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Abstract
The success of NoSQL DBMSs has pushed the adoption of polyglot storage systems that take advantage of the best character-
istics of different technologies and data models. While operational applications take great benefit from this choice, analytical
applications suffer the absence of schema consistency, not only between different DBMSs but within a single NoSQL system
as well. In this context, the discipline of data science is steering analysts away from traditional data warehousing and toward
a more flexible and lightweight approach to data analysis. The idea is to perform OLAP analyses in a pay-as-you-go manner
across heterogeneous schemas and data models, where the integration is progressively carried out by the user as the avail-
able data is explored. In this paper, we propose an approach to support data analysis within a high-variety multistore, with
heterogeneous schemas and overlapping records. Our approach supports relational, document, wide-column, and key-value
data models by automatically handling both data model and schema heterogeneity through a dataspace layer on top of the
underlying DBMSs. The expressiveness we enable corresponds to GPSJ queries, which are the most common class of queries
in OLAP applications. We rely on nested relational algebra to define a cross-database execution plan. The system has been
prototyped on Apache Spark.

Keywords Multistore · NoSQL · Dataspace · GPSJ · Schemaless · OLAP

1 Introduction

With the rise of Big Data, NoSQL systems have effectively
provided different ways to address the scalability issues of
relational database management systems (RDBMSs) and
the variety aspect of Big Data. As companies move toward
polyglot persistence [1] (i.e., employing several DBMSs to
exploit the best features of each) to optimize the operational
workload, new challenges arise from an analytical perspec-
tive, because the analyst needs a transparent way to access
these fragmented and differently shaped data. At the same
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time, the discipline of data science is steering analysts away
from traditional data warehousing and toward amore flexible
and lightweight data analysis approach. The idea is to relax
the rigidity of traditional integration approaches to perform
OLAP (OnLine Analytical Processing) analyses in a pay-
as-you-gomanner [2], where the integration is progressively
carried out by the user as the available data is explored. This
calls for new approaches to enable effective analyses on a
polyglot system without performing a complex integration
phase. The terms data virtualization and data fabric1 have
born to identify solutions that transparently access multiple
and heterogeneous sources to accelerate digital transforma-
tion and to support multi-cloud architectures. Commercial
software, such as Denodo [3], implements data virtualization
in many different contexts and supports both operational and
analytical applications.

The main challenges to address in this context are related
to (i) the heterogeneity of the data in terms of data model and
schema and (ii) the overlap of the same data across differ-

1 Data fabric is an architecture and set of data services that provide
consistent capabilities across a choice of endpoints, spanning from on-
premises to multiple cloud environments.
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ent collections of data (i.e., record overlapping). Data model
heterogeneity is intrinsic in a polyglot database; it requires
distributing the computation of a query across the differ-
ent databases (which adopt different query languages) and
possibly relying on middleware to combine and further elab-
orate the results. Schema heterogeneity is a common type
of heterogeneity in most NoSQL systems as they abandon
the traditional schema-first, data-later approach of RDBMSs
(which requires all record in a table to comply with a prede-
fined schema) in favor of a soft-schema approach, in which
each record embeds its own schema definition. The most
typical schema variants consist of missing or additional
attributes, different naming conventions or data types for an
attribute, and different record structures. Schemaheterogene-
ity ismainly due to schema evolution and to the acquisition of
data from sources adopting different schema representations
for the same entities. Additionally, due to record overlap-
ping the same record may exist in different collections; this
problem occurs when two distinct collections (possibly in
different databases) model the same real-world entity (e.g.,
a set of customers) in a non-partitioned way (e.g., the collec-
tionmodeling customers fromgrocery storesmay overlap the
collection modeling customers from the e-commerce appli-
cation). The implication is that records belonging to the same
entity must be reconciled (or merged) to avoid data replica-
tion and solve potential conflicts (e.g., the customer’s name
on one collection may differ from its name on the other
one). An exemplification of these problems is given in Fig. 1,
where overlapping records of customers and orders from two
DBMSs (relational and document-based) need to be recon-
ciled in order to obtain a clean representation that can be
used for analyses purposes. Notice the overlap of customer
123 and orderO1 in different schema representations; orders
have different attributes, customers have different naming
conventions and conflicting values for name and age.

State-of-the-art proposals for polyglot systems mainly
include multistores and polystores, depending on whether
they provide single or multiple interfaces for cross-DBMS
querying [4]. Current solutions mostly focus on addressing
data model heterogeneity and on optimizing the query pro-
cessing, but they do not consider schema heterogeneity nor
record overlapping. This prevents analysts from taking full
advantage of the data, as several instances may be missed
by queries that do not consider schema variations, and query
results may be inconsistent.

The proposal of this paper is an extension of our recent
research effort in this direction [5] to define an approach that
supports data analysis within a multistore by handling data
model heterogeneity, schema heterogeneity, and record over-
lapping through a dataspace layer on top of the underlying
databases. A dataspace is a lightweight integration approach
providing basic query expressive power on a variety of data
sources, bypassing the complexity of traditional integration

approaches and possibly returning best-effort or approximate
answers [6].Consistentlywith the pay-as-you-gophilosophy,
the dataspace is first built by applying simple matching rules
and is progressively enriched by the users as they discover
new relationships among data structures through exploratory
queries.

The query expressiveness we enable corresponds to GPSJ
queries (i.e., generalized projection, selection, and join [7]),
i.e., the most common class of queries in OLAP applica-
tions. State-of-the-art works typically delegate to the user
the formulation of adequate queries with the risk of getting
inconsistent answers to the envisioned questions. In contrast,
GPSJs enforce query semantics to prevent the user from get-
ting misleading results leading to ambiguous or potentially
incorrect interpretation in the analytical context. For a given
GPSJ, our approach defines a cross-database execution plan
in nested relational algebra (NRA) [8], which is compatible
with the expressiveness of document stores’ query language
[9] and SQL (as it is a superset of relational algebra), with
the latter being used by both RDBMSs andwide-column sys-
tems. The execution plan handles both record overlapping
and schema heterogeneity by, respectively, relying on the
merge operator (i.e., a new NRA operator that we introduce
to enable conflict-resolution) and by relying on the dataspace
knowledge in terms of mappings between the collections’
attributes.A prototype of the approach has been implemented
in Scala with Apache Spark, i.e., a Big Data framework
that enables the execution of collection plans on the sin-
gle databases (i.e., PostgreSQL, MongoDB, Cassandra, and
Redis in our prototype), the in-memory elaboration of inter-
mediate results, and the capability to scale to large amounts of
data. We remark that the approach does not modify the orig-
inal data, thus ensuring the validity of existing workloads on
the databases while granting access to the dataspace. Finally,
an experimental evaluation of the approach is carried out to
measure it both in terms of efficiency and effectiveness.

The main original contributions of this paper can be sum-
marized as follows.

– We propose an approach that relies on a dataspace to
support data analysis within a multistore by handling not
just data model heterogeneity and schema heterogeneity
but also record overlapping. To this end, we intro-
duce a new NRA operator to handle conflict-resolution
between overlapping records and we significantly revise
and extend both the formalization and the algorithmic
logic initially proposed in [10].

– We formalize and discuss the algorithms to produce an
execution plan from a GPSJ query formulated on the
dataspace, including a set of applied optimizations.

– Wepresent a prototypical implementationof the approach
on which we carry out an extensive experimental evalu-
ation in both terms of efficiency and effectiveness.
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CID FullName Age

123 Alice Smith 40

{ custId: 123,
name: "Smith Alice",
age: 35,
orders: [
{ oid: "O1", invoice: "…" }

] }?

CID OID Date Tot

123 O1 2021-03-01 1000

123 O2 2021-03-02 1500

CID Name Age OID Date Tot Invoice

123 Alice Smith 35 O1 2021-03-01 1000 "…"

123 Alice Smith 35 O2 2021-03-02 1500

RDBMS
Document

store

Orders table Customers table Customers collection

Fig. 1 An exemplification of data model heterogeneity, schema heterogeneity, and record overlapping in a multistore

The paper outline is as follows. Section 2 presents the
use cases of our approach and discusses the case study. The
dataspace and the basic concepts are formalized in Sect. 3.
Then, we present the formulation of the execution plan in
Sect. 4 and discuss the experimental evaluation in Sect. 5.
After discussing the related work in Sect. 6, we draw the
conclusions and discuss future work in Sect. 7.

2 Use cases & case study

The approach proposed in this work can be applied in
different practical contexts which, as mentioned in the intro-
duction, refer to data virtualization systems for data analysis.
Below we describe two more specific contexts that emerged
during our interaction with Denodo [3], one of the market-
leading tools on this subject.

– Analytical data offloading: to reduce costs and optimize
performance, the historical depth of databases is kept lim-
ited; typically, it is 1-2 years for operational systems, and
3-5 for analytical ones [11]. After these periods, data are
offloaded to cheaper as well as bigger storages, such as
cloud storages or data lakes. Offloading implies a change
of data model, a change of schema, and obviously an
overlapping of instanceswith the original data. For exam-
ple, offloading a relational data warehouse could imply
turning instances stored in a star schema to a single
JSON document including both measures and dimen-
sional attributes; alternatively, a relational flat schema
could be adopted. Similarly, invoices stored in an ERP
can be offloaded to a key-value repository, where the

value stores an object including only the attributes rel-
evant for fiscal purposes. In the meanwhile, the in-place
data may evolve in terms of structures or values. In this
context, unforeseen analyses are often needed, such as
data enthusiasts asking to compare the offloaded data
with the in-place ones.

– Multi-cloud architecture: this context combines different
storage technologies and resources from multiple cloud
platforms [12]. It allows application providers to man-
age the risks associated with technology, vendor lock-in,
provider reliability, data security, and privacy thus, it is
an increasingly popular tactic for designing the storage
tier of cloud-based applications [13]. The multi-cloud
architecture and related frameworks (e.g., data fabric)
accelerate digital transformation since they enable the
exploitation of data spread across different providers
and architectures, all the while overcoming data silos
through data virtualization. Multi-cloud architectures are
a panacea in presence of many company branches. For
example, consider a holding or a federation of companies
(e.g., hospitals in the health sector). In this case, a lot of
data is shared between the branches, but each branch is
free to choose its own storage provider (either on cloud
or on-premise), data model, and schema. To keep it sim-
ple, let us consider the case of ICD-9-CM (International
Classification of Diseases) [14], which is often used in
OLAP analysis in the healthcare domain. ICD-9-CM
changes some of its attributes and values across the years;
thus, depending on the ICD-9-CM version adopted by
each branch, data overlapping and schema heterogeneity
must be resolved when cross-queries are issued over the
branches’ databases. Furthermore, every hospital or local
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Fig. 2 The ER diagram of the case study

Fig. 3 Agraphical representation of the physical implementation of the
case study. Different colors represent different DBMSs with different
data models

health unit can store such data in different data models
and schemas, depending on the adopted software.

The use cases above are characterized by (1) multiple data
models, (2) heterogeneous schemas, and (3) overlapping
instances. This proves the relevance of the discussed issue,
which will further increase with the progressive diffusion of
data virtualization architectures.

To analyze the three characterizing features we rely on
a variation of Unibench [15], i.e., a benchmark dataset for
multi-model databases based on an e-commerce application,
which stores details about products ordered and bought by
customers. A conceptual view of the use case is shown in
Fig. 2 through an ER diagram. The case study is perfectly
suited for GPSJ queries since it models events (e.g., Order-
line andOrder), KPIs or measures (e.g., quantity and Price),
and grouping/classification attributes (e.g., Product andCus-
tomer).

The case study simulates the multi-cloud architecture,
where different branches of the same holding basically store
the same data but rely on different storage systems. Figure 3
shows the physical implementation. C1 to C7 represent the
collections of data, while the “:” notation is used to indicate
the granularity of the data in the collection (notice that the
document-based database contains a single collection which
uses nested structures to embed orders within customers, and

order lines within orders). While Cloud 1 fully relies on a
relational DBMS, Cloud 2 satisfies a need of supporting data
variety by relying on NoSQL systems; also notice that Cloud
2 additionally stores orders’ invoices. With respect to the
aforementioned use cases, our case study is characterized by
the same features.

– Multiple data models: being a multistore, it comprises
databases in four data models: relational, document-
based, key-value, and wide-column.

– Heterogeneous schemas: given the schemaless nature of
NoSQL databases, the collections in Cloud 2 are char-
acterized by varying levels of schema heterogeneity; in
particular, we have 35 schemas in C5 and 2 schemas C6,
while invoices in C7 are free to be in any schema.

– Overlapping instances: as the two branches belong to the
same holding, both customers and products are partially
overlapped in the two cloud environments.

To fulfill these characteristics, the Unibench benchmark is
extended by injecting schema heterogeneity and introducing
overlapping records in different DBMSs. In particular, we
carry out the following extensions.

– Unibench’s customer records are split betweenC1 andC5

in an overlapping fashion: 90% customers are in the rela-
tional table and 30% in the document collection,meaning
that 20% of the customers are replicated.

– Unibench’s product records are split between C4 and C6

in an overlapping fashion: in this case, both the relation
table and the wide-column collection contain 80% of the
original records, where 60% of the products are repli-
cated.

– Unibench’s order and order line records are split between
the twoDBMSs, but they do not overlap (i.e., each record
exists in one copy only). Orders belonging to overlapping
customers are randomly assigned to one of the branches.

– Missing attributes are introduced in C5 and C6; in the
former, we remove values for three attributes (namely
browser, locationIP, and place) for some random cus-
tomer records, in the latter we remove imgUrl values in
10% of the product records.

– Semantic equivalence is introduced in C5 by renaming
the birthdate and gender attributes into dateOfBirth and
sex for some random customer records, and by renaming
all attributes into a different convention for some random
order line records.

– Different data types are introduced in C1 and C5 by stor-
ing the value of attribute OrderDate as a date in the
former’s records and as a string in the latter’s; also, order
lines’ attribute Quantity in C5 is randomly modeled as a
string or a number.
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Fig. 4 A UML class diagram of the terminology

These extensions define a multistore with fixed levels
of schema heterogeneity and record overlapping. Different
implementations of the multistore will be defined in Sect. 5
to evaluate these specific aspects.

3 The dataspace

This section is focused on the formalization and presen-
tation of the dataspace. First, in Sect. 3.1 we introduce
the intensional representation of existing collections; then,
we formalize the dataspace in Sect. 3.2; finally, Sect. 3.3
describes the process to obtain, maintain, and use the datas-
pace.

3.1 Modeling the existing collections

In a multistore, different data models may be used to repre-
sent and store data. This requires defining the basic database
concepts in a way that abstracts from the single data mod-
els. Figure 4 provides a UML class diagram to describe the
concepts that we use in this paper.

Definition 3.1 (Multistore, Database, Collection) A mul-
tistore is a set of databases; each database D is a set of
collections; each collection C is a set of records.

We use the term collection to refer to the container of
data (i.e., what is known as table, column family, and col-
lection in relational, wide-column, and document/key-value
databases, respectively). Similarly, we introduce the term
record to refer to the instances in a collection. Our notion
of records perfectly corresponds to the tuples of a rela-
tional database, but the rows and documents of wide-column
and document databases potentially correspond to multiple
records. In fact, non-relational data models comply with the
aggregate data modeling property, which enables the nesting

of records within other records through the array data type.
Thus, we do not consider documents and rows as a whole,
but we separately model the records available at each nesting
level.

Definition 3.2 (Record,Attribute) A record r = {v1, . . . , vn}
is a set of values, and each value vi is associated with a cer-
tain attribute ai . Let r [ai ] = vi where ai is an attribute; vi is
either a value of primitive type (e.g., number or string) or
an array of records. An attribute a is defined by a name and
a type (i.e., either primitive or array).

From this point forward, we refer to primitive attributes
or array attributes based on the respective type. Also, given
an attribute a, we use name(a) and t ype(a) to, respec-
tively, refer to its name and its type. If an attribute is nested
within one ormore array attributes, its name includes the dot-
concatenation of the names of those array attributes. Finally,
notice that: (i) arrays of primitive types are not considered for
simplicity; (ii) attributes of object data type are not consid-
ered as they are simply containers of attributes for the same
record (i.e., they entail the same expressiveness of primi-
tive attributes); (iii) we exclude attributes of binary data
types, whose values are uninterpretable without additional
knowledge; (iv) to enable support to key-values stores (which
support only two attributes, i.e., a string key and a binary
value), we assume the value to contain interpretable strings;
in particular, the name of the two attributes are inferred
from the collection’s name (e.g., collection C7 in Fig. 3
has two attributes ak and av , where name(ak) = invoiceId,
name(av) = invoice, and t ype(ak) = t ype(av) = string).

Example 3.1 Figure 5 shows a sample document of a docu-
ment database, representing a customer, its orders, and the
respective order details; the boxes highlight the presence of
four records (in blue the customer record, in green the order
records, in orange the two order line records).

Our notion of schema applies to the records rather than to
the entire collections. Thus, several schemas may be found
for a certain collection, due to the possible presence of both
schema variability and nested records.

Definition 3.3 (Schema, Key) A schema S applies to one
or more records in a collection and it is defined as a set of
primitive attributes. The attribute that uniquely identifies the
records with schema S is the key, defined as key(S). If the
records referring to S are nested, Sμ denotes the optional
sequence of array attributes in the schema’s collection that
must be unnested to unveil the records of S.

For the sake of simplicity, given a record r , its schema
(denoted with Sr ) is the set of attributes directly available in
r (i.e., without unnesting any array). If a record r ′ is nested
within r , Sr ′ also includes key(Sr ); this is necessary to main-
tain the relationship between the schema of a nested record
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Fig. 5 A sample document representing a customer, its orders, and the
respective order details; four records are shown in the boxes, and each
color (blue, green, and orange) corresponds to a different schema

and the one of the parent record. Our schema definition pro-
vides a view of the records in first normal form, as it hides
the denormalization due to the nesting of records and exposes
the relationships between schemas at different nesting levels.

For the sake of simplicity, we assume all keys to be simple
(i.e., not composite)2. Also, it is reasonable to assume that
all schemas (including those nested in arrays) have a key. We
refer to S as the set of all schemas within the multistore.

Example 3.2 The sample document in Figure 5 contains three
schemas:

– Sblue = {id, firstName,gender}
– Sgreen = {id, orders.orderId, orders.orderDate,
orders.totalprice}

– Sorange = {orders.orderId, orders.orderLines.quantity,
orders.orderLines.asin, orders.orderLines.price}

It is Sμ
blue = [], Sμ

green = [orders], and Sμ
orange =

[orders, orders.orderLines]
Concerning the schemaless property of non-relational

databases, we take into account every schema variation in a
collection (i.e., if two records differ even for a single attribute,
we model two separate schemas, each with its own set of
attributes). Given our previous assumptions, collections in
key-value stores are associated with a single schema (e.g.,
the schema of collection C7 is S = {invoideId, invoice}).
2 Composite keys could be supported by extending the definitions of
schemas, keys, and mappings; however, assume simple keys to ensure
better readability of the paper.

3.2 Modeling the dataspace

Due to both schema variability and schema denormaliza-
tion, attributes in different schemas may represent the same
property. For example, in Fig. 5 different order line records
use attributes with different names to indicate the quantity
of product bought (i.e., quantity and qty, respectively). To
resolve the different classes of heterogeneity and model the
equivalence between different attributes of the dataspace we
exploit mappings3.

Definition 3.4 (Mapping) A mapping m is a triple m =
(ai , a j , ϕ(ai ,a j )) that expresses a relationship between two
primitive attributes ai and a j ;ϕ(ai ,a j ) is an bijective transcod-
ing function to express the values of a j in the format of ai (if
necessary; otherwise, ϕ(ai ,a j ) = I () where I () is the identity
function). The existence of a mapping between ai and a j is
indicated with ai ≡ a j .

For simplicity,we consider only simplemappings between
twoattributes. Sincemappings are specifiedbetween attributes
of different schemas, they reveal the relationship between
such schemas. Consider two schemas Si and S j .

• If key(Si ) ≡ key(S j ), then we infer a one-to-one rela-
tionship, represented as Si ↔ S j .

• If ak ≡ key(S j ) : ak ∈ {Si \ key(Si )}, then we infer a
many-to-one relationship from Si to S j , represented as

Si
ak−→ S j .

• If ak ≡ al : (ak, al) ∈ ({Si \ key(Si )}, {S j \ key(S j )}),
no direct relationship exists between the two schemas.

Mappings recognize that there is a semantic equivalence
between two attributes in different schemas, thus we need to
address all of them through a unique reference. This is the
purpose of features.

Definition 3.5 (Feature) A feature represents either a single
attribute or a group of attributes that are mapped to each
other. We define a feature as f = (a, name, M,�), where
a is the representative attribute of the feature; name is the
name of the feature (possibly different from name(a)); M
is the set of mappings that link all the feature’s attributes
to the representative a (i.e., the transcoding functions in the
mapping are all directed toward a); � : (vi , v j ) → vk is
an associative and commutative function that resolves the
possible conflict between the values of any two attributes
(ai , a j )belonging to f and returns a single valuevk . Function
�may either choose one value between vi and v j or calculate
a new value vk . It is M = ∅ when a concept is modeled by
a single attribute.

3 Unlike in [10], the mapping definition in this paper has not been
specialized into sameAs and fk since they are not necessary to the query
rewriting process.
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Let attr( f ) be the set of attributes represented by f (i.e.,
the representative attribute plus those derived from the map-
pings). Given a record r , the conflict-resolution function �

can be applied to r [ai ] and r [a j ] if {ai , a j } ⊆ attr( f );
we refer the reader to [16] for an indication about differ-
ent methods to define conflict-resolution functions. Also, we
remark that an attribute is always represented by one and
only one feature; thus, for any two features fi and f j , it is
attr( fi ) ∩ attr( f j ) = ∅. We use f eat(a) to refer to the
feature of an attribute a, name( f ) to refer to the name of a
feature, rep( f ) to refer to the representative attribute of f ,
and rep(a) as short for rep( f eat(a)).

Similarly to attributes, several schemas may be found
to represent the same semantic concept (e.g., customers,
orders). To hide such structural complexity, we introduce the
concept of entities.

Definition 3.6 (Entity) An entity is a representation of a
set of schemas in the multistore that semantically model
the same semantic concept. We define an entity as E =
(name,SE , φE ), where SE ⊆ S is the set of schemas rep-
resented by E , and φE is a Boolean variable that indicates
whether the schemas in SE are subject to record overlapping.
The schemas in SE must be in a one-to-one relationship with
each other, i.e., ∀ (Si , S j ) ∈ SE , it is key(Si ) ≡ key(S j ),
i.e., ∃ f : attr( f ) ⊇ {key(S) : S ∈ SE }
Example 3.3 WhileFig. 3 presents the collections and schemas
in our motivating example, Table 1 presents a detailed view
in terms of schemas, attributes, features and entities. On the
columns, the schemas are organized by entities; on the rows,
attributes are organized by features, and the mappings are
implicit between attributes of the same feature. For instance,
it is a7 ≡ a8 since f eat(a7) = f eat(a8) = f2. Mappings
reveal the relationship between the schemas. For instance,
S1 ↔ S2 ↔ S10 because key(S1) ≡ key(S2) ≡ key(S10);
similarly, it is S5 ↔ S6 ↔ S9. Differently, mapping a3 ≡ a4
indicates that S5

a4−→ S1 because a3 �= key(S5) and a4 =
key(S1). We remark that S1 differs from S2 on the existence
of an attribute representing f3, and that S4 differs from S8
on the datatype of f9 (although this in not made explicit in
Table 1 for space reasons, a29 is modeled as a string, while
a30 as a date). Ultimately, notice that (i) each attribute is con-
tained only in one schema, (ii) each schema contains one key
attribute, (iii) each schema contains at most one attribute per
feature, and (iv) there exist several features (e.g., ProductId)
that overlap several entities.

Ultimately, the dataspace is the data structure that puts
together features and entities.

Definition 3.7 (Dataspace) A dataspaceD is a graph of enti-
ties and features, where each feature is connected to the
entities whose schemas contain an attribute of such feature.

Fig. 6 The dataspace D of the running example

Fig. 7 The entity graph GE of the running example

To emphasize the relationships between the entities and
exploit them for querying purposes, we organize them in a
supporting structure called entity graph.

Definition 3.8 (Entity graph) The entity graph is a directed
acyclic graph GE = (E, LE ) where E is the set of entities in
the dataspace and LE is the set of -to-one relationships (or
links) between the entities.

We say that Ei
f−→ E j if ∃ f ∈ Ei : ∀ a ∈ attr( f ), a ∈

SEi it is SEi

a−→ SE j , (SEi , SE j ) ∈ (SEi ,SE j ). In other
words, there is a many-to-one relationship from Ei to E j

on f if ∀ SE j ∈ SE j it is attr( f ) ∩ key(SE j ) �= ∅ (i.e., the
attributes of f are keys in the schemas of E j ) and∀ SEi ∈ SEi

it is attr( f ) ∩ key(SEi ) = ∅ (i.e., the attributes of f
are not keys in the schemas of Ei ). Similarly, we say that

Ei
f←→ E j if ∃ f ∈ Ei : ∀ a ∈ attr( f ), a ∈ SEi it is

SEi

a←→ SE j , (SEi , SE j ) ∈ (SEi ,SE j ). Notice that we do not
consider many-to-many relationships because schemas are
inferred from physical implementations, where only many-
to-one can be explicitly represented.

Example 3.4 Figures 6 and 7, respectively, show the datas-
pace and the entity graph of the running example.
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Table 1 Extract of the
correspondences between
attributes and schemas in our
case study from Fig. 3; cell
[i, j] has a checkmark if
ai ∈ S j , or the letter “K” if
ai = key(S j ). Attributes are
organized by features fk and
indicate the collection Cl they
belong to, while schemas are
organized by entity Em

name( f ) f a C Product Orderline Order Customer Inv
E1 E2 E3 E4 E5

S1 S2 S10 S5 S6 S9 S4 S8 S3 S7 S11

ProductId f1 a1 C3 �
a2 C5 �
a3 C5 �
a4 C6 K

a5 C6 K

a6 C4 K

ProductName f2 a7 C6 �
a8 C6 �
a9 C4 �

ImgUrl f3 a10 C6 �
OrderLineId f4 a11 C3 K

a12 C5 K

a13 C5 K

Price f5 a14 C5 �
a15 C5 �
a16 C6 �
a17 C6 �

Quantity f6 a18 C3 �
a19 C5 �
a20 C5 �

OrderId f7 a21 C3 �
a22 C3 K

a23 C5 �
a24 C5 �
a25 C5 K

a26 C7 K

TotalPrice f8 a27 C2 �
a28 C5 �

OrderDate f9 a29 C2 �
a30 C5 �

Invoice f10 a31 C7 �
TaxId f11 a32 C1 K

a33 C2 �
a34 C5 K

a35 C5 �
LastName f12 a36 C1 �

a37 C5 �
Gender f13 a38 C1 �

a39 C5 �

3.3 Obtaining the dataspace

The iterative process to obtain, maintain, and use the datas-
pace is described in Fig. 8; the figure distinguishes the offline
activities related to themanagement of the dataspace (in gray)

from the online querying activity that relies on the dataspace
(in white). Each step is described in the following.

Schema extraction. This step is aimed at extracting
schemas from the collections in each database and retrieving
collections’ statistics. Its execution is completely automatic
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Fig. 8 The process to obtain, maintain, and use the dataspace

and can be carried out incrementally, i.e., new/updated col-
lections can be examined individually at any time.

Mapping definition. The goal of this step is to define map-
pings between the extracted schemas and attributes. This can
be achieved in a semiautomatic manner, i.e., by combining
the results of a schema matching algorithm [17] or tool (e.g.,
Coma 3.0 [18]) with knowledge manually provided by the
user. In accordance with the pay-as-you-go philosophy, this
methodology enables users to quickly reach the querying
step; the mappings automatically defined by the algorithms
are later refined by the user, as new insights are obtained
through the querying of data.

Feature and entity recognition. This step is semiauto-
matic as well: based on Definitions 3.5 and 3.6 , both
features and entities are automatically derivable from the
mappings and the one-to-one relationships between schemas,
respectively. Then, the user may refine the results by veri-
fying whether or not the structural one-to-one relationships
between schemas actually correspond to the same seman-
tic concept. For instance, in our case study, Order schemas
are in a one-to-one relationship with Invoice schemas, but
they correspond to different semantic concepts. Similarly,
given an entity E , φE can be set manually or by running an
automatic procedure that looks for matches between the key
values across SE .

Querying. As soon as the dataspace is built, the user can
exploit it to query the data; details on the querying step are
given in Sect. 4. At any point in time, the user can go back
to any of the previous steps to re-run some algorithm or to
inject knowledge into the system.

The level of user intervention required in the semiauto-
matic activities of the offline phase is expected to decrease
as users advance in the dataspace definition process: a core
part of the dataspace will be stabilized after some iterations

and it will be updated based on new user requirements (e.g.,
the exploration of attributes or schemas that had not been
analyzed before), schema evolution, or the addition of new
data sources. The cost of the update process remains constant
over time, because (i) it only consists of updates at the meta-
data level, and (ii) it is safe to assume that existing constructs
of the dataspace will not need to be redefined (if not to make
corrections).

4 Execution plan formulation

This section describes the core aspect of our approach, i.e.,
the formulation of a query by the user on the dataspace and the
rewriting process to execute it. In this work, we consider the
class of GPSJ queries, formulated on the features available
in the dataspace.

Definition 4.1 (Query) Let F be the set of features in a datas-
pace D; we define a query as q = (qπ , qγ , qσ ), where:
qπ ⊆ F specifies the optional set of features to be pro-
jected; qγ specifies optional aggregations as a set of couples
( f , op), where f ∈ F and op is an aggregation function
(e.g., max()); qσ is an optional set of conjunctive (∧) selec-
tion predicates in the formof triplets ( f , ω, v), where f ∈ F ,
ω ∈ {=;>;<; �=;≥;≤} and v is a value4. Clearly, at least
one among qπ and qγ must be defined.

GPSJ expressions extend select-join expressions with
aggregation, grouping, and group selection. GPSJ queries are
the most common class of queries in OLAP applications. It is
notmandatory that all the three sets qπ , qγ and qσ are present,
thus our definition also covers simple selection queries and
join queries.

Example 4.1 Letq be the query tomeasure, for eachProduct-
Name, the average Quantity bought by female customers
(Gender) starting from 2019 (OrderDate). The group-by set
of q is qπ = { f2}; the aggregation set is qγ = {( f6, avg())}
and the set of selection predicates is qσ = {( f9, ≥
, “2019/01/01′′), ( f13, =, “F ′′)}.

The remainder of the section is organized as follows:
Sect. 4.1 introduces our extended version of nested relational
algebra; Sect. 4.2 describes the query rewriting process;
Sect. 4.3 discusses the query plan optimization aspect.

4.1 NRA and themerge operator

We rely on nested relational algebra (NRA) to define the
execution plan of a query. Table 2 briefly explains each oper-
ator. With respect to traditional algebra, we introduce a new

4 Disjunctive selection predicates and negations of selection predicates
are not supported to avoid overcomplicating the discussion.
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Fig. 9 Graphical representation of the merge operator

operator called merge ( �), i.e., an adaptation to our scenario
of the full outerjoin-merge operator introduced in [19]. Its
purpose is to replace the join operator (��) by addressing the
extensional and intensional overlap between schemas. In par-
ticular, we consider the scenario in which records belonging
to the same entity (e.g., Customer) can be partially over-
lapped, both in terms of instances (e.g., the same customer
can be repeated across different schemas) and in terms of
schemas (e.g., the name of the customer can be an attribute
of two different schemas). We assume that the same is true
when joining records from different entities (e.g., Customer
and Order): the records can be partially overlapped (e.g., a
customer may not have any orders, and an order may not be
related to any customer), and so can be their schemas (e.g.,
the name of the customer can be used in the order’s schema
as well).

Example 4.2 This scenario is explained in Fig. 9, where
two overlapping schemas Si and S j with the, respectively,
overlapping sets of records Ri and R j are shown. The
(vertical) green section is the intersection of schemas, i.e.,
Si ∩ S j = {(ak, al) ∈ (Si , S j ) : ak ≡ al}. The (hori-
zontal) crossed section is the intersection of records, i.e.,
Ri ∩ R j = {r : ∃ (s, t) ∈ (Ri , R j ), s[ak] = t[al ]} where
ak = al is the join condition between records s and t .

We aim to keep as much information as possible when
joining the records of two schemas, both from the extensional
and the intensional points of view. The merge operator ( �)
answers this need by (i) avoiding any loss of records, (ii)
resolving mappings by providing output in terms of features
instead of attributes, and (iii) resolving conflicts whenever
necessary.

Definition 4.2 (Merge operator) Let Ri and R j be the record-
sets of two schemas Si and S j , and consider (ak, al) ∈
(Si , S j ) such that ak ≡ al , i.e., ∃ f : {ak, al} ⊆ attr( f ).
The merge of the two schemas Si � f S j produces a recordset
Ri j with schema Si j = S∗

i ∪ S∗
j ∪ S∩

i j such that:

– S∗
i = {a ∈ Si : � a′ ∈ S j , a ≡ a′}

– S∗
j = {a′ ∈ S j : � a ∈ Si , a ≡ a′}

– S∩
i j = {rep(a) ∀ (a, a′) ∈ (Si , S j ) : a ≡ a′}

Table 2 NRA operators

Operator Description

CAcol Denotes the access to the records of collec-
tion col.

μa(C) Denotes the unnesting of an array attribute
a on collection C .

σx (C) Denotes a selection operation on collec-
tion C , where x = ∧

T is a conjunction of
selection predicates; each selection predi-
cate t ∈ T is in the form (a, ω, v), where
a is a primitive attribute, ω ∈ {=; >; <; �=
; ≥; ≤} and v is a value.

πY (C) Denotes a projection operation on collec-
tion C , where Y is a set of projection
predicates; each projection predicate y ∈ Y
is in the form y = ∨

A / f where A is a set
of primitive attributes (of which the first
non-null values is taken), and / f indicates
that the resulting attribute is named after
feature f . It is attr( f ) ⊇ A.

γ(F ′,Z)(C) Denotes an aggregation operation on col-
lection C , where F ′ is the group-by set
(i.e., a set of features) and Z is the set
of aggregations; each aggregation is in the
form ( f , op) where f is a feature and op
an aggregation function.

(C1) ∪ (C2) Denotes a union operation between collec-
tions C1 and C2.

(C1) �(ai ,a j )(C2) Denotes a merge operation between collec-
tions C1 and C2 based on the equivalence
ai = a j , with (ai , a j ) ∈ (C1,C2). See
Definition 4.2.

Ri j results in a full-outerjoin between Ri and R j where the
couples of attributes linked by amapping aremerged through
function �. In particular, given a record r ∈ Ri j obtained
by joining s ∈ Ri and t ∈ R j (i.e., s[ai ] = t[a j ]), then
∀ (a, a′) ∈ (Si , S j ) : a ≡ a′ it is r [rep(a)] = �(s[a], t[a′]).
Example 4.3 With reference to Table 1, let S1 � f1 S10, s ∈ C6

with schema S1, t ∈ C4 with schema S10, s[a4] = t[a6]
where attr( f1) ⊃ {a4, a6}. Let the values of ProductName
be s[a7] = “Blueseventy Vision Goggles” and t[a9] =
“B70 VG”. The merge of s and t produces a record r where
r [a7] = �′(s[a7], t[a9]) and�′ is a conflict-resolution func-
tion that decides between “Blueseventy Vision Goggles” and
“B70 VG” and produces a consistent result to answer the
query in Example 4.1.

4.2 The query plan

Building the execution plan of a query first requires iden-
tifying the entities that need to be accessed, which are not
limited to those containing the features selected in the query.
For instance, a query asking for the average price of the items
ordered by a customer requires to access not only entities
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Customer and Orderline but also Order, even if no feature
belonging toOrder ismentioned in the query. Thus,we define
the query graph as the subgraph of the entity graph that
includes all and only the entities that need to be accessed
to answer a certain query.

Definition 4.3 (Query graph) The query graph GE
q is a sub-

graph of GE (i.e., GE
q = (Eq ⊆ E, LE

q ⊆ LE )) such that:

(i) GE
q is minimally connected;

(i i) Eq ⊇ attr(q);
(i i i) ∃ E∗ ⊆ Eq : E∗ ⊇ qγ , ∀ E ′ ∈ Eq it is E∗ ⇒ E

′
.

Condition (i) ensures that nounnecessary entity is accessed.
Condition (ii) ensures that all attributes belonging to the fea-
tures involved in the query are covered by the entities in Eq .
Condition (iii) entails the compliance of query q with the
GPSJ semantics, that is, there exists an entity representing
the events at the finest level of granularity (i.e., E∗ ⇒ E

′

indicates that a directed path exists from E∗ to every other
entity E

′ ∈ Eq ). Many subgraphs could exist for a given
query since many--to-one paths could exist, each associated
with different semantics (e.g., an entity of sales could be
associated with an entity of dates through the mappings on
both date of sale and date of shipping). In this case, we rely
on a user interaction to identify the adequate subgraph.

The query graph GE
q is the starting point to define the

execution plan in NRA for query q, i.e., the query plan Pq
(an example is shown in Fig. 10).

Definition 4.4 (Query plan) A query plan is an NRA tree
where the leaves denote an access to a collection (CA) and
the root is either an aggregation (γ ) or a projection (π ).

As shown in Fig. 10, the leaves of the query plan can be
organized into entity plans, and the leaves of each entity plan
can be organized into collection plans. In the following para-
graphs, we describe the top-down decomposition of query,
entity, and collection plans, and the procedure to obtain them
from the query graph. Such a procedure embeds a series of
optimization techniques, which we highlight in Sect. 4.3.

4.2.1 Building the query plan

The rationale of the query plan is to first reconcile the records
belonging to the same entity, and then join themwith records
from other entities; this is consistent with [16,19,20], where
schemas of the same entity are joined together before being
joined with schemas of different entities. Thus, a query plan
is actually composed of one or more entity plans, which are
merged through operator �.

The query plan Pq is organized as a left-deep tree of entity
plans, where the order of the merge operations is optimized
through a minimum selectivity heuristic [21]. Algorithm 1

Fig. 10 The execution plan for the query in Example 4.1

Algorithm 1 Definition of the query plan Pq for query q.

INPUT q = (qπ , qγ , qσ ): a query; GE
q = (Eq , LEq ): the query graph.

OUTPUT Pq : the NRA query plan of q.

1: enti t yList ← sort Enti ties(GE
q , qσ ) � Apply minimum selectivity heuristic to

sort entities
2: E ← pop(enti t yList) � pop() extracts the first element of the list
3: Pq ← createEnti t yPlan(q, E)

4: mergedEnti ties ← E
5: while enti t yList �= ∅ do
6: E = pop(enti t yList)
7: right Plan ← createEnti t yPlan(q, E)

8: l ← get Link(GE
q ,mergedEnti ties, E)

9: Pq ← extendPlansWithBinaryOp(Pq , right Plan, �, f eat(l))
10: mergedEnti ties ← mergedEnti ties ∪ E

11: if qγ �= ∅ then � Groups qγ by qπ

12: predicate ← (qπ , qγ )

13: Pq ← extendPlanWithUnaryOp(Pq , γ, predicate)
14: else � Projects on qπ

15: predicate ← qπ

16: Pq ← extendPlanWithUnaryOp(Pq , π, predicate)

17: return Pq

incrementally produces Pq . The entities identified by the
query graph (i.e., Eq ) are sorted based on the adopted heuris-
tic in Line 1. Then, the plan is built as a left-deep tree by first
defining the entity plan of the first entity (Line 3), and then
progressivelymerging the entity plans of the subsequent enti-
ties (Lines 5 to 10). The function createEnti t yPlan (Lines
3 and 7) is defined in Algorithm 2. The function get Link
(Line 8) retrieves from the query graph GE

q the link l that
connects the current entity E with those previously merged,
i.e., mergedEnti tied; this is necessary to identify the fea-
ture for themerge operation, indicated with f eat(l) (Line 9).
Once every entity plan has been merged into a single NRA
tree, the final operators (to be added as the root of the query
plan) depend on the formulated query. If the query specifies
an aggregation (i.e., qγ �= ∅), an aggregation operation is
added as the root of the query plan (Lines 11 to 13); other-
wise, a simple projection is added as the root of the query
plan (Lines 14 to 16).
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Algorithm 2 createEntityPlan
INPUT q = (qπ , qγ , qσ ): a query; E : an entity; Sq

E .
OUTPUT PE : the NRA entity plan for E .
1: Sq

E = ⋃
S∈SE

S ∩ f eat(qσ ) �= ∅ � The schemas of E that need to be accessed

2: collections ← ⋃

S∈Sq
E
col(S)

3: collectionList ← sortCollection(collections, qσ ) � Apply min.sel. heuristics
to sort collections

4: col ← pop(collectionList)
5: PE ← createCollectionPlan(q,Sq

col )

6: f ← f eat(Sqcol ) � Get the feature f that represents the keys of the schemas
7: while collectionList �= ∅ do
8: col ← pop(collectionList)
9: right ← createCollectionPlan(q,Sq

col )

10: if φE = true then
11: PE ← extendPlansWithBinaryOp(PE , right, �, f )
12: else
13: PE ← extendPlansWithBinaryOp(PE , right, ∪, f )

14: return PE

The two functions extendPlanWithUnaryOp and
extendPlansWithBinaryOp (lines 9, 13, and 16 in Algo-
rithm 1), respectively, extend the existing plan with a new
unary or binary operation; naturally, the former requires
in input a single plan (to be extended with a unary opera-
tion), while the latter requires two plans to be merged (either
through a merge or union operation).

4.2.2 Building an entity plan

Similarly to the query plan, an entity plan is a left-deep tree
where the leaves are collection plans. The goal of the entity
plan is to merge the records obtained from its schemas. How-
ever, current NoSQL technologies do not allow access to
collections’ records based on a certain schema (collections
are schemaless by definition); this iswhywe define the leaves
as collection plans instead of schema plans. The order of the
merge operations between collection plans is determined by
adopting the same heuristics.

Algorithm 2 incrementally produces the entity plan PE for
a given entity E . Let Sq

E = ⋃
S∈SE

S ∩ f eat(qσ ) �= ∅ be
the set of schemas belonging to E that need to be accessed:
in particular, we can exclude the schemas that do not con-
tain an attribute for the features in qσ , because the filter
would automatically discard every record. To define col-
lection plans, we identify the distinct set of collections that
need to be accessed in Line 2, then we sort them based on
the adopted heuristic in Line 3. The entity plan is built as
a left-deep tree by first defining the collection plan of the
first collection (Lines 4, 5), and then progressively merging
the collection plans of the subsequent collections (Lines 7
to 13); the function createCollectionPlan is defined in
Algorithm 3. Remarkably, collection plans are merged with

� only if E suffers from record overlapping; otherwise, a
simple (and less costly) union operation is sufficient to put
together the records from each collection plan.

4.2.3 Building a collection plan

Finally, each collection plan describes the sequence of unary
NRA operations to collect the records of a certain entity E
in a collection col. Since the collection may contain several
schemas belonging to the same entity, the collection plan
takes into consideration the inherent schemavariations: given
Sq
E the set of schemas of E that need to be accessed, we refer

to Sq
col ⊆ Sq

E as the subset of schemas to be considered for
collection col.

Algorithm 3 produces the collection plan Pcol by taking
into consideration the schema variety within col. The collec-
tion plan is defined as an ordered sequence of unary NRA
operations in the following order: optional unnesting opera-
tions, an optional selection operation, and a final projection
operation. We remark that such order is the most obvious
one, as (i) unnesting is necessary to first unveil the nested
attributes, and (ii) it is usually a good practice to apply selec-
tion predicates as soon as possible [22]. The plan Pcol is built
bottom-up as follows.

– The first operation is the collection access CA to col
(Line 2).

– Unnesting operators are possibly added (Lines 3 to 8)
in case one or more schemas are nested within arrays
(i.e., |Sμ| ≥ 1). A simple check for duplicates is done
in Line 6 in case ∃ (S1, S2) ∈ Sq

col : Sμ
1 ∩ Sμ

2 �= ∅;
unnesting operations are added to Pcol in Line 8.

– The optional selection operation is built in Lines 9 to 14.
For each feature that needs a selection,we build a disjunc-
tion of predicate that considers every schema variation of
f (Line 12); for instance, a selection ( f2,=, v) (where v

is some value) translates to a selection (a7,=, v)∨(a8,=
, v)∨ (a9,=, v). Then, the final selection predicate is the
conjunction (∧) of the predicates built for each feature
(Line 14).

– Finally, the projection operation is built in Lines 15 to 20.
Let Fπ = { f eat(qπ ) ∪ f eat(qγ ) ∪ F �} (used in
Line 10) be the set of features to be projected, where
∀ l ∈ LE

q it is F � = f eat(l) is the set of features whose
attributes are necessary for merge operations. For each
feature f ∈ Fπ representing attributes in Sq

col we project
a single attribute (named after rep( f )) that contains the
only non-null value among its schema variations (sim-
plified in Line 19 as a disjunction over each a ∈ A). We
remark that, at this stage, we also apply the transcod-
ing functions ϕ in order to consistently compare record
values in the merge operations that will follow.

Example 4.4 Figure 10 shows the query plan of the query
from Example 4.1.
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Algorithm 3 createCollectionPlan
INPUT q = (qπ , qγ , qσ ): a query; Sq

col : the set of schemas of a certain collection col
involved in q.

OUTPUT Pcol : the NRA collection plan of col.
1: Pcol ← new PlanNode()
2: Pcol ← extendPlanWithUnaryOp(Pcol ,CA, col) � Start with the collection

access
3: predicateSet ← ∅

4: for all S ∈ Sq
col do

5: for i = 1 to |Sμ| step 1 do
6: if predicateSet ∩ Sμ[i] = ∅ then � Duplicates check
7: predicateSet ← predicateSet ∪ Sμ[i]
8: Pcol ← extendPlanWithUnaryOp(Pcol , μ, Sμ[i]) � Add optional

unnesting ops
9: predicateSet ← ∅

10: for all f ∈ qσ do
11: A ← Sq

col ∩ f

12: predicateSet ← predicateSet ∪ (
∨

a∈A(ϕ(rep( f ),a)(a), ω, v))

13: if predicateSet �= ∅ then
14: Pcol ← extendPlanWithUnaryOp(Pcol , σ,

∧
p∈predicateSet ) � Add

optional selection op
15: predicateSet ← ∅
16: for all f ∈ Fπ = { f eat(qπ ) ∪ f eat(qγ ) ∪ F � } do � The set of features to be

projected
17: A ← Sq

col ∩ attr( f )

18: if A �= ∅ then
19: predicateSet ← (

∨
a∈A ϕ(rep( f ),a)(a)) / rep( f )

20: Pcol ← extendPlanWithUnaryOp(Pcol , π, predicateSet) � Add projection
op

21: return Pcol

4.3 Optimizations

The distributed and multi-model nature of the multistore
environment, coupled with the high-variety scenario covered
in this paper, offers several opportunities for the optimization
of query plans. The approach described so far already adopts
a set of optimization techniques to produce a refined execu-
tion plan.

• Schemaplangrouping. Sincewemodel several schemas
within the same collection, the naive way would be to
produce a query plan with as many leaves (i.e., collec-
tion accesses) as the number of schemas. As described in
Sect. 4.2, we optimize it in order to have as many leaves
as |Eq | · |col(E)|, where |Eq | is the number of entities in
the query, and |col(E)| is the number of collections for
an entity E ∈ Eq . Thus, the collection plan exploits map-
pings to query several schemas in a single pass. This is
evident inAlgorithm 3,wherewe identifySq

col as the sub-
set of schemas to be considered for the plan of collection
col. In particular, Sq

col is used in Lines 4, 11, and 17 to,
respectively, define unnesting, selection, and projection
operations on col.

• Predicate push-down. This is one of themost basic opti-
mization techniques,which consists of applying selection
predicates as close to the source as possible. We apply
them in the collection plan (Algorithm 3, Lines 9 to 14)
right after unnesting the necessary arrays (i.e., before any
projection, merge, and aggregation operation).

• Merge sequence reordering. When the query involves
three or more collections, the order in which collections
aremerged together has an impact on performance. In this
work, we rely on a minimum selectivity heuristics [21]
to determine the order of merge operations. The basic
idea is to start from the one with the lowest cardinality
and progressively merge it with collections with increas-
ing cardinality. This technique is used to decide the join
sequence of collection plans within a single entity plan
(Line 3 in Algorithm 2) and the join sequence of entity
plans within the query plan (Line 1 in Algorithm 1).
Notice that the reordering of entity plans within query
plans considers the former as atomic blocks of operation,
i.e., when a reordering takes place, the inner structure
of entity plans remains unchanged; the same principle
applies to the reordering of collection plans within entity
plans. With reference to Algorithm 1, let Ei ∈ Eq be the
entity with the smallest cardinality and E ′

q the set of enti-

ties directly connected to Ei in LE
q ; then Ei is merged

with E j ∈ E ′
q whose cardinality is the smallest one. The

same step is repeated (at the second iteration, E ′
q is the

set of entities directly connected to either Ei or E j ) until
all entities in Eq have been merged. To estimate enti-
ties’ cardinalities we take into consideration the selection
predicates in qσ ; in turn, this requires collecting statistics
from the databases. The literature on such topics is very
broad. The accuracy of the estimate strictly depends on
the collected information and the assumptions made on
data distribution. Following several query cost models,
in this paper we assume uniformity of attribute values,
attribute values independence, and join containment.

• Column pruning. This technique consists in extracting
from each collection the only attributes corresponding to
features that are relevant for the query, i.e., those required
by the final projection (or aggregation) operation and
those necessary for merge operations. We refer to these
features as Fπ in Algorithm 3, Line 10. By keeping only
the minimum set of attributes we minimize the amount
of data that needs to be moved across the network. We
finally remark that column pruning is also adopted after
each merge operation to prune join attributes that are not
needed anymore (although this is not shown in Algo-
rithms 1 and 2 for simplicity).

Although some of the mentioned optimizations are not
new to DBMSs and execution engines, their application in
a complex multistore environment is not straightforward.
Apache Spark (i.e., the onewe use in our prototype) uses Cat-
alyst to provide optimization techniques in query executions.
However, Catalyst is not aware of the constraints that guar-
antee the correctness of the query plan and, ultimately, of the
query result. As explained above, our heuristics preserves the
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inner structure of entity plans when reordering them within
a query plan (and similarly for collection plans reordering
within an entity plan). Since Catalyst has no notion of the
internal organization of the query plan, its reordering strategy
may swap operations that break the boundaries of collection
or entity plans (e.g., a collection plan may be moved to a
different entity plan), thus compromising the correctness of
the result. For this reason, these optimization routines are
directly defined within our approach.

5 Experimental evaluation

In this section, we discuss our experiments that evaluate the
performance of our approach from several perspectives.

5.1 The prototypical setup

Our reference architecture is a two-rack Big Data clus-
ter of 18 Ubuntu machines with a minimum configuration
of i7 8-core CPU @3.2GHz, 32GB RAM, and 6TB hard
disk drives. Each machine runs the Cloudera Distribution
for Apache Hadoop (CDH) 6.2.0. The multistore imple-
mentation relies on PostgreSQL, MongoDB, Cassandra, and
Redis as relational, document-based, wide-column, and key-
value DBMSs, respectively. PostgreSQL is installed on a
singlemachine,whileNoSQL stores are distributed across 15
machines. The algorithmic implementation of the approach
is based on Apache Spark, i.e., one of the most used open-
source execution frameworks for Apache Hadoop clusters; it
provides connectors to most DBMSs, including those in our
multistore.

Figure 11 provides an overview of our prototypical imple-
mentation from a functional and technological perspective.
Themain applicationmodules (i.e., the query planner and the
dataspacemanager) arewritten in Scala, and they are coupled
with an HTTP server that enables user interactions through
REST APIs. The dataspace manager includes functionalities
to build, update, and visualize the content of the dataspace
(whose metadata are stored in the same PostgreSQL instance
used for the data), while the query planner implements the
algorithms (i.e., Algorithms 1 to 3) and the optimization tech-
niques (see Sect. 4.3). Queries are formulated by relying on
theSQLAPIs exposed bySpark’sDataFrame abstraction; the
new merge operator fits this abstraction: it is implemented as
a full-outerjoin between twoDataFrames, on top ofwhich are
applied customUser Defined Functions (UDFs) representing
the conflict-resolution functions.

The query execution framework consists of 8 executors,
each with 6 CPU cores and 8GB RAM5. The data is col-

5 The number of resources allocated to the Query execution framework
is limited to grant enough resources to the underlying DBMSs and other
concurrent research applications running on our cluster.

Fig. 11 Functional and technological overview of the approach

lected from the underlying DBMSs by pushing to the latter
as much computation as possible; then, the Query execution
framework runs in-memory computation to complete the exe-
cution of the query and obtain the final results, that are finally
returned to the user.

To evaluate the approach in terms of scalability, we have
implemented the multistore in four scale factors, i.e., 1, 10,
100, and 1000. The size of each collection in the different
scale factors is reported in Table 3.We recall fromSect. 2 that
there is a 20% overlap of customers between C1 and C5, and
a 60% overlap of products between C4 and C6. The number
of products is fixed in each implementation, together with the
ratio of orders per customer (i.e., 15 on average) and the ratio
of order lines per order (i.e., 5 on average); what scales is the
number of customers and, consequently, the overall number
of orders and order lines. Table 3 also reports the partitioning
key of each collection; whereas partitioning (i.e., sharding)
records is a necessity in distributed DBMSs, it also helps
increasing query efficiency in presence of certain selection
predicates in every DBMS. Notice thatC4 in partitioned only
on a customer attribute because orders and order lines are
nested within customers.

As we recall from Sect. 3.3, the preparation of the datas-
pace is done in three steps.

– Schema extraction is run in parallel on every DBMS. Its
execution time ranges from few seconds to up to thirty
minutes, depending on the considered scale factor. This
is compatible with execution times from related works
on schema extraction [23,24]. We remark that extracting
schemas from non-relational collections requires a full
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Table 3 Number of records and
partitioning key for each
collection in the different scale
factors

Entity Coll. SF1 SF10 SF100 SF1000 Part. key

Customer C1 9K 90K 900K 9M FirstName

C5 3K 30K 300K 3M FirstName

Total 10K 100K 1M 10M –

Order C2 50K 500K 5M 50M OrderDate

C5 15K 150K 1.5M 15M –

Total 65K 650K 6.5M 65M –

Orderline C3 230K 2.3M 23M 230M OrderId

C5 60K 600K 6M 60M –

Total 290K 2.9M 29M 290M –

Product C4 8K 80K 800K 8M ProductName

C6 8K 80K 800K 8M –

Total 10K 100K 1M 10M –

Invoice C7 65K 650K 6.5M 65M OrderId

scan of the latter, as most NoSQL stores have no schema
definition for collections: naively, a schema is generated
for each record, but only distinct schemas are kept. The
efficiency of this task could be improved by adopting
approximation techniques (e.g., sampling to avoid a full
scan of every collection) and an incremental strategy (i.e.,
to consider only new/updated records); nonetheless, the
optimization of the schema extraction task is out of the
scope of this paper.

– The definition of mappings is done manually in our case
study; although it could be made automatic by imple-
menting some schema matching algorithm [17] or by
embedding existing tools (e.g., Coma 3.0 [18]), it is out
of the scope of this paper to optimize this step.

– Features and entities are automatically inferred from
the mappings and the one-to-one relationships between
schemas, respectively; the execution time of this step is
almost immediate. The recognition of which entities suf-
fer from record overlapping (i.e., setting φE for each E)
is done manually in our case study, but it could be made
automatic by implementing a procedure that compares
key values in the schemas and looks for matches that
reveal an overlap.

Ultimately, the dataspace’s metadata occupy less than 100
kB in every scale factor.

5.2 Scalability under data variety

The first experiments are aimed at assessing the scalability
of the system under different levels of variety in the data. In
particular, we measure how the query planner and the merge
operator perform by varying the number of schemas and the
amount of overlapping records, respectively.

Fig. 12 Query planning and execution time by varying the number of
schemas

To evaluate the query planner, we build two synthetic col-
lections of customer records, each with 50000 records; one
is stored on the relational database with a single schema,
the other on the document-based database with a varying
number of schemas, from 1 to 10000. The latter is a bor-
derline scenario, as (from our experience) collections with
high variety rarely exceed the hundreds of schemas. Fig-
ure 12 shows execution times (averaged from 5 executions)
of a query that merges and aggregates the data from both
collections; we consider a single-core Spark instance of the
middleware, so as to exclude variations due to parallelization.
The results show that both query planning and execution are
not affected by the number schemas, as minimum oscilla-
tions are observed. This is expected for the query execution,
since resolving schema heterogeneity consists of low-impact
operations such as renaming attributes’ names. As to query
planning, even though the complexity of the procedure is lin-
ear with the number of schemas, the cardinality of the latter is
not sufficient to impact the overall planning time. Ultimately,

123



1032 C. Forresi et al.

Fig. 13 Performance of themerge operatorwith varying levels of record
overlapping

this proves a good efficiency of the query planner in handling
high levels of schema heterogeneity.

As to the merge operator, we measure its performance
under varying levels of record overlapping. Starting from
the two previous collections of customer records, we remove
schema heterogeneity and progressively increase the level of
overlap between the records from 0% to 100%. The results
are shown in Fig. 13; the execution times (averaged from 5
executions) correspond to the single merge operation (i.e.,
the two read operations are not considered). By increasing
the level of overlap, the merge operation naturally returns
a progressively lower amount of records; nonetheless, the
performance of the merge operator is not influenced by this
factor (the observed variations are minimal). This behavior
is expected, as the complexity of the merge operation is the
same as a full-outerjoin operation and the conflict-resolution
functions are not computationally expensive.

5.3 Efficiency evaluation

The workload we devise consists of 48 GPSJ queries that
vary in terms of group-by set strength, selection predicate
selectivity, and the number of entities involved (i.e., the size
of the query graph).

– The group-by set is either absent (i.e., only a simple pro-
jection is carried out, without aggregation), weak (i.e.,
it involves features with high cardinality, resulting in
several groups), or strong (i.e., it involves features with
low cardinality, resulting in few groups). This parameter
affects the cardinality of the results, which (on average)
is below 105 when the group-by set is absent, 104 when
it is weak, and 102 when it is strong.

– The selection predicate is either absent, weak (i.e., its
selectivity is low), or strong (i.e., its selectivity is high).
This parameter affects the number of records involved
in the queries, which is between 80% and 40% in weak

Table 4 Average execution times of the workload queries, by varying
the group-by set’s strength

GB set Execution times (s ± RSD)
SF 1 SF 10 SF 100 SF 1000

Absent 1.2 ± 42% 4.0 ± 45% 18.0 ± 38% 559.2 ± 79%

Weak 1.5 ± 40% 5.0 ± 52% 28.4 ± 54% 603.7 ± 90%

Strong 1.5 ± 40% 4.6 ± 48% 26.1 ± 54% 593.8 ± 84%

selections, and between 5% and 0.01% in strong selec-
tions.

– We devise 6 different query graphs, varying the number
of entities involved in the query (i.e., |Eq |) from 1 to all
5 of them.

This determines a total of 54 combinations; however,
queries with no group-by set and no/weak selection predi-
cates (i.e., non-analytical queries) are hardly applicable in
large query graphs, where the cardinality of the result would
be close to the size of the entire database. Thus, we exclude
these two kinds of queries on the three largest query graphs,
obtaining a total of 48 queries. The detailed list of queries is
provided as Supplementary Information with the paper.

Execution times and scalability. The workload queries
have been executed on the multistore against every scale fac-
tor. The execution time (always obtained as the average of
5 executions) mainly depends on the complexity of both the
query and the dataset, but it is also affected by the way the
computing resources have been allocated on the cluster. Big
Data frameworks like Spark try to honor the locality princi-
ple, but they do not guarantee that the computation always
happens on the same nodes; thus, execution times of the
same computation may vary depending on the amount of
data shuffling required when the locality principle is not met.
Conversely, the time taken to build the execution plan (i.e.,
by running Algorithms 1–3) is affected by neither the query
and dataset complexity (as shown in Sect. 5.2) nor the Big
Data framework (as the implementation is centralized), and
it always performs in sub-second times.

The query execution times (in seconds, together with the
relative standard deviation (RSD)) are shown in Tables 4, 5,
and 6; each table shows average times by, respectively, group-
ing the workload queries by group-set strength, selection
predicate strength, and the number of entities in the query.
Times increase as expected with the scale factor (especially
evident when moving from SF 10 to 100), while selection
predicates appear to have little effect. Indeed, the system can
exploit local indexing and/or partitioning only on the col-
lections on which the selection predicates are applied. The
behavior under different group-by conditions is also differ-
ent: execution times are faster in absence of group-by set
because no data shuffling is required to carry out an aggrega-
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Table 5 Average execution
times of the workload queries,
by varying selection predicates’
strength

Selection predicate Execution times (s ± RSD)
SF 1 SF 10 SF 100 SF 1000

Absent 1.5 ± 40% 5.0 ± 50% 31.0 ± 55% 588.1 ± 88%

Weak 1.6 ± 38% 5.1 ± 51% 29.0 ± 53% 562.7 ± 87%

Strong 1.3 ± 38% 4.2 ± 45% 20.6 ± 43% 569.2 ± 82%

tion; when the aggregation is necessary, the system performs
slightly better if the group-by set is stronger, where fewer
records are generated and shuffled. This is due to the usage
of combining strategies that carry out map-side aggregation,
thus shuffling less records for the reduce-side aggregation.

Local vs middleware computation. A second evalua-
tion is made to compare the amount of computation assigned
to the source against the one assigned to the middleware.
For each query execution, we consider the local computa-
tion as the sum of the execution times of Spark’s tasks in
charge of reading from the DBMSs, and middleware compu-
tation as the sum of the execution times of Spark’s remaining
tasks6. The results are shown in Fig. 14. Interestingly, the
percentage of computation demanded from the middleware
decreases with the increase in the scale factor. In absolute
terms, the local computation demanded from the sources
scales linearly with the scale factor, while the middleware
computation initially scales sublinearly (about 2x from SF
1 to SF 10, about 5x from SF 10 to SF 100). This is due to
the middleware suffering the distributed framework’s over-
head in handling low amounts of data in the smaller scale
factors. Ultimately, we infer that relying on middleware for
joining and merging records (which involves shuffling data
on the network between different software tools) does not
have a major impact, especially when the amount of data to
be considered becomes larger.

Optimization impact. Finally, we measure the impact of
our optimization techniques by selectively switching them
off and verifying the execution times. We specifically focus
on the schema plan grouping (SPG),merge sequence reorder-

6 By focusing on tasks’ execution times, we avoid taking into account
the framework’s parallelization.

Table 6 Average execution times of the workload queries, by varying
the number of entities in the query

|Eq | Execution times (s ± RSD)

SF 1 SF 10 SF 100 SF 1000

1 0.4 ± 0% 0.7 ± 14% 5.1 ± 12% 18.2 ± 14%

2 1.2 ± 8% 3.5 ± 9% 18.2 ± 15% 155.2 ± 12%

3 1.5 ± 13% 5.0 ± 8% 27.5 ± 26% 615.2 ± 24%

4 1.9 ± 11% 6.1 ± 13% 35.3 ± 29% 1072.1 ± 17%

5 2.2 ± 14% 7.8 ± 19% 42.2 ± 30% 1114.4 ± 16%

ing (MSR), and column pruning (CP) optimizations. In this
case, we obtain the measurements for each query and evalu-
ate, on each scale factor, the average loss in percentage with
respect to the execution with every optimization enabled.
The results are shown in Table 7. While the contribution of
CP is limited and erratic, SPG emerges as the optimization
producing the most significant advantage. This is expected,
as turning it off means issuing several queries on the same
collections, which clearly has a major impact—especially
with increasing scale factors, where the weight of the local
computation is higher (as seen in the previous evaluation).
MSR is also quite relevant; unlike SPG, MSR’s contribution
is decreasing with the scale factor, since the weight of the
middleware computation decreases as well; the only excep-
tion is in SF1, where the benefit of MSR in queries with low
execution times is mitigated by the distributed framework’s
overhead.

5.4 Effectiveness evaluation

Adopting a pay-as-you-go approach entails that query answer
quality depends on the number of defined mappings. In this
subsection, we analyze how the results vary by selectively
removing some of the mappings. Our goal is to quantify
the impact of mappings in producing a correct result and to
demonstrate the issues that would arise by adopting a system
that does not entail a mechanism to solve schema hetero-
geneity and record overlapping.

Let D∗ be the ground-truth dataspace (i.e., the one with
all mappings identified); we consider three different scenar-

Fig. 14 Comparison of average local and middleware computation on
all queries with different scale factors
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Table 7 Average increase in
query execution times by
switching off schema plan
grouping (SPG), merge
sequence reordering (MSR), and
column pruning (CP)
optimizations

Optimizations Execution times increase (% ± SD)
turned off SF 1 SF 10 SF 100 SF 1000

SPG 140 ± 30 200 ± 100 290 ± 170 350 ± 200

MSR 27 ± 23 40 ± 35 16 ± 8 2 ± 1

CP 2.4 ± 2 6.1 ± 5 3.0 ± 2 4.2 ± 3

ios, each represented by a different dataspace (i.e., D1, D2,
D3), where different types of mappings have been selectively
removed with respect to D∗ (we refer the reader to Table 1
for attributes’ and features’ definitions in our case study).
Table 8 summarizes the characteristics of each scenario and
measures the average quality degradation of those workload
queries that are affected by the removal of the mappings.
Inspired by [19], Table 9 evaluates the following.

– Query density as the percentage of non-null cells in the
query results.

– Query coverage as the percentage of records considered
by the query with respect to D∗.

– Aggregation veracity, i.e.,whether the aggregationof par-
tial results wheremappings aremissing is consistent with
the results obtained in the ground-truth dataspace.

– Selection support, i.e., whether the absence of mapping
hinders the capability of applying selection predicates.

Simple attributes. In D1 we consider a lack of mapping
between attributes within the same entity; for instance, the
attributes representing the OrderDate of the Order are not
reconciled by a mapping, thus a29 �≡ a30. Failing to rec-
ognize this kind of mapping means that each attribute gets
represented by a distinct feature (e.g., f

′
9 inC2 and f

′′
9 inC5)

and must be queried separately. This scenario has an impact
on the query results in terms of density (i.e., the percentage
of non-null values), meaning that:

– In case of projections, each feature returns a null value
for every record in which the respective attribute is
not defined (e.g., approximately 50% of null values are
returned by both f

′
9 and f

′′
9 ). Notice that actual query

densities in Table 8 are higher due to the projection of
other features without null values.

– In case of selection predicates, a disjunction of separate
conditions would need to be manually formulated by the
user on each feature (e.g., f

′
9 < “2020-01-01” ∨ f

′′
9 <

“2020-01-01”); however, this would not be answerable,
as we currently support only conjunctions of selection
predicates.

Simple attributes with record overlapping. In D2 we sup-
pose that the same scenario in D1 applies to attributes
of collections with overlapping records; for instance, the

attributes representing the LastName of Customers are not
reconciled by a mapping, thus a36 �≡ a37. Failing to recog-
nize this kind of mapping means not only that (i) as in D1,
each attribute gets represented by a distinct feature (e.g., f

′
12

in C1 and f
′′
12 in C5), but (ii) it also introduces a problem in

terms of veracity of the results. When records are overlap-
ping, any potential conflict (e.g., different last names found
in different records of the same customer) are solved by the
merge functions � defined in the features inD∗. InD2, hav-
ing distinct features means that the respective attributes can
be queried separately, but the obtained results cannot be eas-
ily merged. For instance, consider two queries that sum the
TotalPrice by LastName, i.e., q ′ = ({ f ′

12}, { f8, sum()}), and
q ′′ = ({ f ′′

12}, { f8, sum()}); an excerpt of the queries’ results
is shown in Table 9, together with the actual results from
D∗. Without record overlapping, the results from q ′ could
have been summed to those from q ′′ to obtain the ground
truth values. This is not necessarily true in presence of record
overlapping, because the� function inD∗ resolves conflicts
in the last names before the aggregation and produces differ-
ent results. In particular, we measured a ±111% difference
between the sums of total prices obtained in D∗ and those
obtained in D2 by summing the results of q ′ and q ′′.

Key attributes. In D3 we consider a lack of mapping
involving key attributes; for instance, a32 (i.e., the key of
Customer in C1) is not mapped to either a34 (i.e., the key of
Customer in C5), nor to a33 and a35 (i.e., the attributes in the
Order referencing the key of theCustomer). Failing to recog-
nize this kind of mapping means that (i) as inD1 andD2, two
features are created inD3 to represent the TaxId (e.g., f

′
11 and

f
′′
11), but also that (ii) two separate entities are defined to rep-

resent customers (e.g., Customer
′
and Customer

′′
), where

only one of the two entities is actually linked to the Order.
The main impact of this scenario on the query results is in
terms of coverage [19] (i.e., the number of returned records),
meaning that the records of the customer cannot be queried
altogether. In particular:

– Aquery involving features of either one of the two entities
will return only a selected number of records; thus, the
queries will mostly have full density, but the coverage
will decrease significantly.

– A query involving both features is not answerable,
because they are not linked in the entity graph of D3.
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Table 8 Evaluation of quality degradation under scenarios with selective mappings removed from the ground-truth dataspace D∗. Query density
and coverage are measured only on the workload queries actually affected by mappings removals

Dataspace Removed mappings Query density Query coverage Aggregation veracity Selection support

D1 a29 �≡ a30 70.3% 100% Yes Partial

D2 a36 �≡ a37 80.0% 100% No Partial

D3 a32 �≡ a33, 91.1% 64.3% Yes Partial

a32 �≡ a34,

a32 �≡ a35

Table 9 The absence of a
mapping between the two
LastName attributes in D2 does
not trigger the
conflict-resolution function
between overlapping records
and leads to inconsistent results,
as the sums of the two partial
results on D2 do not always
match the true results on D∗

D2 D∗
f

′
12 { f8, sum()} f

′′
12 { f8, sum()} f12 { f8, sum()}

Faye 201542.1 Faye 194213.3 Faye 366440.2

Baloch 178805.2 Baloch 197430.7 Baloch 372510.7

Francois 54354.3 Francois 54354.3

Alschitz 11082.4 Alschitz 9030.1 Alschitz 20523.0

Guelleh 67471.7 Guelleh 67471.7

Akongo 186595.7 Akongo 186595.7

Nagy 118644.1 Nagy 136006.7 Nagy 289375.9

5.5 Comparison with related work

The novel scenario considered in this paper is the one where
schema heterogeneity and record overlapping prevent users
from directly issuing analytical queries over a multistore.
In this section, we compare with alternative approaches by
analyzing how the latter would tackle the same problem.

Reconciled levelmaterialization. This is the classic Data
Warehouse approach: a fully reconciled schema is created
and loaded in batch mode via an ETL procedure [25,26].
Alternatively, a trigger-based approach can be adopted to
feed the materialized view [27]. This solution favors the
optimization of query time at the expense of making the sys-
tem very rigid: (a) maintainability is affected, since every
schema change entails an update of the ETL procedure; (b)
the pay-as-you-go principle is compromised and a strong ini-
tial modeling effort is required; (c) materialized views and
data sources are no more synchronized and the misalignment
depends on how often the ETL procedure is executed. In our
case study, the time to run a full materialization scales lin-
early with the scale factor and reaches up to 6 hours with SF
1000.

Multistore post-processing. The alternative solution is
to rely on existing multistore approaches which enable
cross-database querying through a common language or a
mediating layer. In this case, the system supports data model
heterogeneity, and there is no need to develop ETL proce-
dures as queryingwouldbe carried out directly on the existing
collections.However, existing systems donot support the res-
olution of schema heterogeneity and record overlapping that

must be carried out a posteriori after having retrieved an inter-
mediate result. Besides involving an extra human effort, this
approach determines a higher computational cost since the
intermediate data will necessarily be more numerous since,
for example, filtering and grouping must be necessarily post-
poned. In particular, adopting this approach in our 48 queries
benchmark requires the middleware to return a volume of
data 12 times larger.

6 Related literature

The problem of querying distributed datasets has been con-
sidered by the community since the notion of the federated
databases [28]. The variety in terms of available data models
[29] (e.g., relational, wide-column, or document-oriented)
responds to different requirements of modern data-intensive
applications, but providing transparent queryingmechanisms
to query large-scale collections on heterogeneous data stores
is an active research area [4]. In the following, we distinguish
three main classes of solutions to resolve problems related
to querying high-variety data: in Sect. 6.1, we discuss those
addressing the presence of heterogeneous structures within
the same data model; in Sect. 6.2, we discuss those address-
ing the querying problem across different data models; in
Sect. 6.3,we discuss those addressing the resolution of record
overlapping. Whereas all mentioned papers separately han-
dle the different problems, to the best of our knowledge this
is the first work to handle all of them.
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6.1 Schema heterogeneity

Data model transformation. This class of work suggests per-
forming data model transformation to facilitate the access
to data having heterogeneous structures. The common strat-
egy consists in changing the underlying data model, usually
from a non-relational to a relational data model. This kind of
solution leads to the loss of the schemaless flexibility guaran-
teed inmost NoSQL stores in favor of the use of conventional
relational querying and storing techniques. In particular, cus-
tom transformations and mappings are typically defined to
move data from one data model to the other [25,26]. A
mainstream approach widely used while dealing with het-
erogeneous XML databases is to transform documents into
relation data model [30–32]. Other alternatives suggest stor-
ing documents on the wide-column data model. For instance,
MonetDB [33] uses specialized data encoding, join methods,
and storage formanaging documents encoded inXMLon the
wide-column data model. In [30], the authors use the doc-
ument type definition, i.e., DTD, to flatten documents and
map documents into relational tables. However, despite the
advantages of using relational schema and the expressiveness
power of relational operators, partitioning data into tables by
attributes [32] affects the performance of the relational sys-
tem. This is due to the need of performing multiple joins
to reconstruct the initial data. Furthermore, users of these
systems have to learn new schemas every time new data are
inserted (or updated) because it is necessary to re-generate
the relational views. Another line of work introduces data
model transformation between NoSQL stores. In [34], the
authors introduce a tool-based advisor with a costmodel ded-
icated to data migration scenarios. However, this approach
mainly focuses on optimizing the costs related to migrating
data from one data model to another, and it does not con-
sider cross-data model querying nor resolving the problem
of schema heterogeneity within the same data model.

Schema Versioning This class of work identifies the dif-
ferent co-existing versions within one database and adds a
transparent layer to query tables having different represen-
tations for their schema regardless of the version used to
formulate queries. This line of work mainly targets relational
databases and suggests changing the physical storage when a
new version of the schema needs to be materialized. In [35]
the authors introduced the Bi-directional Database Evolu-
tion Language BiDEL as a solution to automatically generate
queries that match the different structures within a relational
database. Therefore, the users formulate their queries regard-
less of the schema version. This solution does not address
record overlapping and is designed to support schema ver-
sioning in relational databases (where the schema should be
defined before loading the data), whereas NoSQL databases
store the data without any prior data validation or structure
verification. Recent work considers schema versioning in the

context of NoSQL stores. In [36], the authors introduce for-
ward and backward query rewriting for querying data with
different versions. Furthermore, it is possible to have hetero-
geneity within the same database, e.g., different cardinally,
and different structures. However, the approach is limited to
solving heterogeneity within a single collection, it requires a
history graph of schema evolutions to enable query rewriting
(which is not necessarily available), and it does not address
record overlapping.

Schema-independent querying. This class of work pro-
poses solutions to overcome schemaheterogeneity by enabling
schema-independent querying; in particular, the common
strategy is to rely on query rewriting techniques [37] to
reformulate an input query into several derivations, thus
overcoming schema heterogeneity. Most research work is
designed in the context of relational databases, where het-
erogeneity is usually restricted to the lexical level. When
it comes to the hierarchical nature of semi-structured data
(XML, JSON documents), the problem of identifying simi-
lar nodes is insufficient to resolve the problem of querying
documents with structural heterogeneity for instance. To this
end, keyword querying has been adopted in the context of
XML [38]. The process of answering a keyword query on
XML data starts with the identification of the existence of
the keywords within the documents without the need to know
the underlying schemas. The problem is that the results do
not consider heterogeneity in terms of nodes, but assume
that if the keyword is found, no matter what its contain-
ing node is, the document is adequate and must be returned
to the user. Recent research work introduced a transparent
querying mechanism to enable querying for heterogeneous
documents. In [39], the authors introduced novel querying
mechanisms based on query rewriting techniques [36] where
they overcome the problem of structural heterogeneity in
document stores. Their contribution consists of generating
a dictionary with different attributes and their correspond-
ing paths. Then, a query reformulation engine enriches the
initial user queries with all possible paths extracted from
the dictionary. In the same direction, another research work
[40] resolves the problem of querying heterogeneous docu-
ments by covering a broader class of heterogeneity. Thus,
the authors resolve the problem of having heterogeneous
attributes that are semantically equivalent but with a differ-
ent naming convention, as highlighted in [41], using a set of
schema mappings. However, the queries must be combined
to retrieve data from different structures. Overall, we notice
that most of the schema-independent querying approaches
consider the heterogeneity problem inside one collection at
a time for a particular data model only. Furthermore, the res-
olution of schema heterogeneity is usually limited to a given
type of heterogeneity. For instance, structural, or semantic
whereas more classes of heterogeneity could be identified
in NoSQL stores. For instance, the same information could
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be represented using different data types, and transcoding
functions are required to resolve this heterogeneity [42].

Schema inference. To assist the users while formulating
their queries, several research efforts have been directed
toward schema inference techniques. The idea is to provide
users with an overview of the different elements present in
the heterogeneous data, e.g., document stores, [43,44]. This
family of work was first introduced for inferring structures
from semi-structured documents encoded in XML format.
These papers aim to infer structures using regular expres-
sion rules from the different strings representing elements
from XML documents to propose a generalized structure
[45]. Both, JSON and XML are commonly used to encode
nested data as documents. However, most of the solutions
introduced to infer structures from documents encoded in
XML could not be applied to documents encoded in JSON.
Furthermore, other efforts were conducted to infer RDF data
[46]. The problem with this class of work is none of these
approaches is designed to deal withmassive datasets whereas
current applications are data intensive, and they are using
JSON encoding.

In [41], the authors propose a framework to efficiently
discover the existence of fields or sub-schemas inside the
collection. To this end, the framework is built for managing
a schema repository for JSON document stores. The pro-
posed approach relies on a notion of JSON schema called
skeleton, i.e., a tree representation describing the structures
that frequently appear in a collection of heterogeneous docu-
ments. Thus, the skeletonmay lack some paths that do exist in
some of the documents because they do not appear often, and
the generation of the skeleton will exclude them. Similarly,
in [47] is proposed a schema profiling approach for docu-
ment stores, where the goal is to expose the rules that drive
the usage of different schemas to represent the same data.
However, this approach is focused on providing insights into
the users, but it does not provide any querying mechanism.
In [48], a novel technique is defined to explain the schema
variants within a collection in document stores. Therefore,
the heterogeneity problem in this research work is detected
when the same attribute is represented differently, e.g., dif-
ferent types, different locations inside documents. Therefore,
the authors suggest using mappings to find out the different
variations for a given attribute and ultimately build a multi-
dimensional integrated view of the data to support OLAP
queries. The main limitations of this approach are that it
focuses on one collection at a time and that the query rewrit-
ing mechanism creates one query for every schema variation
detected in such collection.

Overall, these works infer the implicit structures from
heterogeneous data and provide the user with a high-level
illustration regarding all or a subset of structures present
inside the heterogeneous data. Schema inference techniques
could help users to better understand the different underlying

structures and to take the necessary measures and decisions
during the application design phase. The limitation with such
a logical view is that it requires a manual process to build
the desired queries by including the desired attributes and
all their possible navigational paths. In such approaches, the
user is aware of data structures but is required to manage
the heterogeneity. Furthermore, some proposals do not con-
sider all structures and build an inferred schema on top of
most used attributes, for instance, using some probability
measures. Thus, queries could result in misleading results.
Also, most of the proposals do not offer automatic support
for structural evaluations and it is mandatory to regenerate
the inference processwhich could affect the associatedwork-
loads and applications.

6.2 Datamodel heterogeneity

Multistore and polystores. In this part, we consider multi-
store and polystore systems providing integrated access and
querying to several heterogeneous stores through a medi-
ator layer. Systems like Teradata [49] or HadoopDB [50]
propose to partition data between stores. Furthermore, they
allow queries to access data shredded in the different stores
and to move processing and/or data between stores. Such
solutions require to co-locate stores within the same physi-
cal nodes to reduce the traffic overheads between nodes since
data has to bemoved to execute the queries, and different sys-
tems have to share each others’ partitioning strategies. More
recent proposals ensure access to the data using either a novel
unified querying language (e.g., SQL++ [51]) or by support-
ing both the query languages of the underlying stores and
a unified querying language (e.g., Spark SQL [52]). In [53]
authors leverage several databases and processing platforms,
and they define a unified declarative processing interface to
access and query heterogeneous data. Another alternative to
accessing the data is to formulate several queries using the
different underlying stores querying languages and to employ
amiddle-ware layer to merge and return the final results [54].
More recent proposals consider wider support of integrated
systems; for instance, ESTOCADA [55] supports key-value,
document, relational, and nested relational data stores. Over-
all, we notice that despite the efficient support of different
data models, the proposed multistore and polystore systems
do not support schema heterogeneity.

Multi-model systems. In contrast to multistore systems
(where data is stored in different stores), multi-model sys-
tems offer a single database to store and manage different
data models by offering an integrated system to guarantee
large scale databases requirements in terms of storage, avail-
ability, and fault tolerance (e.g., OrientDB, http://orientdb.
com/orientdb/). The concept of multi-model systems was
earlier introduced in the literature with the ORDBMS sys-
tems (object-relational databasemanagement systems) offer-
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ing support to object-oriented programming with relational
databases [56]. Recent multi-model systems advocate the
ideaof reducing the taskof combiningpartial results fromdif-
ferent stores and thus suggest having an integrated database,
which hides the heterogeneity in terms of datamodels by pro-
viding a declarative approach of querying multi-model data.
Therefore, data model transformation can be carried out only
when it is required. In [57], this philosophy is embraced to
propose a multi-model approach to data warehousing.

Ultimately, multi-model systems excel in terms of data
governance, management, and access. It is only required
to maintain one system while taking advantage of several
data models. However, existing systems are limited to a
pre-defined set of data models, extending support to new
data models is challenging, and (most importantly) they do
not provide any mechanism to handle schema heterogeneity
(e.g., reconciling the usage of different naming conventions
for the same attribute) nor record overlapping.

6.3 Record overlapping

Effectively supporting querying on a heterogeneous system
with overlapping records requires the adoption of data fusion
techniques [58]. The literature on this subject is very wide,
thus we refer the reader to a recent survey [59]. Among
the most important ones, we outline [19], where the authors
propose a relational algebra operator (called full-outerjoin
merge) to carry out data fusion while joining two tables—
which is also the inspiration for the definition of the merge
operator introduced in Sect. 4.1. Remarkably, related works
in this area do not apply directly to a polyglot system; their
scope is focused on the recognition and resolution of con-
flicts between records representing the same entity, but their
application is mostly independent of the contextual storage
and querying system. The related literature dealing with this
problem is a building block of our approach, but it is not
sufficient to address our complex multistore scenario on its
own.

To the best of our knowledge, the only proposal that con-
siders a scenario requiring data fusion in a polyglot system
is QUEPA [60], where the authors present a polystore-based
approach to support query augmentation. The idea is to let the
user issue a query onto a single DBMS (using its native query
language) and to augment query results with related informa-
tion taken from the other DBMSs. The approach is meant to
complement the other polystore systems that actually sup-
port cross-DBMS querying, and record linkage techniques
are only used to find related instances in different DBMSs,
but not to solve conflicts. Unlike [60], we (i) offer an inte-
grated dataspace view over the whole multistore, (ii) enable
cross-DBMS querying, and (iii) apply data fusion techniques
at query time to solve conflicts in the data and return a pol-
ished result.

7 Conclusions

Data Science and Business Intelligence 2.0 expect more
lightweight and flexible approaches to data analysis. Our
proposal extends previous multistore solutions by handling
schema heterogeneity under record overlapping and ensur-
ing consistent answers for GPSJ queries, i.e., a wide class
of queries that is the most common in OLAP. We rely on
a lightweight pay-as-you-go approach to build an integrated
dataspace to be used as an interface for query formulation;
the formalized algorithms describe the process to obtain
an execution plan from a GPSJ query and include several
optimizations. The experimental evaluation measures the
performance of the approach in terms of efficiency and shows
how the pay-as-you-go approach can increasingly improve
the effectiveness of query answering.

We plan to continue our research in several directions.
Currently, the goal of our approach is to define an executable
query plan that is semantically correct and that complies with
the GPSJ semantics; whereas we do adopt some techniques
to obtain a reasonably optimized query plan, we are not guar-
anteed that the best plan is identified. To this end, (1) a cost
model would be necessary to estimate the cost of different
plans and choose the best one, and (2) we plan to further
increase the complexity of the algorithms to consider addi-
tional rationales to build execution plans. In particular, the
rationale in the current implementation is to first merge the
records at the entity level and then merge the reconciled
entities—which guarantees the correctness of the result. A
different approach would be to first compute local results
at the database level and then merge them at the middleware
level to obtain the global result.While thismay seem a simple
problem of reordering collection plans, it entails a correct-
ness problem due to the presence of overlapping records:
indeed, merging local results from different databases may
require merging data belonging to different entities at the
same time—which is not straightforward. Thus, we plan to
investigate this issue to generate execution plans that can
exploit database locality without compromising the correct-
ness of query results. Further research efforts include adding
support to the graph data model, enabling a broader set of
queries than GPSJs (e.g., [10]), introducing KPIs to pro-
vide further insights into the user concerning the underlying
heterogeneity of the data (e.g., [48]), and improving the
efficiency of the schema extraction task by adopting approxi-
mation techniques (e.g., sampling to avoid a full scan of every
collection) and an incremental strategy (i.e., to consider only
new/updated records).
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