − 𝑢𝑛
𝑁−2 (30)

𝑢𝑛
𝑁+1 = 3𝑢𝑛

𝑁−1 − 2𝑢𝑛
𝑁−2, (31)

2.3 Membrane

The drum heads of the Yaybahar can be modeled using a
damped 2D wave equation with a non-linearity in the ten-
sion term, based on the Berger plate model [1, Chapter 11
and 13]

𝑢𝑡𝑡 =
1

𝜌𝐻

(︂
𝑇0 +

6𝐷

𝐴𝐻2

∫︁∫︁
𝒟

(∇𝑢)2𝑑𝑥𝑑𝑦

)︂
∆𝑢

− 2𝜎0𝑢𝑡 + 2𝜎1∆𝑢𝑡

+
1

𝜌𝐻

∑︁
𝑓

𝛿(𝑥− 𝑥𝑓 , 𝑦 − 𝑦𝑓)𝐹𝑓 .

(32)

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) is the displacement of point (𝑥, 𝑦) of
the membrane at time 𝑡. See table 1 for a description of
the parameters. 𝛿(𝑥−𝑥𝑓 , 𝑦− 𝑦𝑓) is the (2D) spatial Dirac
delta function localizing force 𝐹𝑓 at coordinate (𝑥𝑓 , 𝑦𝑓).
Furthermore, 𝒟 ∈ [0, 𝐿𝑥] × [0, 𝐿𝑦] denotes the domain
of the membrane with membrane width 𝐿𝑥 and height 𝐿𝑦 .
The parameter 𝐷 is defined by

𝐷 =
𝐸𝐻3

12(1 − 𝜈2)
, (33)

which is the flextural regidity of the membrane.
Notice that Equation (32) is similar to (7) except now in

two dimensions. In fact, the forces in both equation arise
due to the same phenomena. Notice also that our mem-
brane has no stiffness, because we assume that it is made
from some non-stiff material such as hide or plastic.

Because we are now working with a 2D system we need
to be aware of spatial derivatives in two directions. This is
why we have the gradient, defined as

∇𝑢 = 𝑢𝑥 + 𝑢𝑦, (34)

and the Laplacian, defined as

∆𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦. (35)

At this point we are assuming cartesian coordinates, how-
ever, since the drum heads of the Yaybahar are round,
we could want to make the domain of our model circu-
lar. However, FDSs using radial coordinates, especially the
efficient, explicit ones, have a tendency to misbehave [1,
Chapter 12]. The main problem in our case is that the
sound will be severely band limited, which will kill the
tone of our assembled Yaybahar model, so we will keep
using cartesian coordinates and square drum heads.

Equation (32) can be discretized like

𝛿𝑡𝑡𝑢
𝑛
𝑙,𝑚 =

1

𝜌𝐻

⎛⎝𝑇0 +
6𝐷

|𝒟|𝐻2

𝑁𝑥−1∑︁
𝑙=0

𝑁𝑦−1∑︁
𝑚=0

ℎ𝑥ℎ𝑦(𝛿∇𝑢𝑛
𝑙,𝑚)2

⎞⎠
· 𝛿Δ𝑢𝑛

𝑙,𝑚 − 2𝜎0𝛿𝑡·𝑢
𝑛
𝑙,𝑚 + 2𝜎1𝛿Δ𝛿𝑡−𝑢

𝑛
𝑙,𝑚

+
1

𝜌𝐻

∑︁
𝑓

𝐽𝑙,𝑚(𝑥𝑓 , 𝑦𝑓)𝐹𝑓 ,

(36)

where 𝐽𝑙,𝑚(𝑥𝑓 , 𝑦𝑓) is a (2D) spreading operator that scales
𝐹𝑓 by 1/(ℎ𝑥ℎ𝑦) whenever ⌊𝑥𝑓/ℎ𝑥⌋ = 𝑙 ∧ ⌊𝑦𝑓/ℎ𝑦⌋ = 𝑚
and by 0 otherwise. 𝑁𝑥 = 1/ℎ𝑥 and 𝑁𝑦 = 1/ℎ𝑦 are
the number of horizontal and vertical points of the discrete
membrane respectively. Lastly, we define the following [3,
Chapter 11]

𝛿Δ𝑢
𝑛
𝑙,𝑚 = 𝛿𝑥𝑥𝑢

𝑛
𝑙,𝑚 + 𝛿𝑦𝑦𝑢

𝑛
𝑙,𝑚, (37)

𝛿∇𝑢𝑛
𝑙,𝑚 = 𝛿𝑥+𝑢

𝑛
𝑙,𝑚 + 𝛿𝑦+𝑢

𝑛
𝑙,𝑚. (38)

Expanding the operators in Equation (36) and solving for
𝑢𝑛+1
𝑙,𝑚 we get

𝑢𝑛+1
𝑙,𝑚 =

1

1 + 𝑘𝜎0
(𝐹s + 𝐹d + 𝐹e + 2𝑢𝑛

𝑙,𝑚 − 𝑢𝑛−1
𝑙,𝑚) (39)

where

𝐹s =
𝑘2

𝜌𝐻

⎛⎝𝑇0 +
6𝐷

|𝒟|𝐻2

𝑁𝑥−1∑︁
𝑙=0

𝑁𝑦−1∑︁
𝑚=0

ℎ𝑥ℎ𝑦(𝛿∇𝑢𝑛
𝑙,𝑚)2

⎞⎠
· 𝛿Δ𝑢𝑛

𝑙,𝑚

(40)

𝐹d = 𝑘𝜎0𝑢
𝑛−1
𝑙,𝑚 + 2𝑘𝜎1(𝛿Δ𝑢

𝑛
𝑙,𝑚 − 𝛿Δ𝑢

𝑛−1
𝑙,𝑚) (41)

𝐹e =
𝑘2

𝜌𝐻

∑︁
𝑓

𝐽𝑙,𝑚(𝑥f, 𝑦f)𝐹𝑓 . (42)

As for boundary conditions, we now have the four edges
around our membrane we need to take care of 2 . Like the

2 Even though we are using cartesian coordinates the shape of our
membrane does not need to be rectangular, but for simplicity’s sake we
keep it that way

string we use a clamped boundary conditions which are
now defined by

𝑢 = ∇𝑢 = 0, (43)

when 𝑙 = 0, 𝑙 = 𝑁𝑥 − 1, 𝑚 = 0, or 𝑚 = 𝑁𝑦 − 1.
Implementation is analogous to the 1D case.

2.4 Bow

The bow using to play the Yaybahar excites the instrument
through the frictional interaction between the bow hairs
and the string. At first, the bow pulls the string along, but
at some point, the restoring force in the string becomes too
large and the string bounce back only to be caught by the
bow again [5, Chapter 2].

We model this by using the simple simulation from [1,
Chapter 4], where we apply a force 𝐹 to our system in
Equation (7) that is determined by

𝐹 = −𝐹b𝜑(𝑣rel), (44)

where
𝑣rel = 𝑢𝑡 − 𝑣b. (45)

Here 𝐹b = 𝐹b(𝑡) is the force in Newtons at which the bow
is pressed down onto the string, 𝑣rel = 𝑣rel(𝑡) is the relative
velocity between the bow and the string at the bowing point
with 𝑣b = 𝑣b(𝑡) being the bow velocity in m/s.

There are many ways of defining the dimensionless fric-
tion characteristic 𝜑, but we will be using the definition [1,
Chapter 4.3]

𝜑(𝑣rel) =
√

2𝑎𝑣rel𝑒
−𝑎𝑣2

rel+1/2, (46)

where 𝑎 is a dimensionless constant that determines the
shape of the function.

To implement our bow model we must discretize Equa-
tion (44) and thus 𝑣rel. We do this using the scheme

𝑣𝑛rel = 𝛿𝑡·𝑢
𝑛
𝑙b
− 𝑣𝑛b , (47)

where 𝑙b is the index of our bowing point.
If we expand Equation (47) we get

𝑣𝑛rel =
1

2𝑘

(︀
𝑢𝑛+1
𝑙b

− 𝑢𝑛−1
𝑙b

)︀
− 𝑣𝑛b . (48)

Notice that 𝑣𝑛rel depends on 𝑢𝑛+1
𝑙b

, but to compute 𝑢𝑛+1
𝑙b

using Equation (7) combined with Equation (47) we need
𝑣𝑛rel. This cyclic dependency results in what we call an im-
plicit scheme which must solve using iterative methods.
One such method is the Newton-Raphson algorithm which
states that given a function 𝑓(𝑥) = 0, then we can find 𝑥
by iteratively calculating

𝑥𝑖+1 = 𝑥𝑖 − 𝑓(𝑥𝑖)

𝑓 ′(𝑥𝑖)
, (49)

with iteration number 𝑖 and 𝑓 ′(𝑥) = 𝑑𝑓(𝑥)/𝑑𝑥, where we
keep iterating until the change between 𝑥𝑖+1 and 𝑥𝑖 is suf-
ficiently small.

We apply this by first putting Equation (48) into the cor-
rect from

𝑓(𝑣𝑛rel) =
1

2𝑘

(︀
𝑢𝑛+1
𝑙b

− 𝑢𝑛−1
𝑙b

)︀
− 𝑣b − 𝑣𝑛rel = 0. (50)

Then we substitute 𝑢𝑛+1
𝑙b

using Equation (9) and take the
derivative of it all with respect to 𝑣𝑛rel to get

𝑓 ′(𝑣𝑛rel) = − 1

2𝑘
𝑘2𝐹b𝜑

′(𝑣𝑛rel) − 1. (51)

where

𝜑′(𝑣𝑛rel) =
√

2𝑎
(︁
𝑒−𝑎(𝑣𝑛

rel)
2+1/2 − 2𝑎(𝑣𝑛rel)

2𝑒−𝑎(𝑣𝑛
rel)

2+1/2
)︁
.

(52)
And thus, we have everything we need to iteratively com-
pute 𝑣𝑛rel.

2.5 Connections

To connect the elements of our Yaybahar we use a simple
spring-like 3 connection. If 𝑢𝑛

𝑙uc
is the connecting point on

our string and 𝑤𝑛
𝑙wc

is the connecting point on one of the
springs, the force caused by the connection between them
is defined by

𝐹c = 𝐾
(︀
𝑢𝑛
𝑙uc

− 𝑤𝑛
𝑙wc

)︀
, (53)

where 𝐾 is a positive constant determining the strength
of the connection. This connection scheme represents
Hooke’s law, and is similar the one found in [3], where
they also include nonlinear terms.

After computing the connection force 𝐹c we simply apply
it to our string and spring, but in opposite directions, so
if 𝐹c is applied to the string, then −𝐹c is applied to the
spring and added to their respective 𝐹 (external forces) in
Equations (7) and (18).

2.6 Stability

An important topic we have not touched upon in this paper
is stability — a property that is not guaranteed for FDSs.
To ensure stability, the choice of parameters for each model
must satisfy a stability condition. The procedure is usu-
ally to choose one’s desired parameters and then compute
a suitable value for ℎ. For the schemes for the string and
membranes, the stability condition is not known exactly,
however, they should at least satisfy the stability condi-
tions for their linear counterparts. For the string this is [2]

ℎ ≥

√︃
𝑐2𝑘2 + 4𝜎1𝑘 +

√︀
(𝑐2𝑘2 + 4𝜎1𝑘)2 + 16𝜅2𝑘2

2
(54)

where 𝑐 =
√︀

𝑇0/𝜌𝐴 and 𝜅 =
√︀

𝐸𝐼/𝜌𝐴. For the mem-
brane the stability condition is [1, Chapter 11]

ℎ ≥
√

2𝑘
𝑇0

𝜌𝐻
, (55)

assuming that ℎ = ℎ𝑥 = ℎ𝑦 .
In both cases, it is practical to choose an ℎ slightly larger

(e.g. 1.05 ·ℎ) than the one given by the stability conditions
to avoid instability due to the non-linearity, and in the case
of the membrane, the missing 𝜎1 terms.

3 Spring-like as in mass-spring system. Not like the model in 2.2

For the spring scheme the stability condition is exactly [3]

ℎ ≥

√︃
2𝑘

(︂
𝜎2
1 +

√︁
𝜅2 + 𝜎2

1

)︂
. (56)

3. IMPLEMENTATION

The equations described in Section 2 are implemented in
C++ and are available on GitHub 4 where you can also find
a sound sample.

Due to the computational complexity of the models pre-
sented it is necessary to write performant code to accom-
plish real-time sound synthesis. See [8] for a discussion
of the complexity and implementation strategies of FDS
algorithms.

On of the most important implementation tricks is the use
of reference swapping. A naive implementation of e.g. the
string model would have three state arrays u, un, and up
representing the current, next, and previous states. After
computing un using the update rule it would copy the val-
ues of the arrays like so:

f o r (i n t i = 0 ; i < N; i ++)
{

up [i] = u [i] ;
u [i] = un [i] ;

}

The actual implementation uses C++ references in a loop
so memory coping is avoided. The three arrays u, un, and
up are now references instead, so we can simply do

auto &uswap = up ;
up = u ;
u = un ;
un = uswap ;

which is nearly instant.

4. CONCLUSION

In this paper we have covered how to build a physical mod-
eling sound synthesis algorithm for a specific instrument:
the Yaybahar.

We went through each element of the instrument, a
bowed string, springs, and drum membranes, discussed
their physics, and showed to how implement numerical
simulations of them using FDSs. After that, we showed
how they can be connected using an equation reminiscent
of Hooke’s law.

Stability conditions were not given for the string and
membrane models, but we argue that the conditions for the
linear variants of the equations can be used by choosing ℎ
to be slightly larger.

For the implementation, we linked to the code hosted on
GitHub and discussed the importance of using reference
swapping in the implementation of the models.

4 https://github.com/pellejuul/yaybahar

5. REFERENCES

[1] S. Bilbao, Numerical Sound Synthesis. Chichester,
UK: John Wiley & Sons, Ltd, Oct. 2009.
[Online]. Available: http://doi.wiley.com/10.1002/
9780470749012

[2] S. Willemsen, N. Andersson, S. Serafin, and S. Bil-
bao, “Real-time control of large-scale modular phys-
ical models using the sensel morph,” in Proceedings
of the 16th Sound and Music Computing Conference,
Malaga, May 2019, pp. 151 – 158.

[3] S. Bilbao, “A Modular Percussion Synthesis Environ-
ment,” Proc. of the 12th Int. Conf. on Digital Audio
Effects (DAFx-09), 2009.

[4] J. Bensa, S. Bilbao, R. Kronland-Martinet, and
J. O. Smith, “The simulation of piano string
vibration: From physical models to finite difference
schemes and digital waveguides,” The Journal of
the Acoustical Society of America, vol. 114, no. 2,
pp. 1095–1107, Aug. 2003. [Online]. Available:
http://asa.scitation.org/doi/10.1121/1.1587146

[5] N. H. Fletcher and T. D. Rossing, The physics of musi-
cal instruments, 2nd ed. New York: Springer, 1998.

[6] J. Parker, H. Penttinen, S. Bilbao, J. S. Abel, and T. L.
Crew, “Modeling methods for the highly dispersive
Slinky spring: A novel musical toy,” in Proc. of the
18th Int. Conference on Digital Audio Effects, 2010,
p. 4.

[7] J. Parker and S. Bilbao, “Spring Reverberation: A
Physical Perspective,” in Proc. of the 12th Int. Con-
ference on Digital Audio Effects, 2009, p. 6.

[8] C. J. Webb and S. Bilbao, “On the limits of real-time
physical modelling synthesis with a modular environ-
ment,” in Proc. of the 18th Int. Conference on Digital
Audio Effects, 2015, p. 9.

https://github.com/pellejuul/yaybahar
http://doi.wiley.com/10.1002/9780470749012
http://doi.wiley.com/10.1002/9780470749012
http://asa.scitation.org/doi/10.1121/1.1587146

	 1. Introduction
	 2. The Elements of the Yaybahar
	2.1 String
	2.2 Spring
	2.3 Membrane
	2.4 Bow
	2.5 Connections
	2.6 Stability

	 3. Implementation
	 4. Conclusion
	 5. References

