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Abstract

Deep neural networks have recently shown excellent performance on numerous

image classification tasks. These networks often need to estimate a large num-

ber of parameters and require much training data. When the amount of training

data is small, however, a network with high flexibility quickly overfits the train-

ing data, resulting in a large model variance and poor generalization. To address

this problem, we propose a new, simple yet e↵ective ensemble method called In-

terBoost for small-sample image classification. In the training phase, InterBoost

first randomly generates two sets of complementary weights for training data,

which are used for separately training two base networks of the same structure,

and then the two sets of complementary weights are updated for refining the

training of the networks through interaction between the two base networks

previously trained. This interactive training process continues iteratively until

a stop criterion is met. In the testing phase, the outputs of the two networks are

combined to obtain one final score for classification. Experimental results on

four small-sample datasets, UIUC-Sports, LabelMe, 15Scenes and Caltech101,

demonstrate that the proposed ensemble method outperforms existing ones.

Moreover, results from the Wilcoxon signed-rank tests show that our method is
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statistically significantly better than the methods compared. Detailed analysis

is also provided for an in-depth understanding of the proposed method.

Keywords: Ensemble learning, Deep neural network, Small-sample image

classification, Overfitting.

1. Introduction

Image classification is an important application of machine learning and

data mining [1, 2, 3]. Recent years have witnessed tremendous improvement in

large-scale image classification due to the advances of deep learning [4, 5, 6, 7].

Despite the breakthroughs in applying deep networks, one persistent challenge5

is the classification with a small amount of training data [8, 9, 10, 11]. Recently,

more and more studies focus on few-shot classification, in which each class

contains 5, 10 or 20 labeled samples, for example. Apart from few-shot image

classification, some studies also focus on the image classification that consists

of hundreds of samples in each class. Here, we treat all these works as small-10

sample image classification. Small-sample image classification is important, not

only because humans learn the visual concept of a class without the need of

millions or billions of data, but also because many kinds of real-world data are

small in quantity [12, 13].

Given limited training data points, a large network will easily encounter the15

overfitting problem [13, 14, 15]. There exist many methods aiming to alleviate

the problem, such as dropout [16], large-margin losses [17, 18, 19], augmentation

[20, 21, 22], fine-tuning [23, 24, 25] or weight decay [26]. However, when there are

only a small number of data points in the training set, the overfitting problem

will become inevitable [27]. This is mainly because a large network represents20

a large function space, in which many functions can fit a given small-sample

dataset, making it di�cult to find the underlying true function that is able to

generalize well. As a result, a neural network trained with a small number of

data points usually exhibits a large variance.

Ensemble learning is an e↵ective way to reduce the model variance. Ac-25
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Figure 1: Motivation of InterBoost. In Snapshot (upper panel), the base networks (Base1 and

Base2) are trained sequentially. In InterBoost (lower panel), the base networks (Base1 and

Base2) are trained simultaneously and interactively. The interaction is indicated by a two-

way red arrow. In each panel, the curved plane represents the loss function of base networks

in Snapshot or InterBoost. The red flags indicate the local minima found by Snapshot or

InterBoost.
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cording to the error-ambiguity decomposition, which represents the ensemble

generalization error as (the weighted average of) the generalization errors of

the individual networks minus (the weighted average of) the ensemble ambigu-

ities [28, 29], the variance can be reduced when multiple models or ensemble

members are trained and combined for decision making, and the e↵ect is more30

pronounced if ensemble members are with both accuracy and diversity [28, 30].

On the other hand, ensemble methods, including classical ones (Bagging, Ad-

aBoost [31]) and new ensemble methods tailored to neural networks (Dropout

[16], Snapshot Ensembling [32]) can increase either both the training and test

costs of neural networks or one of them. With the increase of the training and35

test costs, the computational cost of ensembles of deep neural networks (DNN)

can quickly become uneconomical and intolerable [32]. Hence, this paper only

focuses on constructing an ensemble of a small number (e.g. two) of diverse and

accurate base networks, to alleviate the big variance of DNN in small-sample

image classification.40

Among the existing ensemble methods for neural networks, Snapshot En-

sembling is an e↵ective method that introduces cyclic cosine annealing method

in the training of neural networks to get multiple local minima of the loss func-

tion, and the network entities corresponding to these local minima are served as

the ensemble members. In Snapshot Ensembling, the base networks are learned45

in sequence: the learned parameter values of a former base network are served

as the initial parameters of the latter base network, see Fig. 1. Inspired by Snap-

shot Ensembling, we also aim to find diverse local minima of the loss function

but in a di↵erent way, and we propose a simple yet e↵ective ensemble method

called InterBoost, in which base networks are trained simultaneously and inter-50

actively, see Fig. 1. Specifically, in our proposed InterBoost the original data are

first re-weighted by two sets of complementary weights. Secondly, the two base

neural networks with the same structure are separately trained by minimizing

the two re-weighted loss functions. Then we update weights of training data

according to the prediction scores of the two base networks on the training data,55

in a way that the weight of a data point for one base network is increased if the
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prediction score of the base network is lower than the other for that data point.

As a result, we obtain an ensemble that can increase gradually the accuracies

of base networks while encouraging diversity between base networks.

We present the training and test procedures of the proposed InterBoost,60

and evaluate it on four small-sample datasets (UIUC-Sports [33], LabelMe [34],

15Scenes [35], and Caltech101 [36]) with a comparison to Bagging, AdaBoost,

mixture of experts, Snapshot Ensembling and some other existing methods.

Experimental results show the superior performance of the proposed InterBoost.

Results from the Wilcoxon signed-rank tests [37, 38] also show that InterBoost65

is statistically significantly better than the other methods.

2. Related work

In the study of neural networks, ensemble methods can be roughly classified

into the following groups.

Bagging and its variants. The strategy of Bagging trains the base classifiers70

on the bootstrap samples generated from the training dataset and then com-

bines the classifiers based on some rules, e.g. a weighted average [31, 39]. The

Bagging methods attempt to obtain the diversity from the bootstrap sampling,

i.e. random sampling with replacement. This sampling approach makes the

base classifiers in Bagging have a large generalization error on small-sample75

data although the diversity among base classifiers is achieved.

Boosting and its variants. The strategy of Boosting starts from a classifier

trained on all the available training data and then sequentially trains the new

member classifiers [40, 41, 42]. Taking AdaBoost [31] as an example: a new

member classifier is trained on a re-weighted dataset, in which the re-weighting80

is based on the training errors generated from the previous classifiers. Therefore,

AdaBoost works well for the weak base classifiers. However, if the base classi-

fier is of high complexity, such as a large scale neural network, it may have no

training error on the training samples. Consequently, the second classifier will
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be trained on the original training data from the scratch again. In this case,85

the diversity of base networks in AdaBoost is mainly left to the randomness

obtained from the initialization of the network parameters and the stochastic

gradient descent (SGD) [43, 44], rather than from the re-weighting as usual.

Mixture of experts. The mixture of experts (MoE) [45, 46, 47] is also an e↵ective

approach to exploiting multiple learners, namely the experts [31]. MoE works in90

a divide-and-conquer strategy, where a complex task is broken up into several

simpler and smaller subtasks. Next, the individual learners are trained for

di↵erent subtasks. In particular, taking an individual learner which is a neural

network as an example: an MoE network can be composed of a gating network

and multiple subnetworks. The gating network is usually employed to combine95

the experts, and the subnetworks will focus on the subregions of the solution

space for “subtasks” [48, 49]. Implicitly, each subnetwork is trained primarily by

a subset of the training data, which may present a limitation for small-sample

classification problems.

New ensembles for neural networks. Apart from the classical ensemble methods100

mentioned above, there also exist some new ensemble methods in the area of

neural networks, e.g. Dropout [16], DropConnect [50] and Stochastic Depth tech-

niques [51], which create an ensemble by dropping some hidden nodes, connec-

tions (weights) and layers, respectively. There also exist some ensemble methods

taking advantage of characteristics of neural networks, such as Boosted Resid-105

ual Networks, Snapshot Ensembling and Temporal ensembling. In [52], Boosted

Residual Networks are generated by increasing the size of an original residual

network via adding one residual block at each round of boosting. Snapshot En-

sembling [32] is a method able to, by training only one time and finding multiple

local minima of an objective function, get many ensemble members. Temporal110

ensembling [53], a parallel work to Snapshot Ensembling, trains a single network

and uses the predictions made on di↵erent epochs as an ensemble prediction of

multiple subnetworks because of the dropout regularization.
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3. The proposed InterBoost method

3.1. Initialization of sample weights115

For a training set {xd,yd}, d 2 {1, . . . , D}, where yd, a one-hot variable,

is the true class label of xd, we assign weights to data points {xd,yd}, which

are used for re-weighting the loss of the points in the loss function of a neural

network. It is equivalent to changing the distribution of the training data and

thus changing the optimization objective of the neural network. We randomly120

assign weights W1d 2 (0, 1) to {xd,yd} for training the first base network, and

then assign complementary weights W2d = 1�W1d to {xd,yd} for training the

second base network.

3.2. InterBoost training

The core idea of the proposed InterBoost is to train two base neural networks125

interactively. This is in contrast to Boosting, where base networks are typically

trained in sequence, namely the subsequent network or learner is trained on a

dataset with new data weights that are updated using the error rate performance

of the previous base network. As there is an interaction between the two base

networks during the training process, we call the proposed method InterBoost,130

the training procedure of which is shown in Fig. 2.

The training procedure of InterBoost contains N iterations. In the nth it-

eration (n 2 {1, . . . , N}), it first trains the ith base network (i 2 {1, 2}) using

re-weighted training data {xd,yd,W
(n)
id

}, d 2 {1, . . . , D}, and then interactively

updates data weights based on the probability that the ith base network clas-135

sifies xd correctly, namely P (yd|xd,✓
(n)
i

), where ✓i represents the parameters

of the ith base network. Here, we suppose that the activation function of the

last layer in the ith base networks is Softmax, P (yd|xd,✓
(n)
i

) is obtained by

computing the dot product of yd and the output vector of the ith base network

with input xd. Training networks and updating data weights run alternately140

until a stop condition is met.
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Figure 2: Illustration of the training procedure of InterBoost. In the plot, W1d and W2d are

the weights of data point {xd,yd}, d 2 {1, 2, . . . , D}, for the two base networks, respectively;

✓1 and ✓2 are the parameters of two base networks; W
(n)
1d + W

(n)
2d = 1 with W

(n)
1d 2 (0, 1),

W
(n)
2d 2 (0, 1) and n is the number of iteration; P (yd|xd,✓

(n)
i ), i 2 {1, 2} is the probability

that the ith base network can classify xd into ydth class after the nth iteration.

Updating of ✓i. To compute ✓(n)
i

, i 2 {1, 2} in the nth iteration, we

minimize the weighted cross entropy loss functions L(n)
i

, with L
(n)
i

expressed as

L
(n)
i

= �
DX

d=1

W
(n)
id

log(P (yd|xd,✓
(n�1)
i

)). (1)

Updating of Wid. For Wid, i 2 {1, 2}, we devised the following updating

rule: If the prediction of a data point in one base network is higher than that in

another, its weight in next iteration for training this base network will be smaller

than its weight for training another base network. In this way, a base network145

will be assigned a larger weight for a data point on which it does not perform

well. Hence the interaction makes each base network focus on diverse data

region in sequence, which can be considered an “implicit” AdaBoost. Moreover,

considering that the two networks are always trained based on loss functions

with di↵erent data weights, this interaction encourages the diversity of base150

networks.

To implement this updating rule, a simple method is to use function w1 =

p2/(p1+p2), and then assignW1d = w1 andW2d = 1�w1. Here, for convenience,

we use p1 and p2 to represent the probabilities that the point xd is classified

by the two base networks correctly. However, this is problematic, as illustrated155
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Figure 3: Function w1 = p2/(p1+p2) (left) and function w1 = ln(p1)/(ln(p1)+ln(p2)) (right),

where 0 < p1, p2 < 1.

on the upper panel of Fig. 3. For example, when both p1 and p2 are large

and close to each other, w1 will be close to 0.5. In this situation, there will be

no big di↵erence between W1d and W2d. In addition, this situation will occur

frequently as neural networks with high flexibility will fit the data well. As a

result, the function has di�culty to make a data point have di↵erent weights in160

two base networks.

Instead, we use function w1 = ln(p1)/(ln(p1) + ln(p2)), as shown on the

lower panel of Fig. 3, to update data weights. It is observed that the function is

more sensitive to small di↵erences between p1 and p2 when they are both large.

Specifically, for {xd,yd}, we update its weights as

W
(n)
1d =

lnP (yd|xd,✓
(n�1)
1 )

lnP (yd|xd,✓
(n�1)
1 ) + lnP (yd|xd,✓

(n�1)
2 )

, (2)

W
(n)
2d = 1�W

(n)
1d . (3)

The optimization objective. After updating network parameters and

data weights, we compute the optimization objective of two base networks. For

each data point, we compute the mean value of output probabilities of the two

networks as the final prediction, and the optimization objective (loss) in the nth

9



iteration is shown as follows:

L
(n) = �

DX

d=1

log
P (yd|xd,✓

(n)
1 ) + P (yd|xd,✓

(n)
2 )

2
, (4)

where L
(n) is a variable that we monitor at each iteration, and the two base

networks corresponding to the minimal value of L(n) in the training process are

what we aim to learn. It means that the optimization goal of InterBoost is to

learn a combination of two base networks, in which either both base networks165

fit the training data well independently or one of them does not do it well but

their combination does it well.

The training procedure of InterBoost is summarized in Algorithm 1. First,

two base networks are trained by minimizing loss functions L1 and L2, respec-

tively. Secondly, weights of the training data points are updated with Equations170

(2) and (3). The two steps are repeated until the maximum iteration number is

reached. Finally, the two base networks for the minimal loss of InterBoost are

obtained.

3.3. InterBoost prediction

Through the interactive and iterative training process, the two networks

become well trained over various regions of the problem space represented by

the data. In other words, they become “experts” with di↵erent knowledge.

Therefore, we adopt a simple fusion strategy of linearly combining the prediction

results of two networks with equal weights as the final prediction of InterBoost:

P (y | x̃) = P (y | x̃,✓0
1) + P (y | x̃,✓0

2)

2
, (5)

where P (y | x̃,✓0
i
), i 2 {1, 2} is the probability that unseen data point x̃ is175

classified into class y by the ith base network. That is, prediction of InterBoost

for unseen data synthesizes the the prediction results of two base networks.

3.4. Discussion of InterBoost

During the training process, we always keep the constraints W1d + W2d =

1 and 0 < W1d,W2d < 1. Equations (2) and (3) are designed for updating180
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Algorithm 1 InterBoost training procedure
Input:

Training set {(xd,yd) | d 2 {1, . . . , D}} and the maximum number of itera-

tions N .

Steps:

Initialize weights for each data point, W (1)
1d , W (1)

2d , and parameters of two

base networks ✓(0)
1 , ✓(0)

2 ; n 0; L(0) =1 .

repeat

n n + 1

Update ✓(n)
1 and ✓(n)

2 by minimizing (1)

Update W
(n+1)
1d , W (n+1)

2d , d 2 {1, . . . , D}, according to (2) and (3)

Computing the optimization objective, L(n), by (4)

if L
(n)

< L
(n�1) then

✓0
1 = ✓(n)

1 and ✓0
2 = ✓(n)

2

end if

until n == N

return Parameters of two base networks, ✓0
1 and ✓0

2
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weights of data points, so that the weight updating rule is sensitive to small

di↵erences between prediction probabilities from two base networks to encourage

the diversity between base networks. Furthermore, if the prediction of a data

point in one network is less accurate than another network, its weight in the

next round will be larger than its weight for another network, thus making base185

networks focus on di↵erent regions continually.

Similar to Bagging and AdaBoost, our InterBoost has no limitation on the

type of neural networks. In addition, it is straightforward to extend InterBoost

to multiple networks, just by keeping
P

H

i=1 Wid = 1, d 2 {1, . . . , D}, in which

H is the number of base networks and 0 < Wid < 1. The reason why we chose190

two base networks in this work is purely for simplicity and less test cost.

4. Experimental results and discussion

We chose four small-sample datasets for image classification to evaluate the

e↵ectiveness of the proposed InterBoost, through: 1) comparing InterBoost with

classical ensemble methods and new ensembles for networks on the four datasets;195

2) evaluating their performance under di↵erent training sample sizes; 3) con-

ducting the Wilcoxon signed-rank tests on experimental results to further show

that the superiority of InterBoost is not due to chance; 4) analyzing the mecha-

nism of InterBoost in terms of accuracy and diversity; and 5) discussing exper-

imental results.200

4.1. Datasets and data preprocessing

• LabelMe (LM): A subset of the scene classification dataset from [34]. The

dataset contains 8 classes of natural scene images: coast, forest, highway,

inside city, mountain, open country, street and tall building. We randomly

selected 200 images for each class, so the total number of images is 1,600.205

• UIUC-Sports (UIUC): An 8 class sports events classification dataset1 from

[33]. The dataset contains 8 classes of sports scene images. The total

1http://vision.stanford.edu/lijiali/Resources.html
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Table 1: Comparison of classification performance on the UIUC, LM, 15Scenes (15Sce.) and

Caltech101 (Calte.) datasets. Methods include Baseline (Base.), Dropout (Drop.), Augmen-

tation (Aug.), Bagging (Bag.), AdaBoost (Ada.), MoE, Snapshot (Snap.) and the proposed

InterBoost (Inter.). Each method runs 60 rounds, and the mean values and standard devia-

tions (Std.) of classification accuracies are reported.

Base. Drop. Aug. Bag. Ada. MoE Snap. Inter.

UIUC Mean 0.880 0.870 0.894 0.852 0.878 0.876 0.901 0.904

Std. 0.025 0.025 0.025 0.035 0.033 0.016 0.005 0.003

LM Mean 0.864 0.855 0.854 0.856 0.881 0.868 0.883 0.890

Std. 0.037 0.048 0.039 0.033 0.014 0.019 0.008 0.005

15Sce. Mean 0.833 0.822 - 0.821 0.835 0.832 0.843 0.849

Std. 0.024 0.034 - 0.017 0.014 0.011 0.004 0.003

Calte. Mean 0.878 0.881 - 0.873 0.906 0.891 0.934 0.935

Std. 0.058 0.041 - 0.036 0.025 0.005 0.001 0.001
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Figure 4: Comparison of the accuracies obtained by Baseline, Dropout (Drop.), Augmentation

(Aug.), Bagging (Bag.), AdaBoost (Ada.), MoE, Snapshot (Snap.), and the proposed Inter-

Boost method (Inter.) on the UIUC and LM datasets. Each method has been evaluated for 60

rounds, and the distributions of accuracies are shown via boxplots. In each boxplot, the cen-

tral mark is the median; the edges of the box are the 25th and 75th percentiles, respectively;

and the outliers are marked individually.
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number of images is 1,579. The numbers of images for di↵erent classes

are: bocce (137), polo (182), rowing (250), sailing (190), snowboarding

(190), rock climbing (194), croquet (236) and badminton (200).210

• 15Scenes [35]: A dataset of 15 classes of natural scene images: coast, forest,

highway, inside city, mountain, open country, street and tall building. We

randomly select 200 images for each class, so the total number of images

is 3,000.

• Caltech101 [36]: A dataset of pictures of objects in 101 categories, and the215

size of each category is approximately 40-800 images. The total number

of images is 4,000.

For the LM and 15Scenes datasets, each class in both training and test datasets

contains 100 data points. For the UIUC and Caltech101 datasets, di↵erent

classes have di↵erent sizes, and therefore we randomly and equally split the220

data in each class into training and test datasets. We resize the images on these

four datasets into the same size of 256⇥ 256.

4.2. Implementation details of the compared methods

In order to evaluate the classification performance of the proposed Inter-

Boost method, we compare InterBoost with 1) one convolutional neural net-225

work (CNN) with VGG16 styled (The method is the base of other compared

methods, we call it Baseline); 2) Baseline with Dropout (Dropout); 3) Baseline

with augmentation (Augmentation); 4) Bagging of Baseline (Bagging); 5) Ad-

aBoost of Baseline (AdaBoost); 6) Mixture of experts (MoE); and 7) Snapshot

Ensembling of Baseline (Snapshot) [32], on the four small-sample datasets.230

Since Baseline is the basis of constructing other compared methods in our ex-

periments, we first introduce the implementation of Baseline. Baseline adopted

the VGG16 [5] style CNN, containing 13 convolutional layers and 2 fully con-

nected layers with 1 hidden layer containing 32 hidden units. In the part of

convolutional layers, the structure is the same as VGG16, and in the part of235

15



Table 2: Comparison of classification accuracies obtained by Baseline (Base.), Dropout

(Drop.), Augmentation (Aug.), Bagging (Bag.), AdaBoost (Ada.), MoE, Snapshot (Snap.)

and the proposed InterBoost method (Inter.) on UIUC and LM datasets when the training

datasets are reduced. Mean values and standard deviations (Std.) are listed in cells of the

table. Each method runs 60 rounds on each dataset. The notation DatasetName-n denotes

the configuration in which the training dataset in the named dataset is reduced by n data

points for every class from the original training dataset, while the test datasets are unchanged.

Base. Drop. Aug. Bag. Ada. MoE Snap. Inter.

UIUC-20 Mean 0.855 0.856 0.886 0.836 0.862 0.863 0.882 0.892

Std. 0.054 0.052 0.018 0.031 0.042 0.016 0.006 0.003

UIUC-30 Mean 0.819 0.826 0.866 0.776 0.814 0.850 0.866 0.872

Std. 0.058 0.080 0.030 0.103 0.076 0.014 0.006 0.005

UIUC-40 Mean 0.806 0.824 0.845 0.794 0.823 0.827 0.846 0.853

Std. 0.072 0.059 0.023 0.048 0.057 0.019 0.006 0.005

UIUC-50 Mean 0.787 0.806 0.830 0.730 0.734 0.807 0.830 0.835

Std. 0.075 0.060 0.023 0.093 0.158 0.033 0.008 0.006

Base. Drop. Aug. Bag. Ada. MoE Snap. Inter.

LM-10 Mean 0.832 0.843 0.853 0.830 0.865 0.857 0.870 0.880

Std. 0.068 0.061 0.043 0.516 0.023 0.019 0.007 0.004

LM-30 Mean 0.830 0.810 0.838 0.810 0.842 0.841 0.843 0.854

Std. 0.028 0.087 0.024 0.042 0.018 0.019 0.009 0.007

LM-50 Mean 0.781 0.779 0.792 0.754 0.794 0.791 0.802 0.810

Std. 0.033 0.063 0.027 0.074 0.021 0.018 0.009 0.007

LM-70 Mean 0.776 0.788 0.783 0.755 0.798 0.796 0.803 0.819

Std. 0.042 0.061 0.035 0.045 0.026 0.025 0.016 0.013
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fully connected layers, the activation function of the hidden layer was the Rec-

tified Linear Unit function (ReLU ), and the activation function of the output

layer was Softmax. We used mini-batch gradient descent to minimize the soft-

max cross entropy loss. The optimization algorithm was RMSprop, the initial

learning rate was 0.001, the coe�cient of L2 norm penalty on network weights240

is 0.001, the batch size was 32, and the epoch number was 100. In the training

process, all the parameters in convolutional layers were directly initialized by

those in the pre-trained VGG16 on the ImageNet dataset, and are then frozen

during training and test processes.

Regarding Dropout and Augmentation, Baseline is the backbone network of245

them. For Dropout, we added a Dropout layer after the hidden layer in the

fully connected parts of Baseline with a probability of 0.01. For Augmentation

[54, 3], flip and shear transformation is adopted. In particular, we randomly flip

images horizontally, and the shear intensity is 0.2.

Regarding Bagging, AdaBoost, MoE and Snapshot, Baseline is the base net-250

work (leaner) of them, and the number of base networks in all these methods

is set to 2. For Bagging, instead of voting strategy, we added the predicting

probabilities of the two base networks and then divided the sum by two as the

final predicting probabilities. About MoE, we used two same Baseline networks

as two base networks in MoE, and one gate network is implemented by sigmoid255

function. In Bagging, AdaBoost and MoE, the setting of parameters and opti-

mization of base networks are set as the same with Baseline. For Snapshot, we

followed the method of obtaining a snapshot network and changing the learn-

ing rate in [32], there are two iterations, and each iteration contains 50 epochs.

Except for this, the setting of parameters and optimization of base networks in260

Snapshot is the same with Baseline.

Finally, for InterBoost, two base networks adopted the same network struc-

ture with Baseline. In addition, the iteration number of InterBoost was set as 5

and each iteration had 20 epochs on the UIUC and LM datasets; and the itera-

tion number was set to 3 and each iteration had 33 epochs on the 15Scenes and265

Caltech101 datasets. The settings of iteration number and epoch number were
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Figure 5: Comparison of the accuracies obtained by Baseline, Dropout (Drop.), Augmenta-

tion (Aug.), Bagging (Bag.), AdaBoost (Ada.), MoE, Snapshot (Snap.), and the proposed

InterBoost method (Inter.) via boxplot on the UIUC-50 and LM-70 datasets. The rest of the

caption is as in Fig. 4.
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for two reasons: first, the sum of training epoch numbers of one base network

in all iteration needs to be the same with Baseline; secondly, any base network

can fit training data in each iteration. In addition, we adopted cyclic cosine

annealing technique [32] for decreasing learning rate at each iteration.270

All the methods were implemented on Keras [55].

4.3. Classification accuracies

We ran Baseline, Dropout, Augmentation, Bagging, AdaBoost, MoE, Snap-

shot Ensembling and InterBoost on the four datasets 60 rounds each. The mean

value and standard deviation of accuracies are reported in Table 1: a larger mean275

value and a smaller standard deviation are better.

From Table 1, we can see that Dropout shows a slight improvement upon

the performance of Baseline on the four datasets, while variances are larger.

Augmentation does improve the the mean value due to increased data amount,

however it does not reduce the variance. Bagging performs worse than the single280

base network. AdaBoost and MoE have very similar mean values to Baseline,

but smaller variance than Baseline. Snapshot performs better than Baseline,

Dropout and Augmentation, also better than Bagging, MoE and AdaBoost.

We can also see that our InterBoost has the best performance with an average

accuracy of 90.36% on UIUC, 89.00% on LM, 84.88% on 15Scenes, and 93.45%285

on Caltech101. The average accuracy of our method is 2.4% absolutely higher

than that of Baseline on UIUC, 3.6% absolutely higher than that of Baseline

on LM, 1.5% absolutely higher than that of Baseline on 15Scenes, and 5.6%

absolutely higher than that of Baseline on 15Scenes. In addition, our method

has the smallest standard deviations 0.003, 0.005, 0.003, and 0.001 on UIUC,290

LM, 15Scenes and Caltech101, respectively, significantly outperforming all other

compared methods.

To further evaluate the robustness and stability of the proposed method, in

Fig. 4, we show boxplots of accuracies obtained by all the compared methods

on the UIUC and LM datasets. We can see that among these seven methods,295

the boxes of Baseline are the largest on both datasets. The boxes of our Inter-
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Boost are most compact, in which the maximum value and the lower quartile of

accuracies are both higher than those of other compared methods. It is worth

mentioning that there are some low-accuracy outliers in all other compared

methods, but there is no low-accuracy outlier in our method.300

In summary, our InterBoost demonstrates superior performance on LM,

UIUC, 15Scenes and Caltech101; it also has smaller fluctuation than other

methods, showing its ability to reduce variance in prediction for small-sample

classification.

4.4. Classification accuracies for di↵erent training dataset sizes305

It is well-known that when the number of training data points is reduced,

the overfitting problem will get more severe. To further demonstrate the per-

formance of our method in mitigating the overfitting problem, we reduced the

size of the training datasets of UIUC and LM while keeping the sizes of the

test datasets. For all experiments here, each method runs 60 rounds. For all310

methods, we do not change their settings, just run them on di↵erent training

datasets, and then compute the mean values and standard deviations of accu-

racies as reported in Table 2, where the notation DatasetName-n denotes the

configuration that the number of training data in the named dataset is reduced

by n data points for every class from the original training dataset, while the315

test data are unchanged.

It can be observed from Table 2, with the decrease in size of training datasets,

mean values of all the methods become smaller and variance of them become

larger, however, the tendency among these methods is almost retained.

Compared with Baseline, Dropout has larger mean values in most of exper-320

iments, but only has smaller standard deviation on several sets of experiments;

Augmentation has larger mean values and smaller standard deviations on UIUC

and LM (see Fig. 5). It shows on these two datasets that Dropout has no big

improvement for Baseline, and Augmentation could improve performance of

Baseline when the training data size is reduced.325

It is worth noting that three classical ensemble methods, Bagging, AdaBoost
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Table 3: The p-values of our method versus other compared methods, Baseline (Base.),

Dropout (Drop.), Augmentation (Aug.), Bagging (Bag.), AdaBoost (Ada.), MoE, Snapshot

(Snap.), from the Wilcoxon signed-rank tests. Each method runs 60 rounds on each dataset.

The notation DatasetName-n denotes the configuration in which the training dataset in the

named dataset is reduced by n data points for every class from the original training dataset,

while the test datasets are unchanged.

Base. Drop. Aug. Bag. Ada. MoE Snap.

UIUC 7.21E-10 5.90E-14 4.55E-03 1.11E-18 7.04E-08 1.41E-18 2.55E-04

UIUC-20 4.90E-11 2.44E-11 2.04E-03 1.62E-11 2.50E-11 1.88E-11 4.17E-11

UIUC-30 2.44E-11 1.09E-09 0.9120 1.63E-11 2.69E-11 5.70E-11 1.88E-05

UIUC-40 3.82E-11 4.11E-10 0.0690 1.63E-11 1.23E-09 1.70E-11 7.13E-09

UIUC-50 2.01E-10 3.37E-07 0.7183 1.63E-11 1.80E-11 3.99E-11 6.00E-05

Base. Drop. Aug. Bag. Ada. MoE Snap.

LM 1.18E-09 1.30E-09 4.20E-11 4.10E-11 2.28E-04 5.04E-10 1.49E-06

LM-10 6.41E-11 3.50E-08 8.08E-07 3.59E-11 7.44E-08 1.36E-10 6.27E-09

LM-30 3.51E-08 1.19E-06 1.19E-06 1.28E-06 2.28E-06 8.62E-06 1.21E-08

LM-50 1.10E-08 1.94E-06 7.56E-09 5.82E-11 1.18E-04 6.15E-09 2.55E-07

LM-70 1.28E-09 2.47E-06 1.97E-09 7.08E-11 2.53E-06 2.02E-07 9.81E-08

Base. Drop. Aug. Bag. Ada. MoE Snap.

15Sce. 1.80E-11 2.21E-11 - 1.62E-11 3.91E-11 2.51E-11 4.30E-10

Calte. 1.63E-11 1.63E-11 - 1.63E-11 1.63E-11 1.62E-11 0.1010
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and MoE, do not give large mean values and small variances. Snapshot, an

ensemble method which is tailored for neural networks and constructs multiple

base networks by finding di↵erent local minima of a loss function, performs

better than the three classical ones. It also performs better than other Dropout330

and Augmentation. Finally, our method performs better than Snapshot.

In summary, compared to other methods, our InterBoost has the highest

mean values and the lowest variances of accuracies on UIUC and LM with

di↵erent reduced training dataset sizes.

4.5. Wilcoxon signed-rank tests335

In the experiments above, our method shows superior performance to other

methods on the sample mean and the sample standard deviation of classification

accuracies. To further demonstrate these results are not due to chance, we did

Wilcoxon signed-rank tests [37] for our method and other methods. A Wilcoxon

signed-rank test is a non-parametric statistical hypothesis test that can be used340

to determine whether the mean di↵erence between two sets of observations is

zero. Therefore, the null-hypothesis of a Wilcoxon signed-rank test is that our

method and the other method has the same mean value, and the corresponding

p-values are listed in Table 3. (The p-values bigger than 0.01 are in bold.)

In Table 3, most of p-values are smaller than 0.01. It can be observed345

that on all datasets, the compared Baseline, Dropout, Bagging, AdaBoost, and

MoE have extremely small p-values with our method under Wilcoxon signed-

rank tests. It means that the null-hypothesis that our method and these six

compared methods have the same mean are rejected.

Augmentation has a larger p-value than 0.01 with our method on UIUC-350

30, UIUC-40 and UIUC-50. Except for this, the p-values of Augmentation are

smaller than 0.01. It means that the null-hypothesis, that our method and

Augmentation have the same mean value, is not always rejected. A similar

pattern happens with Snapshot but only on Caltech101.

All these results indicate that the classification performance obtained by355

the proposed InterBoost is statistically significantly better than the compared
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methods, in general.

Figure 6: Comparison of the averaged accuracies obtained by Bagging (Bag.), AdaBoost

(Ada.), Snapshot (Snap.), and the proposed InterBoost method (Inter.) on the LM dataset.

Each method has been evaluated for 60 rounds.

4.6. The e↵ect of the number of base networks

To further explore the the performance of InterBoost on multiple base net-

works, we increased the number of base networks to be 3, 4, 5 and 6, respectively,360

and compared the proposed InterBoost with Bagging, AdaBoost and Snapshot

on the LM dataset. The weights of data points are updated by Equation 6.

W
(n)
id

=
lnP (yd|xd,✓

(n�1)
i

)
P

K

i=1 lnP (yd|xd,✓
(n�1)
i

)
, i 2 {1, 2, ...,K}, (6)

where K denotes the number of base networks. The classification accuracies are

shown in Fig. 6.

From Fig. 6, we can observe the followings. Firstly, when the number of base365

networks increases, the InterBoost still performs best among all the methods.

Secondly, with the increase of the number of base networks, the classification

accuracies of all compared methods have been improved. Thirdly, such improve-

ment, however, tends to be smaller as the number of the base network becomes
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larger. A reason for this is, when the number of base networks become large,370

the diversity among base networks will become small.

4.7. Analysis on accuracy and diversity

From the experiments above, the proposed InterBoost outperformed Snap-

shot on the four small-sample image datasets. In this section, we aim to ex-

plain the reason for this improvement based on some quantitative analysis on

the diversity (Kullback-Leibler divergence) and the accuracy (cross entropy loss

and accuracy), and on the tendency of accuracy and diversity of two base net-

works in the training process of InterBoost. Following the definitions and no-

tation in section 3, we compute the diversity (ambiguity) of two base networks,

D(Base1,Base2), based on the Kullback-Leibler divergence:

D(Base1,Base2) =
DX

d=1

KLs[P (xd|✓1), P (xd|✓2)], (7)

whereKLs(P1, P2) =
KL(P1,P2)+KL(P2,P1)

2 , and P2 and P1 represent two discrete

probability distributions of the same dimension.

Comparison to Snapshot: To gain more insights of the di↵erence between375

Snapshot and InterBoost, we compute the accuracies and cross entropy losses of

Snapshot, InterBoost and their base networks, as well as the diversities (Equa-

tion 7) of the two base networks in Snapshot and InterBoost, respectively, on

the training dataset of LM. The results are shown in Fig. 7. Since the accuracies

of all of Snapshot, InterBoost and their base networks are 1.00, which means380

they correctly classify the training data, we did not show the accuracies.

From Fig. 7, it can be seen that: firstly, in Snapshot, the second base net-

work has a lower boxplot of the cross entropy loss than the first network, which

is mainly because the parameter initialization of the second base network uses

the parameter values obtained from training the first base network. In contrast,385

the two base networks in InterBoost have similar box plots. In Snapshot and

InterBoost, however, the boxplots of the cross entropy losses of all base networks

are similar in general. Furthermore, the accuracies of all base networks in Snap-

shot and InterBoost are 1.00. Therefore, the accuracies of all base networks

24



in Snapshot and InterBoost are close to each other on the LM dataset. Sec-390

ondly, from the lower panel of Fig. 7, on the training data of LM, the boxplot of

D(Base1,Base2) of InterBoost is much higher than the one of Snapshot, and the

minimum of D(Base1,Base2) in InterBoost is even higher than the maximum

of D(Base1,Base2) in Snapshot.

In addition, we also show the confusion matrices of Snapshot, InterBoost395

and their base networks on the test dataset of LM in Fig. 8. The results shown

are selected randomly from one round among the 60 rounds that Snapshot and

InterBoost run. Snapshot and its two base networks have accuracies 87.87%,

88.00% and 88.12%, respectively; and InterBoost and its two base networks have

accuracies 89%, 88.62% and 88.25%, respectively.400

It can be observed that InterBoost has larger improvement upon its base

networks than Snapshot. The reason is that the diversity of base networks in

Snapshot is not enough, and when the diversity between base learners of an

ensemble is small, the performance of an ensemble is close to the average of

base learners [28], which explains the results in Fig. 8. In short, InterBoost405

has similar accuracies to Snapshot, and much larger diversity than Snapshot.

Analysis of InterBoost: To further explain how InterBoost obtains both

accurate and diverse base networks on small-sample data, we monitored sample

weights of Base1 in the training process of InterBoost, see Fig. 9. For clarity, we

only show weights of training samples of the “coast” class before the 1st, 3rd and410

5th iterations. We also show the accuracy and D(Base1,Base2) of InterBoost

and its base networks at each iteration on the LM test dataset in Fig. 10.

From Fig. 9, we can see that when n = 1 (the weights are from random

initialization), weights of most of samples in Base1 are close to 1 or 0, and with

more iterations, weights of all samples are close to 0.5. Because W1d +W2d =415

1 and 0 < W1d < 1, a similar pattern happens with Base2 in InterBoost.

In addition, from Fig. 10, we can find with more iterations, the accuracies of

two base networks show upward tendency and the diversities shows downward

tendency.

Therefore, with more iterations, base networks can still keep certain diversity420
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Figure 7: The cross entropy loss values of Snapshot, InterBoost and their base networks, and

the diversity (D(Base1,Base2)) between base networks on the training dataset of LM. In each

boxplot, the central mark is the median, and the edges are the 25th and 75th percentiles.

Each method runs 60 rounds.
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Figure 8: Confusion matrices of Snapshot (Snap.) and InterBoost (Inter.) and their base

networks on the test data of LM. The accuracy of Snapshot is 87.87%, with 88.00% for its

base network 1 (Base1) and 88.13% for its base network 2 (Base2). The accuracy of InterBoost

is 89.00%, with 88.62% for its base network 1 and 88.25% for its base network 2.
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(even though the diversity can become smaller gradually), while becoming more

and more accurate, which illustrates that InterBoost can learn both accurate

and diverse base networks and verifies the motivation for InterBoost.

Figure 9: Sample weights of Base1, one base network in InterBoost, before each iteration of

InterBoost, and n represents the iteration number. All the samples are from the “cost” class

of training dataset, and the sample size of the “cost” class is 100. We randomly chose one

round of the experiment of InterBoost on the LM dataset from the 60 rounds reported in

Table 1.

Figure 10: Accuracy of the base networks in InterBoost, and the diversity (D(Base1,Base2))

between two base networks in InterBoost on the test dataset of LM. Notation n represents

the iteration number. The results are chosen from the same round as the one in Fig. 9.

4.8. Discussion

From the experimental results above, we find that InterBoost outperforms425

three classical ensemble methods (Bagging, AdaBoost, and MoE) and one newly

proposed ensemble method, Snapshot, on small-sample image classification with
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deep neural networks. As the bootstrap sampling applied in Bagging can gen-

erate two diverse training datasets, it can construct two diverse base networks.

However, since bootstrap sampling samples data points with replacement, it430

makes the training data used for training base networks contain fewer distinct

original data points, so that the base networks are not accurate enough in our

small-sample experiments. As for AdaBoost, if the first classifier has no or few

errors on the training data, little or no changes can be introduced to the weights

of data points for training the second classifier. It will end up with training the435

base network twice on the original dataset and then combining their results.

Therefore, in this situation, the diversity between the base networks cannot be

ensured. Regarding MoE, its gating network is mainly responsible for assigning

data to di↵erent subnetworks, and di↵erent subnetworks are used to fit di↵erent

subsets on the training data. Since MoE is optimized based a single cross-440

entropy loss and does not pose any specific constraints on the subnetworks, it

is di�cult to ensure the accuracy of the subnetworks. Regarding Snapshot, the

reason that InterBoost outperform it on small-sample image classification lies

in the fact that InterBoost can not only make the base networks have similar

accuracies to Snapshot, but also obtain larger diversity.445

5. Conclusion

In the paper, we proposed an ensemble method called InterBoost to train

neural networks for small-sample image classification. In the training proce-

dure, the two base networks share information with each other, and are trained

interactively and iteratively. The interaction between the base networks make450

each of them more accurate and make the diversity between them be kept as

as large as possible. In the end, two diverse and accurate base network are

obtained. Experimental results on four commonly used datasets demonstrated

that InterBoost 1) can obtain two diverse base networks with good classifica-

tion performance; 2) has better generalization performance than other ensemble455

methods; and 3) is statistically significantly better than the compared methods.
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Future work on InterBoost includes increasing the number of its base networks,

and extending it to di↵erent types of networks and di↵erent kinds of data.
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