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Automated mapping of buildings through classification of DSM-based 
ortho-images and cartographic enhancement 
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Aalborg University, Department of Planning, Rendsburggade 14, 9000 Aalborg, Denmark   
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A B S T R A C T   

Urban areas are changing rapidly. In order to document the urban realities in topographic databases and 
geographic information systems efficient methods are required. Vector data of buildings are of special impor
tance. A methodology for an automated generation of cartographically enhanced data is presented and applied to 
two test sites at Vaihingen, Germany. The steps of the workflow are described in detail. The examples use im
agery of a large-format aerial camera to map different types of buildings. First, land cover maps are generated by 
means of supervised classification using two sets of attributes (basic attributes and attribute profile, basic at
tributes and dispersion). After the enhancement of the extracted buildings their outlines have straight, orthog
onal, and parallel line segments created by least squares adjustment. The assessment of the geometric accuracy 
used 264 well-defined building corners and two types of references (land cover map, ortho-image). The obtained 
average standard deviation of the coordinates was σx,y = 1.0 m. The additional use of an attribute profile did not 
improve upon the geometric accuracy that was obtained by means of five attributes (height above ground, 
normalized difference vegetation index, standard deviation of the elevations in the 5 × 5 pixels window, in
tensity value of the near-infrared band, and standard deviation of intensities in the 5 × 5 surrounding at a pixel of 
the near-infrared band). The experiences with the developed software reveal that a graphical output of inter
mediate results is helpful to obtain complete and reliable results at complex building structures.   

1. Introduction 

Mapping and map updating of built-up areas require accurate geo- 
data in vector format. At present, such data are mainly produced by 
highly skilled operators using expensive stereo-workstations (Spreckels 
et al., 2010). There have been many studies to make this task faster and 
cheaper (Mayer, 1999; Oude Elberink, 2008). There is a not insignificant 
need to increase the map production in the world. Only 30 % of the land 
area is mapped in scales of 1:25000 or greater. The time interval for 
updating these maps is between 10 and 30 years in some countries 
(Konecny et al., 2016). New attempts to supply topographic data are 
supported by Google and Microsoft (Google maps, Bing maps). The 
OpenStreetMap is a voluntary crowd sourcing attempt to update na
tional topographic maps by the public (OSM Wiki, 2020). Private firms 
use imagery of small-format cameras installed in drones for mapping of 
small areas (Mayr, 2011; He et al., 2019). All these tasks require efficient 
methods and they should preferably be automatic. This article seeks to 
contribute to these attempts. The development of new cameras, image 
processing and machine learning methods gives hope to achieve this 

goal. The automated generation of land cover maps (LCM) and land use 
maps has benefitted from these new tools (Maxwell et al., 2018). This 
study uses large-format aerial camera imagery as source data for a new 
approach in the automated 2D mapping of buildings. Despite increasing 
use of both laser scanning and very high spatial resolution satellite data, 
large-format aerial camera imagery is still widely collected on a routine 
bases and applied for map updating (Heipke et al., 2008). 

The requirements in mapping of buildings differ between contexts. 
The objects to be discussed in this contribution are the outlines of the 
building roofs. They differ in position from the building walls. For the 
latter, ground surveying must be applied to determine the roof over
hangs. This is usually not done for the core data of topographic data 
bases at scales between 1:5000 to 1:10000. The requirements for the 
planimetric accuracy of building roofs are a few decimetres only. Other 
requirements regard the completeness of the data. The minimum size of 
the building area and of its sides to be mapped may also be part of the 
specification. If a sufficiently small ground sampling distance (GSD) was 
selected for the image acquisition, all these cartographic requirements 
should be met by the automated process. For map updating, the use of 

E-mail address: jh@plan.aau.dk.  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2020.102237 
Received 27 October 2019; Received in revised form 29 July 2020; Accepted 2 September 2020   

mailto:jh@plan.aau.dk
www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2020.102237
https://doi.org/10.1016/j.jag.2020.102237
https://doi.org/10.1016/j.jag.2020.102237
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2020.102237&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102237

2

planning data is practised in some countries. This may be more eco
nomic, but the homogeneity of the data will suffer since planning data 
update is often piecemeal. Thus, airborne survey methods are widely 
used for new mapping of large areas. 

Relevant automated method development has been carried out for 
several years including for the two major steps of the proposed solution, 
classification for building extraction and enhancement (regularization) 
of the roof outlines. In recent years, classification of images has received 
many innovations from the field of image analysis and machine 
learning. The ISPRS III/4 working group has provided ortho-images and 
digital elevation models for validation of results of several research 
studies using these data, i.e. the “2D semantic labelling contest” (ISPRS 
WG III/4, 2014). That initiative has seen some notable successes 
regarding the thematic accuracy of topographic and non-topographic 
objects, for example, thematic accuracy of buildings of above 95 %, 
was achieved by Marmanis et al. (2018). The results in Damadoran et al. 
(2017) revealed also remarkably high thematic accuracies for buildings 
using a variety of attributes and machine learning techniques at another 
test site. The applied attributes were a combination of basic attributes, i. 
e., intensities (I) of the ortho-image, digital surface model (DSM), and 
normalized difference vegetation index (NDVI), with attribute profiles. 
The latter were based on DSM- and NDVI-values. 

Regarding the cartographic enhancement of buildings, recent 
research has been carried out by Wang (2016); Tasar et al. (2018), and 
Mousa et al. (2019). The approach of (Wang, 2016) generates the out
lines of buildings from a dense point cloud which is derived by image 
matching. Buildings are extracted by thresholding the gradients of ele
vations. Building roofs are then classified using radiometric features. 
The edge pixels of the roof are traced, and closed polygons are gener
ated. By a split-and-merge process segments are obtained, and straight 
lines are fitted to them. Successive lines are intersected, and roof corners 
are obtained. 99 % of the detached buildings were detected. Geometric 
accuracies, i.e. positional errors of building outlines, were not reported. 

In Tasar et al. (2018) a fine mesh is placed on top of the classified 
map. Labelled triangle meshes are then optimized by means of an 
objective function, which balances the closeness to the classification 
map, the rectangularity of the building edges, and the mesh complexity. 
The approach yields an 80 % overlap of the processed buildings to their 
reference. Small building edges can be detected and mapped. The 
generated building edges are not perfectly straight, orthogonal, and 
parallel. Again, measures of the geometric accuracy are not reported. 
The approach of Mousa et al. (2019) starts the enhancement of building 
outlines from a gridded DSM. An algorithm is used which finds corner 
points by means of a likelihood function. A simplification procedure is 
applied which uses different building models (rectangle and rectilinear 
polygons). The parameters of the rectilinear polygon (orientation angle 
of the lines and distances of the line segments from origin) are found by 
least squares adjustment. The geometric accuracy of the derived vertices 
is quoted with RMSEdp = 0.9 m for the ISPRS test data “Vaihingen”. The 
applied accuracy measure (dp) uses the perpendicular distance between 
each corner (vertex) of an extracted building polygon and the nearest 
boundary point of the reference polygon. Errors above 3 m were 
excluded from the calculation of the accuracy measure. 

Other investigations have applied data from Airborne Laser Scanning 
(ALS) and identify, trace, and regularize the outlines of buildings. In 
Awrangjeb (2016), e.g., a Delaunay triangulation is applied to an ALS 
point cloud. A boundary line consisting of small segments can then be 
identified. The line segments are smoothed, and corners are derived. The 
achieved average accuracy of the distance between corners (d) for three 
areas of the ISPRS data set “Vaihingen” is quoted with RMSEd = 0.7 m. 

However, it seems that a practical method for the automated map
ping of buildings and other topographic objects is still missing. It is the 
first goal of this study to outline a method for 2D mapping and map 
updating of buildings. Such a method should be able to produce vector 
data of high cartographic quality and geometric accuracy. Its practi
cality should be evaluated for a diverse set of buildings. The used 

methodology must be applicable for simple as well as for complex 
building structures. Furthermore, the detection and extraction of the 
outline segments must be independent of their direction and length. The 
automated processing of various building types may produce some er
rors. An operator should, therefore, have the possibility to detect the 
reason of the errors and remove them quickly. It is proposed that a 
graphic output of intermediate results will assist the operator in such 
editing work. As a benchmark, the achievable planimetric accuracy (σx, 

y) for well-defined points using manual stereophotogrammetry is about 
1/3 of the ground sampling distance (Spreckels et al., 2010). 

This contribution will focus on the use of large-format aerial imag
ery. Such images have advantages by their high spatial resolution and 
availability of four spectral channels of large spectral bandwidth. These 
characteristics enable the automatic connection of images by conjugate 
points which results in high planimetric accuracy for the determined 
objects as well as in the automatic recognition of all types of topographic 
objects. Elevation data can be generated from overlapping images with 
extremely high density and accuracy (Haala and Rothermel, 2012). 
Ortho-images can easily be derived using digital surface models (DSM) 
in the rectification. Buildings and other objects above terrain can be 
mapped without displacements when using DSM-based ortho-images. 
The use of DSM-based ortho-images is therefore a prerequisite for the 
suggested methodology. Another prerequisite is a high-quality LCM 
from which all buildings in the ortho-image can be extracted and 
enhanced. The land cover map may be derived by a classifier using 
various attributes. Usage of attribute profiles together with some basic 
attributes is a new approach in the generation of LCM and it is a second 
goal of this study to obtain experience with that. The LCM generated by 
a simple attribute combination described in Höhle (2017) will be pro
cessed for comparison. The enhancement to straight, parallel, and 
orthogonal vectors takes place in both examples using the same meth
odology. To gain experience with the diversity of buildings, two test sites 
will be processed. A third goal of this study is to improve the software 
package for the automated generation of building vectors from 
DSM-based ortho-images with high cartographic quality and geometric 
accuracy. 

2. Materials and methods 

2.1. Materials 

A data set of ISPRS (ISPRS WG III/4, 2014) was used, which includes 
several DSM-based ortho-images and land cover maps. In addition, a 
data set of normalized digital surface models (nDSM) of the same area 
was available (Gerke, 2014). 

The provided digital surface model has been generated from imagery 
using dense image matching (Haala and Rothermel, 2012). Its grid size is 
0.09 m. The ortho-images were produced by using the same DSMs for 
the differential rectification of the aerial images. The false colour 
ortho-images have a pixel size of 0.09 m and three spectral channels 
(Near Infra-Red, Red, and Green). The ortho-images are produced from 
the aerial images of high overlaps (65 % in flight direction, 60 % across 
flight direction). In the provided data, these are referred to as true 
ortho-images. According to current Danish specification, true 
ortho-images are produced by using a detailed 3D-building model 
(Geoforum, 2011). In Germany, the production of the so-called “True
DOP” uses a digital surface model which is derived by dense image 
matching (Baltrusch, 2016). In order to avoid confusion, the provided 
ortho-images are here named ‘DSM-based ortho-images’ in contrast to 
ortho-images which use 3D-building models or digital terrain models 
(DTM). 

As the DSM-based ortho-image has no displacements at objects above 
ground, the use of DSM-based ortho-images is a key feature of the pro
posed method for the automated generation of vector data for buildings. 
The provided nDSM has been derived by classification of the DSM into 
two classes (“ground”, “above ground”) and subsequent calculation of 
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the difference in elevation (Axelsson, 2000). The ISPRS provided land 
cover maps are produced by manual digitization and are converted into 
raster format. 

Two test sites were selected. They differ in the building character
istics (density, number of corners, overlapping trees). At Example 1 
(Vaihingen, area 7), the buildings in the 2.8 ha large area are quite 
varied. In the upper part of the area, the buildings are large and de
tached. Tall trees and bushes are close to the buildings. In the lower part, 
the buildings are of complex shape and close to each other. There are 
only a few trees. Buildings and trees had long shadows at the time of 
imaging. The landscape of Example 2 (Vaihingen, area 1) contains 28 
buildings of complex shape and high density. Tall trees partially overlap 
the buildings. This test site has an area of 3.9 ha. 

For the assessment of the thematic and geometric accuracy, the 

provided land cover maps and the ortho-images are used. The assess
ment of the thematic accuracy of a derived land cover map may be done 
by means of a subset of pixels or by all pixels of the reference data. Well- 
defined corners of buildings were used to assess the geometric accuracy. 

2.2. Methods 

2.2.1. Overview 
The proposed methodology uses overlapping aerial images from 

which a digital surface model (DSM), a DSM-based ortho-image, and 
various attributes will be derived. In this study, two different methods 
are applied for the generation of LCM: for Example 1, supervised clas
sification using 17 attributes, and for Example 2, supervised classifica
tion using just five attributes. Both land cover maps are generated using 

Fig. 1. Flow chart of the steps in the applied methodology.  
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the Decision Tree (DT) classifier. They are named LCM_1 (Example 1) 
and LCM_2 (Example 2). It is an advantage of the DT classifier, that 
categorical and numerical data can be used and that a normal distri
bution of the variables is not required (Kamusoko, 2019). The theoret
ical background of the DT method is given in Breiman et al. (1984). 
Experiences with DT classification for the generation of land cover maps 
are reported in Friedl and Brodley (1997) and Höhle (2014). 

The class “building” is extracted and then cartographically 
enhanced. The final building outlines are generated by means of line 
detection, line sequence determination, and least squares adjustment. 
The flow chart in Fig. 1 depicts the various steps of the applied 
methodology. 

2.2.2. Attribute generation 
Attributes of the pixels are used to generate the land cover maps. The 

applied attributes must characterize the selected classes and make it 
possible to distinguish the classes of the land cover map from one 
another. Basic attributes are the intensities of the three spectral bands, 
the normalized difference vegetation index, and the height above 
ground. A new approach used by this study, for Example 1, is an attri
bute profile (AP). The AP consists of several filtered images which are 
generated from the bands of the ortho-image. For each of the bands a 
tree of connected components (CC_AP) is created and then pruned using 
thresholds for an attribute of the CC_AP at different intensity levels. For 
example, a ‘maxTree’ - algorithm can be applied where the filtering of 
the created CC_AP is carried out using the attribute “area” for thresh
olding. The pruned pixels are re-allocated to the CC_AP of the node with 
a lower level of intensity. When three bands and three thresholds are 
selected, nine additional intensity values in the vector of each pixel are 
created. Together with the intensities of the original three bands, this 
multi-scale Area_AP comprises 4 × 3 = 12 intensity values. 

Such filtering of the image enables that small bright regions are 
merged into larger darker regions. This procedure is named thinning 
attribute filtering (Dalla Mura et al., 2010; Damadoran et al., 2017). 
Fig. 2 illustrates the principle of this filtering. 

Also, a thickening attribute filtering could be created when using the 
‘minTree’ – algorithm, which increases the number of features by 12. In 
this study, only the thinning attribute filtering is used and combined 
with basic attributes, i.e. I NIR, I R, I G, height above ground, normalized 
difference vegetation index at Example 1. It is anticipated that the 
selected filtering removes the small, light areas within the mostly dark 
roofs and thus enables a better detection of buildings. In addition, the 
feature vector should be manageable by small computers. 

Other special attributes used for Example 2 are the standard de
viations of elevations (Z) and of intensities in the 5 × 5 pixel kernel 
surrounding of a pixel (dispersion). They are combined with three basic 
attributes (I NIR, nDSM, NDVI). The use of the two attributes (I NIR, sigma 

I NIR_5x5) considers that the NIR-band has large changes in intensity for 
vegetation. Trees may then be distinguished from buildings. The other 
available bands (Red, Green) are omitted in the model to keep the 
number of features at a minimum. These attributes were applied in 
Höhle (2017) to create the land cover map (LCM_2), which is used in this 
study to extract and enhance many buildings. 

All selected attributes are collected in a vector, which is named a 
“feature vector”. Each pixel of the new land cover map is represented by 
a feature vector. The attributes used in the two examples are presented 
in Table 1. 

For Example 1, three thresholds (Tarea = 100, 1000, 5000 pixels) are 
applied. The special attributes (Area_AP) comprise 12 attributes and the 
basic attributes comprise five attributes. Since the buildings in the used 
ortho-image all have dark roofs, the roof areas become more homoge
neous using small area thresholds (100 and 1000 pixels). The filtering 
with a 5000 pixels large area threshold will cause that buildings smaller 
than 6.4m × 6.4m are not recognizable in the filtered image. 

2.2.3. Classification 
There are two steps involved in classification: the generation of the 

classifier and the assignment of a class to each map unit. As a classifier, 
the “Decision Tree” (DT) is selected for both data sets. The derivation of 
the DT requires training data, which were available in this investigation 
through a raster land cover map, in which the pixel value represents a 
single class. Pixels, either for a sub-map or the whole map, are extracted 

Fig. 2. Principle of thinning attribute filtering. Original image (a), maxTree with area size and levels (b), pruned tree after applying the threshold Tarea>5 pixels (c), 
and attribute (“area”-) filtered image (d). 

Table 1 
Used attributes in the two examples/methods to generate LCMs.  

Attribute type Attributes  

Example/Method  

1 2 

Basic 

I NIR I NIR 

I R – 
I G – 
NDVI NDVI 
nDSM nDSM 

Special 

I NIR sigma Z_5x5 

I NIR_100 sigma I NIR_5x5 

I NIR_1000 – 
I NIR_5000 – 
I R – 
I R_100 – 
I R_1000 – 
I R_5000 – 
I G – 
I G_100 – 
I G_1000 – 
I G_5000 –  
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and supplemented with attributes. The DT classifier splits the training 
data so that an optimal homogeneity of a class within a subset is ach
ieved. This splitting of the data occurs several times until all training 
units (pixels) are separated into the selected classes. The tree is then 
pruned. By means of the derived DT, the class of each map pixel can be 
predicted. In the examples, five and six classes are selected. The training 
of the classifier (DT) was carried out with 500 samples per class at 
Example 1. At Example 2, all pixels of an adjacent land cover map 
(Vaihingen, area 26) consisting of 5.3 million pixels were used. In this 
way, the training data are independent of the test site data and all classes 
of the LCM can be trained. 

Since the quality of the derived land cover map influences the final 
vector map, an assessment of the thematic accuracy must be carried out. 
The derived class (category) for each pixel is compared with the “truth”, 
i.e., the class value of the corresponding pixel of the provided land cover 
map (reference). For this purpose, an error matrix is established, and 
accuracy measures are derived as suggested by Congalton and Green 
(2008). 

2.2.4. Cartographic enhancement 
The result of the classification is a land cover map of several classes, 

in raster format. The class “building” is extracted, enhanced, and the 
connected components (CC_Enh) are labelled using standard image 
processing methods (dilation, erosion, edge detection, segmentation, 
hull filling, feature extraction). Corresponding functions are contained 
in the open-source software package “EBImage” (cf. Section 4.2). 

The detection of line segments in the CC_Enh representing one 
building uses the Hough transformation where a line is expressed by Eq. 
(1). 

ρ = xcosθ + ysinθ (1)  

where 
ρ=orthogonal distance of the line from the origin of the xy-system 
θ=azimuth of the normal vector to the line 
x,y=pixel coordinates. 
The coordinates (x,y) are constants in the parameter space H(θ, ρ). 
The pixels of the CC_Enh are transformed into the parameter space 

using several θ-values in the range between 0◦ and 175◦. All pixels 
belonging to a line segment are accumulated in cells of the parameter 
space. Its resolution is 5◦ and 5 pixels, respectively. The cell with the 
maximum number of counts is considered as the reference line (θref, ρref). 
The other lines are found by analysing the result of the Hough transform. 
The applied detection criteria are ρmin, ρmax, and n (length of line) for θref 
and θref +90◦. 

A graphical output may support the detection of all segments of the 
building outline. When all segments of the outline are identified, all 
pixels of the cluster representing a line are extracted. Accurate line pa
rameters are determined by least squares adjustment. The applied 
method is based on Eq. (1). All residuals are then orthogonal to the line. 
The sequence of lines is determined by means of the angle between the 
centre of the CC_Enh and the centre of the cluster which represents a line 
segment. Successive lines are then intersected, and approximate corner 
positions are obtained by Eq. (2) 
(

xPk

yPk

)

=

(
q1 q2
q3 q4

)(
ρi

ρi+1

)

(2)  

where 
xP, yP = coordinates of an intersected corner point, 
qi = coefficients containing trigonometric functions of successive 

angles θ, 
ρi = orthogonal distance of the line from the origin. 
Accurate coordinates of the corner points are calculated in two steps. 

First, the weighted average of the angle (θav) is determined whereby the 
weights are derived from the lengths of the lines. A least squares 
adjustment derives new values for the orthogonal distances of the lines 

from the origin (ρi). The new values for the corner coordinates (pi) can 
then be derived by multiplying the design matrix (A) with the calculated 
unknowns (xi=ρi). 

p = Ax̂ (3) 

The accuracy for a building with n corners can be estimated by the 
standard deviation of the residuals (r). 

σ̂ r =

̅̅̅̅̅̅̅̅

r̂T r̂
n

√

(4) 

All line segments of the building are then either parallel or orthog
onal. The standard deviation of the residuals is a measure of the interior 
accuracy. When a residual exceeds Tr = 3σr, a warning is displayed. The 
polygon of each building is closed. The processing of the raw outlines 
into vectors is depicted in Fig. 3. 

More details on the mathematics of the used approach for deriving 
orthogonal and parallel line segments are given in Höhle (2017). Some 
improvements regarding the universal use are introduced in the new 
version of the developed software (cf. Section 4.2). The adjustment of 
the lines is now based on Eq. (1). The residuals are then orthogonal to 
the line. Lines that are almost parallel to the y-axis can now be adjusted. 
In addition, the pixel cluster representing the line is cleaned of pixels 
belonging to another line. This is achieved by analysing histograms. The 
calculated line parameters are then more precise. 

2.3. Assessment 

The automated mapping of building outlines by means of vectors is 
evaluated in two ways. A visual inspection of the generated building 
outlines together with the references (land cover map, the DSM-based 
ortho-image) will give a first impression whether the extraction of 
buildings and their enhancement have been successful. To access the 
geometric accuracy of the derived buildings, check points must be 
selected. They should be well-defined in both references and in the 
generated vector data. Suitable check points are the corners of buildings. 
Their intersecting lines should form an angle of about 90◦. Reference 
coordinates were determined by manual digitizing of the selected cor
ners in the two references. The applied accuracy measures are the 
standard deviation (σ) and the root mean square error (RMSE). They are 
determined for both coordinates (x, y) by 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(Δ − μ)2

n − 1

√

(6) 

and 

RMSE =

̅̅̅̅̅̅̅̅

ΣΔ2

n

√

(7)  

where 
Δ = coordinate difference between reference and enhanced building 

corner, 
μ = average coordinate difference 
n = number of check points. 
The accuracy measures are calculated for each building and the 

average of the accuracy measure for all processed buildings is cited. 
Gross errors must be eliminated. They are defined as gross error > 3σav 
and their number (ngross error) is quoted in the results. To find the reason 
for gross errors and inaccuracies, the intermediate results are also of 
interest, which concerns the thematic accuracy of the class “building” in 
the classification. 

The thematic accuracy is determined pixel-wise. Reference values 
are extracted from the provided land cover map. For comparison of the 
classification result with the reference, an error matrix is established 
(Congalton and Green, 2008). The accuracy measures user accuracy 
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(UA), producer accuracy (PA), and the harmonic mean of UA and PA (H) 
are calculated for the class “building”. Regarding the geometric accu
racy of the vector data, the residuals after the least squares adjustment of 
the building polygon may disclose gross errors in the corner points. The 
derived average standard deviation (σr_av) is a measure for the interior 
accuracy of the corner points. When the two references are compared 
with each other, the average standard deviation of the coordinate dif
ferences (σΔx, Δy) is a measure for the quality of the references. 

3. Results 

The derived land cover maps (LCM_1, LCM_2) comprise the classes 
“building”, “impervious surfaces”, “low vegetation”, “tree”, and “car”. 
For LCM_2, an additional class (‘clutter/background’) was selected to 
detect water bodies and a few other small objects (tennis courts, con
tainers, swimming pools). For the enhancement, thresholds for the 
minimum area of a building (25 m2) and minimum length of a line 
segment (1.4 m) were used. Only buildings which are completely con
tained in the ortho-image have been processed. Manual editing was not 
carried out. The results are presented by overlaying the vector data onto 
the references (land cover map, ortho-image) and by numeric values of 
an accuracy measure (standard deviation, RMSE). 

3.1. Example 1 

The thematic accuracy of the derived land cover map (LCM_1) is 
assessed by means of the provided land cover map consisting of 4.8 
million pixels. For the class “building”, it resulted in PA = 92 %, UA = 82 
%, and H = 87 %. 

A visual inspection of the generated vector map in Fig. 4 reveals a 
high cartographic quality for all vectors. The straight, parallel, and 
orthogonal lines are perfectly established. Non-orthogonal lines are also 
present in the enhanced vector map. Some of the lines are short. The 
buildings have up to 12 corners. All outlines of the 28 automatically 
mapped buildings are closed. A few erroneous overlaps between build
ings occurred. 

The vector map of the buildings is superimposed onto the two ref
erences, i.e. the ortho-image and the land cover map, which allows a 
visual evaluation of the quality of the automated processing. The out
lines of the buildings fit well at most of the buildings in the ortho-image 
(Fig. 5). Single buildings have been combined to form larger units. Two 
buildings were not detected by the automated processing. Errors 
occurred when trees overlap the buildings. Shadows of tall buildings and 
trees are sources of errors. 

It is apparent that the enhanced vector data are more generalized 
than the buildings of the provided land cover map (Fig. 6). A few errors 
of the enhanced buildings are visible. However, errors exist also in the 
land cover map. For example, when trees overlap buildings, then the 
outline of the overlapping tree has been compiled. 

The assessment of the geometric accuracy used 130 well-defined 
building corners as check points. Fig. 7 depicts the distribution of the 
check points along with the buildings which are generated from the 
provided land cover map (reference). 

Geometric accuracy metrics are shown in Table 2. Two references 
have been used, the land cover map and the DSM-based ortho-image. 
The results are nearly the same for both references. The average of the 
standard deviations of the corner coordinates is σx,y_av = 1.05 m. 130 or 
142 well-defined corners have been used to assess the geometric accu
racy. Two gross errors have been removed before the final calculation of 
the accuracy measure. 

The average residual after the adjustment of the corner coordinates 
were σr_av = 0.2 m only. Comparing the two references with each other, 
the calculated standard deviation of the coordinate differences is σΔx =

0.6 m and σΔy = 0.7 m (ncorner = 132, ngross error = 0). 

3.2. Example 2 

The generated land cover map (LCM_2) has six classes. Its thematic 
accuracy was assessed by reference values for each of the 4.9 million 
pixels. For the class “building” the selected accuracy measures were PA 

Fig. 3. Processing of an enhanced raster map into vectors (a…detected lines, b…adjusted lines, c…centre of the clusters representing lines, d…adjusted corner points 
of the building. 

Fig. 4. Vector map derived from the DSM-based ortho-image by the developed 
method (Vaihingen, Germany, area 7). 
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= 78 %, UA = 88 %, and H = 83 % (Höhle, 2017). 
The visual inspection of the generated vector data (Fig. 8) reveals a 

high cartographic quality for all buildings. The outlines of their roofs 
include orthogonal and non-orthogonal lines. Some of the lines are 
short. The buildings have up to 14 corners. All polygons of the 33 
buildings are closed. 

Fig. 9 depicts the derived buildings together with the ortho-image. 
The outlines of the buildings fit well at most of the buildings in the 
ortho-image. One building was not detected. Some single buildings are 
combined to larger units. Shadows of tall buildings have been a source of 
errors. 

Fig. 10 depicts the enhanced vector data together with the provided 
land cover map (reference). As for Example 1, it is apparent that the 
enhanced vector data are more generalized than the buildings of the 
land cover map. A few errors in the enhanced vector map are visible. For 
example, a flat part of the large unit on the lower left side of the map is 
missing. The human operator responsible for production of the reference 
map may have used the shadows to recognize and map the building. 

The assessment of the geometric accuracy used a high number of 
well-defined building corners as check points. Fig. 11 depicts the dis
tribution of the check points along with the buildings which are 
generated from the provided land cover map (reference). 

Numerical values for the geometric accuracy of the processed 
buildings are listed in Table 3. The results are nearly the same for both 
references. The average of the standard deviation of the corner co
ordinates is σx,y_av = 0.9 m. The results are based on 134 (154) well- 
defined corners. One gross error has been removed before the calcula
tion of the accuracy measure. 

The average standard deviation of the residuals after the least 
squares adjustment of the corner 

coordinates were σr_av = 0.3 m. When the two references are 
compared, the calculated standard deviation of the coordinate differ
ences is σΔx = 0.3 m and σΔy = 0.3 m (ncorner = 130, ngross error = 2). 

Fig. 5. Enhanced vector data of buildings superimposed onto the DSM-based 
ortho-image. The green dots mark undetected buildings. Source of ortho- 
image: ISPRS WG III/4 (2014). 

Fig. 6. Enhanced buildings (red lines) superimposed onto the manually 
compiled land cover map (reference). The categories of the land cover map are 
coded by colours: “building” (blue), “impervious surfaces” (white), “low 
vegetation” (cyan), “tree” (green), “car” (yellow). Source of land cover map: 
ISPRS WG III/4 (2014). 

Fig. 7. Distribution of the check points along with the buildings generated from 
the provided land cover map (Vaihingen, Germany, area 7). 
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4. Discussion 

4.1. Vector maps 

Visual inspection of the automatically generated vector maps (cf. 
Figs. 4 and 8) reveals a high cartographic quality. The visual comparison 
with the two references, however, displays some inaccuracies. Some 
buildings are not mapped or do not overlap completely. Some de
ficiencies in the main orientation angle of the buildings are noticeable. 
The human eye is extremely sensitive to such deviations. The geometric 
accuracy of the two examples is about the same. The average of the 
standard deviation is σx,y_av = 1.0 m (reference = LCM) and σx,y_av = 1.0 
m (reference = ortho-image). These accuracies are determined by means 
of 264 and 296 well-defined corners, respectively. 

Of interest is the influence of the applied methodology. Example 1 
used for the generation of the land cover map (LCM_1) 17 attributes 
including an attribute profile, Example 2 used five attributes only to 
produce LCM_2. The differences in the geometric accuracy of the 
building vectors are Δσx,y = 0.05 m (reference = LCM) and Δσx,y = 0.25 
m (reference = ortho-image), both in favour of Example 2. That in
dicates that the use of an area attribute profile could not improve the 
geometric accuracy obtained with the five attributes. This means that 
computers with less main memory (RAM), e.g. just eight GB, can be used 
for the computations of the LCM and of the building vectors. The com
parison of both references reveals that the average standard deviations 
of the differences are relatively high (σΔx,Δy_av = 0.5 m, ncorner = 262, 
ngross error = 2). This means that the limited accuracy of the references 
has an influence on the geometric accuracy. Taking this fact into ac
count, the final accuracy of the generated building corners must be 
better than the calculated values. The quoted accuracy is an absolute 
accuracy because the used ortho-images are based on a DSM. The 
reduced image quality of the DSM-based ortho-images creates problems 
at the detection of lines and their enhancement. The imaged outlines of 
buildings are not straight and uninterrupted lines in the DSM-based 
ortho-image. 

Both test sites are difficult for an automated system. Some manual 
interaction was necessary. Better conditions exist for detached buildings 
without overlapping trees. The harmful influence of vegetation and 

shadows can be reduced by proper flight planning. For mapping pur
poses, the images are usually taken before foliation and at a high posi
tion of the sun. For example, according to specifications currently 
applied in Denmark, the imagery for mapping and ortho-imaging must 
be taken when the sun is more than 25◦ above the horizon (Geoforum, 
2011). 

A comparison with related recent work may give an idea about the 
performance of this work. Table 4 displays the geometric accuracy of 
building outlines achieved by different authors. The applied accuracy 
measure is the root mean square error (RMSE). The definition of the 
errors is not the same in the different works. Mousa et al. (2019) used the 
perpendicular distance (dp) to a line segment, Awrangjeb (2016) 
applied the distance between corresponding building corners and this 
study used the average of both coordinates (x,y) of the reference system. 
Other differences concern the way gross errors are dealt with. A fixed 
value can be selected as a threshold value to eliminate gross errors. A 
threshold value can also be calculated using a formula, and the threshold 
value is then a variable. 

The source data used by the authors listed in Table 4 are either only 
airborne laser scanning (ALS), only aerial images, or a combination of 
ALS and aerial images. The results of Awrangjeb (2016) are the best of 
the three tests because the distance error (RMSEd) is always larger than 
the coordinate error (RMSEx,y). 

The results of this study (RMSEx,y_av = 1.0 m, ncorner = 264, ngross error 
= 2, reference = LCM) are nearly the same as the results reported in 

Table 2 
Geometric accuracy of derived corner coordinates at Example 1.  

reference land cover map ortho-image 

coordinate x y x y 
σ [m] 1.1 0.9 1.2 1.0 
ncorner 130 142 
ngross error 2 2  

Fig. 8. Vector map derived from a DSM-based ortho-image by the developed 
method (Vaihingen, Germany, area 1). 

Fig. 9. Generated vector data of buildings superimposed onto the DSM-based 
ortho-image. The green dot marks an undetected building. Source of ortho- 
image: ISPRS WG III/4 (2014). 
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Mousa et al. (2019) where a combination of original aerial images and 
original laser scanning data have been used. This implies that the 
approach used is a comparable method for the automated mapping of 
buildings and other artificial topographical objects. 

4.2. Software development 

The programming of the applied method was done in “R” – a free 
software environment for statistical computing, data analysis, and 
graphics (R Core Team, 2019). The developed programs consist of 
several R-packages. For the DT classification task, the package “rpart” 
(recursive partitioning and regression trees) of the system library is used 
(Therneau and Atkinson, 2019). Here, the classification is expressed by a 
formula used in statistical modelling.  

class ~ attribute1 + attribute2 + ...                                                    (5) 

In this work, the dependent variable or response (class) is a name, 
and the independent variables (attributes) are numerical values. Both 
types of variables are vectors which contain the class names or the 
attribute values of all pixels. 

The developed programs for enhancement of buildings allow an 
automated processing. The calculations are carried out in steps using 
small functions. Errors can then be discovered and eliminated more 
easily. Graphical display of the intermediate results can be used if 

requested. Interactions by an operator are also possible. For example, 
small lines can be detected by measurement of a single pixel. Speed in 
processing has been gained by vector and matrix operations. Feature 
vectors with many attributes require computers with large main mem
ories. Small computers may cause problems when applying AP profiles 
to multispectral images. The open-source image processing package, 
“EBImage”, is used for the enhancement of raster images (Andrzej et al., 
2017). This R-package was originally developed for "microscopy-based 
cellular assays", but the functionality provided can also be used for these 
tasks. 

The developed programs regarding the enhancement of buildings are 
written in “R”. They comprise nine programs (‘extract all buildings‘, 
‘enhance image’, ‘extract single building’, ‘line detection’, ‘sequence of 
lines’, ‘adjustment of line’, ‘intersect corner points’, ‘adjustment of 
corner coordinates’, ‘plot results on references’). In addition, R-pro
grams for the generation and assessment of LCM_2 developed in Höhle 
(2014) have been used for Example 2. The programs used for Example 1, 
generation of AP and LCM_1, are described in Dalla Mura et al. (2010) 

Fig. 10. Generated vector data of buildings superimposed onto the land cover 
map (reference). The categories of the land cover map are coded by colours: 
“building” (blue), “impervious surfaces” (white), “low vegetation” (cyan), 
“tree” (green), “car” (yellow). Source of land cover map: ISPRS WG 
III/4 (2014). 

Fig. 11. Distribution of the check points along with the buildings generated 
from the provided land cover map (Vaihingen, Germany, area 1). 

Table 3 
Geometric accuracy of derived corner coordinates at Example 2.  

reference land cover map ortho-image 

coordinate x y x y 
σ [m] 1.0 0.9 0.9 0.8 
ncorner 134 154 
ngross error 1 1  
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and Damadoran et al. (2017), respectively. 

5. Conclusions 

The automated generation of vector maps has been accomplished by 
two different methods for the generation of land cover maps followed by 
one method for the extraction and enhancements of buildings. Both 
approaches could derive building vectors with a high cartographic 
quality. Their average geometric accuracy has been determined with σx, 

y_av = 1.0 m using numerous check points. The geometric accuracy can 
still be improved by more accurate input data (DSM, ortho-images, 
nDSM). Some editing will reduce the number of errors. The speed of 
operation must be improved by additional programming. The proposed 
methodology has the potential to automate the production and updating 
of topographic 2D maps. National and private mapping as well as crowd 
sourcing may benefit from such an automated approach. 
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Höhle, J., 2014. Generation of 2D land cover maps for urban areas using decision tree 
classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, pp. 15–21, 2014, II-7.  
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