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Abstract
Dense connections in convolutional neural networks (CNNs), which connect each layer
to every other layer, can compensate for mid/high‐frequency information loss and
further enhance high‐frequency signals. However, dense CNNs suffer from high memory
usage due to the accumulation of concatenating feature‐maps stored in memory. To
overcome this problem, a two‐step approach is proposed that learns the representative
concatenating feature‐maps. Specifically, a convolutional layer with many more filters is
used before concatenating layers to learn richer feature‐maps. Therefore, the irrelevant
and redundant feature‐maps are discarded in the concatenating layers. The proposed
method results in 24% and 6% less memory usage and test time, respectively, in com-
parison to single‐image super‐resolution (SISR) with the basic dense block. It also im-
proves the peak signal‐to‐noise ratio by 0.24 dB. Moreover, the proposed method, while
producing competitive results, decreases the number of filters in concatenating layers by
at least a factor of 2 and reduces the memory consumption and test time by 40% and
12%, respectively. These results suggest that the proposed approach is a more practical
method for SISR.

1 | INTRODUCTION

Single‐image super‐resolution (SISR), which aims to restore
rich details and/or pleasant visual quality to an image, is fav-
oured in many fields, including surveillance, remote sensing,
and medical imaging. SISR is a classic problem, nevertheless a
challenging open research problem in computer vision because
of its ill‐posed nature, that is, being under‐determined. In
detail, the low‐resolution (LR) image (y) is formed using [1]:

y ¼Dx þ v ; ð1Þ

where, D, x, and v stand for degradation process, high‐
resolution (HR) image, and additive noise, respectively.
Degradation operators mostly include blurring and down‐
sampling. The information loss in the degradation process is
high. Therefore, there exist various images that can be reduced
to the observed LR image by applying Equation (1). That is
especially problematic in larger up‐scaling factors because the
SISR is more ill‐posed in these cases.

For decades, there has been consistent progress in devel-
oping and improving SISR techniques, which are documented
in several surveys [1,2]. These techniques are in three main
categories, namely interpolation‐based, reconstruction‐based,
and learning‐based methods [3–6]. Interpolation‐ and
reconstruction‐based methods have the problem of preserving
information. Due to the significant learning ability of deep
convolutional neural networks (CNNs) and their hierarchical
property, they have been widely used in the single‐image super‐
resolution task recently. CNNs learn an end‐to‐end mapping
between the LR image and its counterpart HR image.

As a pioneer, Dong et al. proposed the first convolutional
neural network for the SISR problem [3]. The problem with
this network is the slow convergence that prevents it from
increasing in depth. Kim et al. addressed this problem with a
skip connection that adds the input and output of the network
via element‐wise addition and proposed two 20‐layer CNNs,
by increasing the recursion depth [7] or stacking weight layers
[8]. Residual connection alleviates the vanishing gradient
problem in training deeper networks. In other research, Tai
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et al. proposed another recursive network with depth 52 [9].
They used recursion on the local residual unit. Ledig et al. also
proposed a residual CNN that combines local and global
residual learning [10]. However, their proposed CNN uses a
late up‐scaling strategy and does not use shared weights,
reaching promising results. Lim et al. improved Ledig et al.’s
method in different ways, including by omitting batch nor-
malisation [11].

With the advent of dense CNNs, recent SISR methods
using them have achieved superior results. The number of
output feature‐maps of dense network layers is defined as the
growth rate. Dense networks ensure maximum information
flow by connecting each layer to every other layer in a feed‐
forward manner, as shown in Figure 1. These networks using
channel‐wise concatenations provide several other advantages,
for example, they use the collective knowledge of hierarchical
features and avoid learning redundant feature‐maps. However,
this kind of CNN consumes high GPU memory due to the
dense concatenation.

Tong et al. used dense connections in the whole network,
and set the growth rate to 16 to prevent the network from
growing too wide [12]. Tai et al. proposed dense connections
for image restoration in a global way and between modules
named memory blocks [13]. Zhang et al. proposed dense
blocks for SISR, which employ dense connections inside
blocks of limited depth [14], as shown in Figure 1. They also
use a 1 � 1 convolutional layer to reduce the channel number.
Recent SISR methods have used either local [15–17] or global
dense connections [18] in their proposed CNNs with prom-
ising results. Local dense connections are between

convolutional layers [15,16] or residual units [17]. Utilising a
larger growth rate enriches the concatenating feature‐maps and
leads to an overall superior discriminative ability. However,
existing methods do not handle the memory problem caused
by larger growth rates.

Increasing the growth rate does indeed produce richer
features, but it also produces some irrelevant feature‐maps that
increase memory usage and testing. A composite layer for
learning concatenating feature‐maps is therefore proposed. In
other words, a wider convolutional layer is used before
concatenating layers to learn richer feature‐maps. This layer is
then followed by a slim layer to extract relevant information
from the input feature‐maps. The proposed method, which is
shown in Figure 2, is inspired by the concept of dimensionality
reduction to reduce the memory usage of dense CNNs. It has
the flexibility to tune the number of filters in the odd and even
layers to get an efficient trade‐off between the representational
power and memory usage of dense CNNs.

Comprehensive experiments justify the efficiency of the
proposed method. It has been examined at four depths: 4, 8,
16, 32. On average, the proposed method decreases the
number of concatenating feature‐maps, resulting in 24% and
6% less GPU memory usage and test time, respectively,
compared to the basic dense method. It also improves the peak
signal‐to‐noise ratio by 0.24 dB. Moreover, with the proposed
method, the growth rate can be reduced by at least a factor of 2
to lower the memory and time usage by 40% and 12%,
respectively, while keeping the results competitive.

In summary, the proposed method has the following
advantages:

F I GURE 1 The basic dense method (Conv4 stands for a convolutional layer with four filters)

F I GURE 2 The proposed dense method (Conv16 stands for a convolutional layer with 16 filters, and Conv1 stands for a convolutional layer with one filter)
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� It lowers the need for larger growth rates to increase the
discriminative capability of dense CNNs, and

� It significantly reduces GPU memory consumption and test
time by propagating only the representative concatenating
feature‐maps.

A review of related works is provided in Section 2. The
proposed method is detailed in Section 3. Then, the data sets,
training setup, network parameters, and experimental results
are described in Section 4, and finally, the paper is concluded in
Section 5.

2 | RELATED WORK

With the ability to automatically learn informative hierarchical
features, CNNs have been extensively studied in recent years.
In the following subsections, related concepts from dense
CNNs and dimensionality reduction, which help to compre-
hend the proposed method, are presented.

2.1 | Dense CNNs

Recent works have shown that shorter connections between
layers close to the input and those close to the output of
convolutional networks make them substantially deeper, more
accurate, and efficient to train. Dense CNNs concat feature‐
maps in other layer's input (with matching feature‐map sizes)
in a feed‐forward manner [19], shown in Figure 1. Dense
CNNs have several advantages: they alleviate the vanishing
gradient problem, strengthen feature propagation, and reduce
redundant feature‐maps.

Recent SISR methods have also witnessed these advantages
from dense CNNs. Tai et al. [13] used a densely connected
structure in a global way and between memory blocks. In each
memory block, they used successive residual units to learn
multi‐level representations of the current state, concatenating
with outputs of previous memory blocks. At the end of each
memory block, they applied a pre‐activated 1�1 convolutional
layer. Their experimental results show the efficiency of the
long‐term dense connections for image restoration tasks. Tong
et al. [12] and Zhang et al. [14] proposed dense blocks for SISR
similar to that shown in Figure 1. Tong et al. also used dense
connections between blocks for improved results and set the
growth rate to 16, preventing the network from growing too
wide, and used a 1�1 convolutional layer after all blocks, to
reduce the number of feature‐maps. Zhang et al. used local
residual learning between the input and output of dense for
improved performance. The output of each block has a direct
connection to all the layers of the next block to support
contiguous memory among blocks. Finally, they concatenated
the outputs of all blocks to use the hierarchical features of the
input LR image for reconstruction. They also utilised 1�1
convolutional layers to adaptively preserve features and stabi-
lise the training of the wider network.

More recently researchers have used dense connections in
their proposed methods. Shamsolmoali et al. used dense blocks
with dilated convolutional layers to increase the receptive field
[15]. Anwar et al. proposed a densely residual Laplacian
network, and used a local dense connection between residual
units [15]. Qin et al. proposed a multi‐resolution space‐
attended residual dense network with an adaptive fusion block
based on channel‐wise sub‐network attention [15]. Dai et al.
used channel‐wise attention mechanisms to extract more
informative and discriminative representations [18]. The main
problem arising from dense CNNs is the memory consump-
tion, especially in larger growth rates.

In a dense block, if each layer produces G feature‐maps,
then the lth layer receives G0 + G � (l − 1) feature‐maps of
previous layers, where G0 is the number of received feature‐
maps in the first layer and G is referred to as the growth rate.
Using larger depth (L) and growth rate (G) increases the
number of feature‐maps to be kept in memory. Previous
methods prevented the memory problem of dense CNNs by
various means, including using less concatenate layers, using a
smaller growth rate, or using a 1�1 convolutional layer to
reduce the channel number. The concept of dimensionality
reduction, a two‐step concatenate feature‐map learning, is
proposed to produce reduced and representative concatenate
feature‐maps. The proposed method described in the following
sections significantly improves the memory usage without loss
of information.

2.2 | Dimensionality reduction

In general, well‐performing features have several characteris-
tics, including (1) being representative to provide a concise
description, and (2) being independent, as dependent features
are redundant. Dimensionality reduction is concerned with
reducing the number of features to generate more compact and
representative features. The main problems with high‐
dimensional data are when many features are irrelevant or
redundant. Therefore, such features increase memory usage
and test time without useful function.

There are two general approaches for dimensionality
reduction: feature selection and feature extraction. The central
premise when using a feature selection technique is that the
data contain some features that are either redundant or irrel-
evant and can thus be removed without incurring much loss of
information [20]. Feature extraction creates new features
based on the original feature set intended to be informative
and non‐redundant. It usually involves transforms to get
relevant information from the input features, so that the
desired task is performed by using this reduced representation
instead of the complete initial one. The transforms may be
linear or non‐linear. However, the best transform is most likely
a non‐linear function.

A novel approach is proposed here for reducing the
memory consumption and test time of dense CNNs inspired
by the dimensionality reduction concepts mentioned above.
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3 | PROPOSED METHOD

3.1 | Network architecture

The network architecture used for experiments is shown in
Figure 3. This is the common architecture being used in most
SISR techniques. The network learns an end‐to‐end mapping
from LR images (ILR) to HR images (IHR). The output of the
network is named ISR, and is an approximation of IHR.

Low‐level feature‐maps F−1 and F0 are extracted using two
convolutional layers:

F I GURE 3 The architecture of the network used for SISR

TABLE 1 Results for L = 4

Model
Memory
(MiB)

Time
(ms)

Parameters
(million) Set5 Set14 B100 Urban100 Manga109 Average

‘16’ 669 200 0.3 37.24 0.9575 32.82 0.9106 31.59 0.8920 30.07 0.9046 36.79 0.9719 32.99 0.9242

‘32’ 695 200 0.4 37.38 0.9581 32.94 0.9118 31.73 0.8940 30.56 0.9116 36.88 0.9727 33.22 0.9273

‘64’ 761 198 06 37.46 0.9586 33.085 0.9136 31.84 0.8954 30.84 0.9148 37.22 0.9741 33.46 0.9292

‘128’ 857 199 1.4 37.60 0.9592 33.18 0.9146 31.92 0.8966 31.10 0.9178 37.55 0.9748 33.68 0.9308

‘256’ 1131 201 4.4 37.67 0.9594 33.28 0.9154 31.98 0.8973 31.31 0.9202 37.73 0.9752 33.83 0.9319

‘64‐16’ 655 196 0.3 37.32 0.9580 32.92 0.9118 31.71 0.8939 30.44 0.9099 36.96 0.9730 33.20 0.9268

‘128‐16’ 663 197 0.4 37.45 0.9585 33.00 0.9126 31.77 0.8946 30.57 0.9116 37.23 0.9738 33.36 0.9278

‘256‐16’ 687 195 0.6 37.38 0.9583 33.00 0.9130 31.78 0.8950 30.69 0.9131 37.15 0.9737 33.37 0.9284

‘512‐16’ 767 196 1.0 37.54 0.9588 33.09 0.9134 31.85 0.8955 30.85 0.9145 37.44 0.9743 33.54 0.9292

‘1024‐16’ 917 196 1.9 37.56 0.9588 33.12 0.9139 31.87 0.8959 30.97 0.9163 37.38 0.9742 33.57 0.9299

‘128‐32’ 673 196 0.5 37.53 0.9586 33.07 0.9133 31.84 0.8955 30.81 0.9144 37.35 0.9741 33.50 0.9291

‘256‐32’ 695 195 0.8 37.38 0.9587 33.07 0.9137 31.84 0.8957 30.91 0.9158 37.17 0.9742 33.46 0.9296

‘512‐32’ 783 196 1.3 37.60 0.9591 33.17 0.9144 31.90 0.8964 31.03 0.9170 37.54 0.9747 33.65 0.9304

‘1024‐32’ 933 195 2.3 37.64 0.9592 33.21 0.9147 31.92 0.8965 31.14 0.9183 37.46 0.9747 33.67 0.9309

‘256‐64’ 721 196 1.0 37.58 0.9593 33.17 0.9145 31.90 0.8963 31.04 0.9171 37.49 0.9748 33.64 0.9305

‘512‐64’ 811 193 1.7 37.65 0.9594 33.17 0.9145 31.93 0.8968 31.15 0.9187 37.52 0.9748 33.69 0.9311

‘1024‐64’ 967 197 3.2 37.70 0.9594 33.27 0.9151 31.97 0.8970 31.24 0.9192 37.71 0.9751 33.80 0.9314

‘512‐128’ 845 197 2.6 37.76 0.9596 33.32 0.9153 31.99 0.8971 31.29 0.9198 37.89 0.9754 33.88 0.9318

‘1024‐
128’

1027 199 5.0 37.75 0.9594 33.28 0.9150 31.98 0.8973 31.39 0.9209 37.75 0.9752 33.86 0.9321

‘512‐256’ 947 196 4.4 37.78 0.9598 33.32 0.9156 32.01 0.8975 31.45 0.9217 37.93 0.9757 33.95 0.9326

Note: In the first column, symbol G indicates the number of filters in each layer of the basic dense block, G1 − G2 stands for the number of filters of the proposed method in layers
before concatenate layers, and the concatenate layers, respectively. Other columns represent the memory usage, average test time for the B100 data set, number of network parameters,
average PSNR/SSIM for each test data set, and average PSNR/SSIM for all five test data sets, respectively.

F −1 ¼W −1I LR; ð2Þ
F 0 ¼W 0F−1; ð3Þ

where W −1 and W 0 are the weights of these two convolu-
tional layers. The bias term is omitted for simplicity.

The proposed dense method has F0 as input and learns
residual multi‐level feature‐maps. If the number of levels of the
proposed method is considered to be D, the input to the d‐th
level is denoted by Fd, for d = 1, 2, …, D. Each level applies a
non‐linear transform Hd(.) consisting of two convolutional
layers:
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TABLE 2 Results for L = 8

Model
Memory
(MiB)

Time
(ms)

Parameters
(million) Set5 Set14 B100 Urban100 Manga109 Average

‘16’ 759 235 0.4 37.46 0.9585 33.02 0.9126 31.79 0.8948 30.69 0.9129 37.20 0.9736 33.39 0.9282

‘32’ 847 232 0.7 37.60 0.9590 33.16 0.9140 31.91 0.8962 31.04 0.9168 37.51 0.9747 33.65 0.9303

‘64’ 1025 233 1.6 37.76 0.9596 33.28 0.9149 31.97 0.8969 31.26 0.9196 37.79 0.9753 33.83 0.9316

‘128’ 1391 233 5.0 37.88 0.9601 33.42 0.9162 32.08 0.8983 31.68 0.9238 38.04 0.9760 34.08 0.9336

‘256’ 2303 254 18.1 37.93 0.9603 33.49 0.9171 32.13 0.8990 31.86 0.9260 38.07 0.9762 34.17 0.9346

‘64‐16’ 701 229 0.5 37.58 0.9590 33.13 0.9138 31.88 0.8959 30.91 0.9154 37.43 0.9745 33.57 0.9297

‘128‐16’ 735 227 0.7 37.58 0.9592 33.18 0.9144 31.92 0.8967 31.11 0.9181 37.48 0.9747 33.66 0.9309

‘256‐16’ 769 226 1.2 37.71 0.9596 33.27 0.9149 31.97 0.8971 31.24 0.9192 37.77 0.9752 33.82 0.9315

‘512‐16’ 881 227 2.2 37.76 0.9596 33.30 0.9152 32.00 0.8974 31.39 0.9210 37.74 0.9753 33.86 0.9322

‘1024‐16’ 1101 228 4.1 37.79 0.9598 33.38 0.9155 32.03 0.8979 31.49 0.9222 37.73 0.9752 33.91 0.9327

‘128‐32’ 753 225 0.9 37.66 0.9593 33.25 0.9148 31.98 0.8973 31.29 0.9200 37.64 0.9750 33.79 0.9317

‘256‐32’ 795 227 1.6 37.76 0.9598 33.30 0.9156 32.03 0.8978 31.44 0.9215 37.86 0.9755 33.93 0.9326

‘512‐32’ 911 230 2.9 37.85 0.9599 33.38 0.9159 32.06 0.8982 31.56 0.9228 38.01 0.9759 34.03 0.9332

‘1024‐32’ 1159 228 5.6 37.85 0.9600 33.40 0.9160 32.07 0.8984 31.64 0.9236 37.89 0.9758 34.02 0.9335

‘256‐64’ 875 225 2.3 37.78 0.9597 33.33 0.9158 32.04 0.8981 31.53 0.9225 37.73 0.9753 33.92 0.9329

‘512‐64’ 999 226 4.4 37.85 0.9600 33.39 0.9158 32.09 0.8985 31.68 0.9243 37.89 0.9758 34.04 0.9337

‘1024‐64’ 1273 226 8.5 37.94 0.9603 33.50 0.9171 32.09 0.8984 31.77 0.9249 38.18 0.9762 34.17 0.9341

‘512‐128’ 1165 226 7.3 37.89 0.9602 33.48 0.9170 32.10 0.8985 31.79 0.9249 38.02 0.9760 34.12 0.9340

‘1024‐
128’

1511 237 14.4 37.96 0.9603 33.51 0.9168 32.14 0.8991 31.91 0.9266 38.18 0.9763 34.22 0.9348

‘512‐256’ 1481 233 13.3 37.95 0.9604 33.52 0.9168 32.14 0.8991 31.92 0.9264 38.18 0.9763 34.23 0.9348

Note: In the first column, symbol G indicates the number of filters in each layer of the basic dense block, G1 − G2 stands for the number of filters of the proposed method in layers
before concatenate layers, and the concatenate layers, respectively. Other columns represent the memory usage, average test time for the B100 data set, number of network parameters,
average PSNR/SSIM for each test data set, and average PSNR/SSIM for all five test data sets, respectively.

Hd ¼ σ W 2
dσ W 1

dF d−1
� �� �

; ð4Þ

where W i
d; i¼ 1; 2 stands for the weights of the i‐th con-

volutional layer in level d, σ denotes the ReLU activation
function [21], and d is the index of the level. The size of W i

d is
3 � 3 � ni in which n1 is much larger than n2.

Each level gets the concatenation of feature‐maps of all
preceding levels as input:

F d ¼ ½F 0; F 1;…; F d−1�; ð5Þ

where ⋅; ⋅½ � refers to the concatenation of feature‐maps.
The output of the proposed method, FD, is fed into a 1�1

convolutional layer, namely feature fusion layer, to control the
output information and adaptively fuse multi‐level feature‐
maps. A 3�3 convolutional layer is used to extract features for
residual learning. The final multi‐level feature‐maps after re-
sidual learning formulate as:

F ¼ F−1 þW Lþ2W Lþ1FD ð6Þ

where WL+1 and WL+2 represent the weights of 1�1 and 3�3
convolutional layers, respectively. Up‐scaling is done on these
multi‐level feature‐maps using ESPCNN [22], followed by a
convolutional layer outputting the ISR.

3.2 | Representative dense feature learning

In the basic dense block shown in Figure 1, the network's
discriminative ability increases by using a larger growth rate.
However, the larger growth rate is associated with huge
memory usage due to the accumulation of concatenating
feature‐maps stored in memory. Therefore, the memory
problem does not allow the growth rate to be increased very
much in these networks.

Increasing the growth rate also produces irrelevant feature‐
maps that do not affect the network's discriminative ability but
increase its GPU memory usage. Therefore, a new dense
method is proposed that determines the network's discrimi-
native capability using two hyper‐parameters. In other words,
the concatenating feature‐maps are learnt in two consecutive
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layers. In the proposed method shown in Figure 2, the richer
feature‐maps can also be learnt with a wider layer before the
concatenating layer. The concise and representative concate-
nating feature‐maps are then extracted from these features
using a thin concatenating layer. As a result, in the proposed
dense block memory usage efficiently decreases, as discussed in
the following subsection. This is while the proposed method
does not reduce the discriminative capability of dense CNNs
because it keeps the propagating feature‐maps as representa-
tive as before.

3.3 | Discussion

By assuming the number of convolutional layers to be even, if
the odd and even layers of the proposed dense block produce
G1 and G2 feature‐maps, respectively, then the input to the l‐th
layer (to be odd) has G0 + G2 � (l/2) channels, which is
almost half of the basic dense block G0 + G � (l − 1) by
setting G = G2. Therefore, with the same depth and growth
rate, the proposed block is expected to have a lower memory
requirement and shorter test time than the basic dense block.

With the help of the wider layer used before the concat-
enating layer, the proposed method learns discriminative
feature‐maps. Therefore, the growth rate can be reduced (G2)
compared to the growth rate of the basic dense block (G)
without loss of information. That produces more representa-
tive concatenating feature‐maps and can more reduce the GPU
memory usage and test time.

4 | EXPERIMENTS

The basic dense block is used instead of the proposed dense
block in the network architecture to compare the results. These
models are trained with different numbers of convolutional
layers. The results are reported in Tables 1–4, and are discussed
below.

4.1 | Data sets and metrics

TheDIVerse 2K resolution high‐quality image data set (DIV2K)
contains 800 training images, 100 validation images, and 100 test

TABLE 3 Results for L = 16

Model
Memory
(MiB)

Time
(ms)

Parameters
(million) Set5 Set14 B100 Urban100 Manga109 Average

‘16’ 1031 309 0.7 37.60 0.9592 33.19 0.9144 31.94 0.8968 31.16 0.9183 37.54 0.9748 33.70 0.9310

‘32’ 1313 303 1.7 37.79 0.9597 33.32 0.9155 32.04 0.8981 31.48 0.9222 37.76 0.9755 33.91 0.9329

‘64’ 1901 305 5.3 37.85 0.9603 33.47 0.9167 32.10 0.8990 31.77 0.9253 38.04 0.9763 34.12 0.9344

‘128’ 3215 305 19.2 37.93 0.9605 33.47 0.9169 32.14 0.8989 31.96 0.9267 38.18 0.9767 34.24 0.9349

‘256’ 6493 761 73.6 38.00 0.9603 33.63 0.9179 32.20 0.8997 32.19 0.9288 38.58 0.9769 34.47 0.9359

‘64‐16’ 835 291 0.9 37.74 0.9596 33.30 0.9151 32.00 0.8973 31.32 0.9202 37.83 0.9755 33.87 0.9320

‘128‐16’ 877 290 1.5 37.72 0.9596 33.27 0.9151 32.01 0.8977 31.44 0.9216 37.75 0.9752 33.88 0.9324

‘256‐16’ 981 290 2.7 37.85 0.9599 33.40 0.9158 32.08 0.8982 31.72 0.9242 38.01 0.9759 34.09 0.9336

‘512‐16’ 1185 290 5.3 37.89 0.9601 33.44 0.9166 32.12 0.8989 31.84 0.9258 38.13 0.9761 34.18 0.9344

‘1024‐16’ 1593 295 10.3 37.91 0.9603 33.51 0.9169 32.14 0.8995 31.91 0.9262 38.10 0.9763 34.20 0.9348

‘128‐32’ 971 292 2.2 37.85 0.9601 33.41 0.9161 32.09 0.8986 31.65 0.9239 38.12 0.9761 34.10 0.9338

‘256‐32’ 1075 295 4.1 37.92 0.9602 33.45 0.9167 32.11 0.8988 31.79 0.9252 38.28 0.9763 34.21 0.9343

‘512‐32’ 1315 289 7.9 37.96 0.9605 33.48 0.9165 32.12 0.8987 31.90 0.9264 38.17 0.9764 34.21 0.9347

‘1024‐32’ 1793 307 15.6 37.97 0.9605 33.60 0.9172 32.15 0.8994 31.96 0.9268 38.28 0.9765 34.28 0.9351

‘256‐64’ 1289 288 6.8 37.98 0.9604 33.52 0.9173 32.15 0.8993 31.97 0.9269 38.33 0.9766 34.30 0.9351

‘512‐64’ 1583 294 13.2 38.01 0.9606 33.59 0.9179 32.15 0.8991 32.07 0.9282 38.43 0.9768 34.36 0.9355

‘1024‐64’ 2197 401 26.2 38.03 0.9606 33.57 0.9172 32.18 0.8996 32.17 0.9289 38.34 0.9765 34.37 0.9358

‘512‐128’ 2109 324 239 38.06 0.9607 33.62 0.9178 32.19 0.8994 32.16 0.9284 38.50 0.9769 34.43 0.9357

‘1024‐
128’

2951 488 47.5 38.00 0.9607 33.64 0.9184 32.21 0.9002 32.26 0.9298 38.34 0.9767 34.41 0.9363

‘512‐256’ 3193 491 45.2 38.08 0.9608 33.75 0.9193 32.22 0.9002 32.27 0.9299 38.50 0.9769 34.48 0.9365

Note: In the first column, symbol G indicates the number of filters in each layer of the basic dense block, G1 − G2 stands for the number of filters of the proposed method in layers
before concatenate layers, and the concatenate layers, respectively. Other columns represent the memory usage, average test time for the B100 data set, number of network parameters,
average PSNR/SSIM for each test data set, and average PSNR/SSIM for all five test data sets, respectively.
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images [23]. The DIV2K data set is used for training and vali-
dation. Only five validation images are used in experiments to
reduce training time. Set5 [24], Set14 [25], B100 [26], Urban100
[27], andManga109 [28] areusedas thefive standard testdata sets.

The HR images are degraded by the bicubic downscaling
(using ‘imresize’ function of MATLAB) with a scale factor of 2
to form the LR images. Peak signal‐to‐noise ratio (PSNR) and
structural similarity (SSIM) [29] metrics are calculated on the Y

channel of transformed images in YCbCr space, in both vali-
dation and test steps.

4.2 | Training setup

In each training batch, 16 LR RGB patches of size 48�48 are
randomly cropped as inputs. These patches are randomly

TABLE 4 Results for L = 32

Model
Memory
(MiB

Time
(ms)

Parameters
(million) Set5 Set14 B100 Urban100 Manga109 Average

‘16’ 1911 436 1.7 37.80 0.9597 33.34 0.9151 32.05 0.8978 31.56 0.9224 37.99 0.9757 34.02 0.9329

‘32’ 2929 440 5.5 37.93 0.9603 33.50 0.9171 32.13 0.8992 31.88 0.9262 38.20 0.9764 34.22 0.9348

‘64’ 5121 507 19.8 37.98 0.9605 33.58 0.9168 32.18 0.8997 32.10 0.9282 38.35 0.9766 34.35 0.9356

‘128’ 10,065 911 76.0 38.04 0.9607 33.66 0.9182 32.21 0.8999 32.18 0.9289 38.49 0.9768 34.44 0.9360

‘256’ Out of memory

‘64‐16’ 1167 416 2.1 37.81 0.9599 33.37 0.9161 32.06 0.8983 31.66 0.9238 37.98 0.9758 34.05 0.9335

‘128‐16’ 1277 419 3.9 37.92 0.9603 33.47 0.9166 32.13 0.8991 31.84 0.9258 38.23 0.9766 34.21 0.9347

‘256‐16’ 1501 418 7.6 37.95 0.9604 33.51 0.9170 32.16 0.8993 32.00 0.9273 38.40 0.9767 34.33 0.9352

‘512‐16’ 1929 427 15.0 37.97 0.9604 33.57 0.9175 32.19 0.8999 32.07 0.9286 38.27 0.9766 34.32 0.9358

‘1024‐16’ 2831 539 29.8 38.02 0.9606 33.61 0.9173 32.20 0.9000 32.20 0.9294 38.38 0.9768 34.40 0.9361

‘128‐32’ 1597 423 6.5 37.97 0.9603 33.50 0.9162 32.14 0.8987 31.96 0.9266 38.41 0.9767 34.32 0.9348

‘256‐32’ 1861 417 12.7 38.00 0.9605 33.56 0.9172 32.19 0.8997 32.12 0.9287 38.35 0.9766 34.36 0.9358

‘512‐32’ 2387 429 25.0 38.02 0.9605 33.62 0.9177 32.20 0.8998 32.24 0.9293 38.53 0.9770 34.47 0.9361

‘1024‐32’ 3513 701 49.8 38.07 0.9606 33.68 0.9185 32.20 0.8997 32.21 0.9295 38.51 0.9769 34.45 0.9362

‘256‐64’ 2585 418 22.7 37.81 0.9605 33.52 0.9177 32.18 0.8997 32.13 0.9290 38.09 0.9767 34.27 0.9359

‘512‐64’ 3337 547 45.1 38.06 0.9607 33.73 0.9187 32.23 0.9002 32.31 0.9300 38.62 0.9770 34.53 0.9365

‘1024‐64’ 4869 941 90.0 38.05 0.9607 33.69 0.9184 32.23 0.9004 32.33 0.9303 38.54 0.9769 34.51 0.9366

‘512‐128’ 5205 828 85.3 38.09 0.9610 33.79 0.9189 32.25 0.9004 32.39 0.9312 38.68 0.9772 34.58 0.9370

‘1024‐
128’

7561 1394 170.2 38.07 0.9608 33.69 0.9187 32.22 0.9001 32.35 0.9306 38.74 0.9773 34.58 0.9368

‘512‐256’ 8955 1534 165.7 38.07 0.9608 33.82 0.9201 32.24 0.9003 32.39 0.9308 38.57 0.9770 34.55 0.9369

Note: In the first column, symbol G indicates the number of filters in each layer of the basic dense block, G1 − G2 stands for the number of filters of the proposed method in layers
before concatenate layers, and the concatenate layers, respectively. Other columns represent the memory usage, average test time for the B100 data set, number of network parameters,
average PSNR/SSIM for each test data set, and average PSNR/SSIM for all five test data sets, respectively.

F I GURE 4 The percentage memory usage reduction of the proposed method compared to the basic method, while the growth rate (GR) is the same for
both methods. L represents the number of convolutional layers
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augmented by flipping horizontally or vertically and rotating
90°. Each input patch to the network is subtracted with the
mean RGB value of the DIV2K data set. This mean value is
added back to the output of the network. The learning rate is
initialised to 10−4 for all layers. The network is implemented
with the Torch7 framework. Adam optimiser [30] is used by

β1 = 0.9, β2 = 0.999, and ϵ = 10−8. An epoch contains 1000
iterations of back‐propagation. The results are reported after
200 epochs of training. Two NVIDIA GTX 1080Ti GPUs are
used for training, validation, and testing.

4.3 | Network parameters

All convolutional kernels have a size of 3�3, except the feature
fusion layer whose kernel size is 1�1. Zero‐padding is used in
all 3�3 convolutional layers because using a kernel size of 3�3
reduces the feature‐map size. The efficiency of zero‐padding
has been shown by Kim et al. [8].

The number of filters in the first and second convolutional
layers, feature fusion layer, and the next coming 3�3 con-
volutional layer is 64. Three filters are used in the last con-
volutional layer to output a colour image.

4.4 | Results

The proposed dense method in Figure 3 is replaced with
basic dense method 1 to compare the results. The symbols
‘G’ and ‘G1 − G2’ are used in the first column of tables to
present the names of the basic method and the proposed
method, respectively. G stands for the number of filters in
each layer of the basic dense block. G1 and G2 represent the
number of filters in odd and even layers of the proposed
block, respectively. In almost all experiments, the value of G1

is larger/equal to four times the value of G2. Larger G1

boosts the results.

TABLE 5 The percentage of memory usage reduction

Selected models Memory improvement

‘64‐16’ versus ‘16’ 17%

‘128‐32’ versus ‘32’ 21%

‘256‐64’ versus ‘64’ 25%

‘512‐128’ versus ‘128’ 25%

‘512‐256’ versus ‘256’ 34%

TABLE 6 Results for L = 16

Model Memory (MiB) Time (ms) PSNR/SSIM

‘32’ 1313 303 33.91 0.9329

‘64’ 1901 305 34.12 0.9344

‘128’ 3215 305 34.24 0.9349

‘256’ 6493 761 34.47 0.9359

‘64‐16’ 835 291 33.87 0.9320

‘128‐32’ 971 292 34.10 0.9338

‘256‐32’ 1075 295 34.21 0.9343

‘512‐128’ 2109 324 34.43 0.9357

F I GURE 5 The percentage of memory usage reduction of the proposed method compared to the basic method. The horizontal axes show the basic
models. The vertical axes represent the percentage of memory improvement achieved by the proposed method with similar PSNR and lower growth rate. L
represents the number of convolutional layers

F I GURE 6 PSNR values of the proposed method with different values of filters in its first layer (G1) at any fixed growth rate (G2)
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4.4.1 | Memory/time investigation

As formulated in Subsection 3.3, the proposed method is ex-
pected to reduce GPU memory usage and test time, while the
growth rate is the same for both methods. Comprehensive
experimental results justify this hypothesis. By setting the
growth rate to be the same for both the basic and proposed
dense methods, the models are selected based on their PSNR/
SSIM values to be competitive with the basic dense method.
The percentage of memory usage reduction of the proposed
method compared to the basic method is calculated at each
depth and depicted in Figure 4. Furthermore, the average value
of four depths for selected models is reported in Table 5. The
overall average of all models is 24%. By the same calculations,
the proposed method is 6% time‐efficient.

As discussed in Subsection 3.3, memory usage is directly
proportional to the growth rate, and the proposed method can
decrease the growth rate while achieving competitive results,
that is considering the PSNR/SSIM values at depth 16, models
‘32’, ‘64’, ‘128’, and ‘256’ are comparable with ‘64‐16’, ‘128‐32’,
‘256‐32’, and ‘512‐128’, respectively, reported in Table 6.

At each growth rate for the basic dense method, the per-
centage of memory improvement achieved by the proposed
dense method is illustrated in Figure 5. The horizontal axes
show the growth rate of the basic connectivity pattern. The
vertical axes represent the percentage of memory improvement
achieved by the proposed method with similar PSNR and
reduced growth rate. The average memory improvement of all
models at all depths is 40%. The proposed method improves
the test time by 12% with similar calculations.

4.4.2 | Investigation of the number of filters

The value of G2 is assumed to be constant for investigating G1.
Each sub‐figure in Figure 6 shows the average PSNR values of
the four depths in each value of G2. The larger G1 results in
better SISR performance at any fixed value for G2. This is
conceivable because larger G1 enriches concatenating feature‐
maps. Results converge at G1 = 512. Therefore, the ‘512‐X’
models have been selected to compare with the ‘X’ models.

F I GURE 7 PSNR improvement of the proposed method compared to the basic method. The improvement is shown for different growth rates (G2 in the
proposed method and G in the basic dense method). Improvements for each depth (L = 4, 8, 16, 32) are shown with a plot. The average plot for all depths is
depicted in red

TABLE 7 PSNR improvement

Selected models PSNR improvement

‘512‐16’ versus ‘16’ 0.45

‘512‐32’ versus ‘32’ 0.34

‘512‐64’ versus ‘64’ 0.22

‘512‐128’ versus ‘128’ 0.14

‘512‐256’ versus ‘256’ 0.06
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PSNR improvement of the proposed method compared to
the basic method is shown in Figure 7. The improvement is
shown for different growth rates (G2 in the proposed method
and G in the basic dense method), and different depths (L = 4,
8, 16, 32). The proposed method has a larger PSNR than the
basic method pattern at almost all growth rates and for
different values of G1 and L.

PSNR improvement of ‘512‐X’ models compared to X
models, averaged at all four depths, is reported in Table 7. On
average, for all values of X, an improvement of 0.24 dB is
obtained.

For investigating the growth rate (G in the basic dense
block and G2 in proposed method), G1 is fixed to 512 in the
proposed method. PSNR values, averaged at four depths, for
different growth rates are depicted in Figure 8. From this figure

it can be inferred that increasing the growth rate improves the
results in both methods.

4.4.3 | The effect of the number of layers

Increasing the number of convolutional layers improves the
PSNR/SSIM values in both methods. An sample is shown in
Figure 9 for models ‘128’ and ‘512‐128’.

4.4.4 | Visual results

A visual comparison is shown in Figure 10 for models ‘128’
and ‘512‐128’, and images ‘img047’ and ‘img52’ from

F I GURE 8 PSNR/SSIM in different growth rate values (G and G2). For the proposed method the G1 is fixed to 512. Increasing the growth rate improves
the results in both methods

F I GURE 9 PSNR/SSIM with different values of convolutional layers (L) in models ‘128’ and ‘512‐128’
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Urban100. These models are trained with a scale factor of �2
and L = 32 convolutional layers. The basic dense block pro-
duces noticeable artefacts and blurred edges. In contrast, the
proposed method can recover sharper and clear edges.

4.4.5 | Comparison with the state‐of‐the‐art

Dense blocks of two recent dense CNNs are replaced with the
proposed dense blocks [14,16] to compare with the state‐of‐
the‐art. All networks are trained with 200 epochs, and the re-
sults are reported in Table 8. The blocks of RDN [14] have
depth 8 and growth rate 64, which are replaced with ‘512‐128’
of depth 8. The blocks of MARDN [16] have depth 4 and
growth rate 32, replaced with ‘256‐32’ of depth 4. The pro-
posed method improves the PSNR/SSIM values in both RDN
and MARDN.

5 | CONCLUSION

A novel dense block is proposed, producing more repre-
sentative concatenating feature‐maps. It uses a convolutional
layer with more filters before concatenating layers. The
proposed method keeps the discriminative ability of dense
CNNs, while it reduces the GPU memory usage signifi-
cantly. It improves the PSNR of the basic dense CNN by
0.24, recovers sharper and clear edges, and reduces memory
consumption and test time by 24% and 6%, respectively. It
decreases the need for a larger growth rate. Therefore, it
achieves 40% and 12% less memory consumption and test
time than the basic dense method. The highest improve-
ments are obtained on the very challenging Urban100 data
set. These results justify the limitation of basic dense CNNs,
relying only on the growth rate value to achieve better hi-
erarchical features.

F I GURE 1 0 Visual results for images ’img0470 and ’img0520 from Urban100

TABLE 8 PSNR/SSIM results in scale
factor of �2

Model Set5 Set14 B100 Urban100 Manga109 Average

MARDN 37.99 0.9606 33.57 0.9178 32.19 0.8997 32.10 0.9285 38.31 0.9767 34.34 0.9358

‘256‐32’ 38.02 0.9606 33.63 0.9177 32.21 0.9003 32.26 0.9300 38.50 0.9769 34.46 0.9365

RDN 38.12 0.9610 33.58 0.9185 32.25 0.9007 32.38 0.9313 38.71 0.9773 34.58 0.9372

‘512‐128’ 38.16 0.9612 33.81 0.9202 32.30 0.9011 32.62 0.9330 38.90 0.9776 34.74 0.9380
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