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Subspace-Based Methods for the Generation of
Personal Sound Zones with Physically Meaningful

Constraints
Liming Shi, Student Member, IEEE, Taewoong Lee, Student Member, IEEE, Lijun Zhang,

Jesper Kjær Nielsen, Member, IEEE, and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—Personal sound zones provide users to experience
independent listening and quiet areas in the same acoustic
environment using multiple loudspeakers. Generally, this can
be done either by maximizing an acoustic contrast (AC) that
represents the acoustic potential energy ratio between the bright5

and dark zones or by minimizing a reproduction error or a
signal distortion (SD) between the desired and reproduced sound
fields. However, the former suffers from severe distortion in the
reproduced sound field, whereas the latter suffers from poor
acoustic contrast. Recently, a flexible and general framework10

for sound zone control referred to as the variable span trade-off
(VAST) filter has been proposed. The VAST framework, which is
a generalized eigenvalue decomposition (GEVD)-based method,
allows the user to control the trade-off between AC and SD
by adjusting two user parameters: the subspace rank and the15

Lagrange multiplier. Unfortunately, these parameters are not
physically meaningful, and the user has to tune them for different
source materials and acoustic environments. In this paper, we
propose various strategies to control the reproduced sound field
as precisely and accurately as possible by reformulating the prob-20

lem using physically meaningful constraints, including SD and
AC. Furthermore, a modified version of the conjugate gradient-
based method is used to reduce computational complexity, to
reduce SD when the subspace rank is small, and to persist the
orthogonality of the basis functions as in VAST. The proposed25

method shows precise control over the reproduced sound field
via extensive numerical validations in anechoic and reverberant
environments for different physically meaningful constraints.
For the reproducibility of the experimental results, a MATLAB
implementation is available at https://tinyurl.com/rszern5.30

Index Terms—Personal sound zones, physically meaning-
ful constraints, subspace-based approach, conjugate gradient
method, variable span trade-off filters.

I. INTRODUCTION

THE creation of personal sound zones became an active35

area of research ever since it was first introduced ap-

proximately two decades ago [1], [2]. Based on this concept,

different applications such as cars and aircraft [3]–[9], outdoor

concerts [10], mobile devices [11], etc. [12], [13] were studied.

Typically, two different types of sound zones are considered:40

a bright zone (or a listening zone) and a dark zone (or a

quiet or silent zone). The bright zone is where the acoustic

potential energy is as high as possible, or the desired sound
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{ls, tlee, jkn, mgc}@create.aau.dk, L. Zhang is with the School of Marine
Science and Technology, Northwestern Polytechnical University, Xi’an, China,
e-mail: zhanglj7385@nwpu.edu.cn

field is reproduced as well as possible. The dark zone is where

the acoustic potential energy is as low as possible. Multiple 45

loudspeakers are controlled by different control strategies to

generate these zones for a single audio content. If the problem

of generating sound zones is solved for each audio content

individually, then multiple bright zones can be obtained by

applying the superposition principle. 50

The control strategies for the generation of sound zones

broadly fall into the following three categories: acoustic con-

trast control (ACC) [14], pressure matching (PM) [15], and

mode matching [16]. The first two approaches can also be

seen as optimization-based approaches that we focus on in 55

this paper, and the mode matching can be considered to be

an analytical approach. The mode matching (or the modal

domain) approach describes the reproduced sound field via a

spatial harmonic expansion to match such a field to the desired

sound field. 60

ACC seeks the control filter that maximizes the acoustic

contrast, which represents the acoustic potential energy ratio

between the bright and dark zones [14]. This can be solved

either by maximizing the energy in the bright zone with a

constraint on the energy in the dark zone or by minimizing 65

the energy in the dark zone with a constraint on the energy

in the bright zone. Such approaches are termed as either

direct or indirect acoustic contrast formulations, respectively

[17]. Besides, a method that maximizes the energy difference

between the bright and dark zones was also proposed [18], 70

and it gives the same solution as the indirect method as

described in [17]. Although this energy-based approach gives

high acoustic contrast, the reproduced sound field often does

not match the desired sound field since no constraint on the

phase in the bright zone is considered [19]. This becomes 75

more crucial, if the time domain ACC method, which is also

referred to as the broadband ACC (BACC) [20], is considered

since the method seeks for the solution which maximizes a few

frequency components and filters out the rest. This results in a

severe signal distortion but fulfills the maximization constraint. 80

Several techniques were proposed, e.g., [21]–[23], to ease this

distortion issue. Recently, to achieve different AC levels for

different frequency bands, multiple constraints approaches also

have been studied in [5], [9].

PM aims at reproducing desired sound fields for the bright 85

and dark zones by minimizing the reproduction error, which

is the difference between the reproduced and desired sound

fields in both zones. This method gives a much more accurate
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reproduction of the desired fields; however, it also gives a

much worse contrast than that of ACC. A combination be-90

tween ACC and PM was studied to obtain the best compromise

of low distortion and high acoustic contrast such as [24]

using [18] and [15] to provide a trade-off between acoustic

contrast and signal distortion. Besides, in [25], [26], a modified

version of PM was proposed to provide a trade-off between95

the signal distortion in the bright zone and the dark zone

power. Often these methods are referred to as ACC-PM or

PM-ACC; however, neither can reach a correct combination

between ACC and PM.

Recently, inspired by subspace-based signal enhancement100

approaches [27]–[31], a general and flexible framework for the

sound zone control referred to as the variable span trade-off

(VAST) filter has been proposed [32]–[34]. This framework

can be obtained by solving a convex optimization problem

with a constraint on the dark zone power, and this allows105

the user to control the trade-off between the acoustic contrast

and the signal distortion by adjusting two user parameters: the

subspace rank and a regularization parameter (or the Lagrange

multiplier). Moreover, BACC [20], the broadband PM, and

BACC-PM [26] can be obtained from VAST by tuning these110

two user parameters.

The VAST approach, however, has multiple drawbacks.

First, the influence of the regularization parameter on the

performance of the VAST filter has not been well-studied.

Moreover, the two user parameters are not physically meaning-115

ful, and the user has to tune them for different source materials

and acoustic environments. Second, the desired sound field

is not taken into account when constructing the subspace or

computing the GEVD, which causes high signal distortion

when the subspace dimension is small. Third, the VAST120

approach has high computational complexity due to the com-

putation of a GEVD of a high dimensional matrix. Recently,

a method that finds the optimal regularization parameter using

Newton’s method (similar to [35]) was proposed [36] with a

performance degradation of 4 − 5 dB in terms of acoustic125

contrast. This method exactly fulfills the constraint on the

dark zone power and reduces the computational complexity of

VAST using the conjugate gradient (CG) method. It should be

noted that although such a method demands less computational

complexity than that of VAST, this comes at the cost of the130

loss of controlling the orthogonality of the subspace when the

subspace rank is large.

In this paper, we first investigate the influence of the

regularization parameter on the performance of the VAST

filter. Moreover, we present a variety of strategies to compute135

the optimal values of the regularization parameter, which

fulfills different physically meaningful constraints, including

the signal distortion and the acoustic contrast. These strategies

will be more intuitive and direct than tuning the dark zone

power, although such tuning is implicitly related to the acous-140

tic contrast, and finally, the signal distortion. Furthermore, we

propose a sound zone control method as an extended work of

our previous work in [36] not only to take the desired sound

field into account in the subspace but also to deal with the

orthogonality issue.145

The paper is organized as follows: in Section II, the problem

Fig. 1. An example of a system setup for sound zones. The input sound signal
xn is fed into L loudspeakers after filtering by the control filters {qln}Ll=1.
The RIR from loudspeaker l to control point m in zone C is represented as

hm,l,C
n .

of the generation of sound zones is formulated via VAST,

which is a GEVD-based method that provides the mathe-

matical foundation of this paper. Followed by this, various

strategies to compute the optimal value of the regularization 150

parameter based on physically meaningful constraints are

presented in Section III. Furthermore, a sound zone control

method based on the conjugate gradient method with the trade-

off property as in VAST is proposed in Section IV. The

proposed method is evaluated and compared to the VAST 155

approach for different physically meaningful constraints in

Section V. Finally, the paper is concluded in Section VI.

II. GENERATION OF SOUND ZONES

In this section, we formulate the sound field generation

problem in the time-domain and review the GEVD-based 160

approaches for the generation of sound zones that form the

fundamental structure of the proposed sound zone control

algorithms.

A. Problem formulation
We consider the problem of generating a bright zone B and

a dark zone D in an enclosed space with measured/known

room impulse responses (RIRs) using L loudspeakers and L
finite impulse response (FIR) filters (a.k.a., control filters) with

the same length J , as shown in Fig. 1. The reproduced sound

pressure at the mth, 1 ≤ m ≤ MC control point in one of the

sound zones can be written as

ym,C
n =

L∑
l=1

xn ∗ qln ∗ hm,l,C
n , (1)

where the superscript (·)C,C ∈ {B, D} is the zone index, xn

denotes the input sound signal, qln denotes the control filter

for the lth loudspeaker, hm,l,C
n denotes the RIR of length K

from the lth loudspeaker to the mth control point in zone C,

∗ denotes the linear convolution operator, and n denotes the

sampling index. For simplicity, we have left out superscript

C when not absolutely necessary. We assume that both the

control filters and RIRs are linear and time-invariant and write

(1) in matrix form, then we have

ymn =
L∑

l=1

qT
l H

m,lxn = qTHmxn , (2)
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where

xn = [xn, xn−1, · · · , xn−(K+J−2)]
T ,

ql = [ql1, · · · , qlJ ] ,
Hm,l is a J × (K + J − 1) Toeplitz matrix with the

first row vector and the first column vector are defined as

[hm,l
1 , · · · , hm,l

K , 0, · · · , 0] and [hm,l
1 , 0, · · · , 0]T , respectively,

and

Hm = [(Hm,1)T , · · · , (Hm,L)T ]T ,

q = [qT
l , · · · ,qT

L]
T .

Define the desired sound signal, generated from a virtual

source, as dmn = xn ∗ gmn = (gm)Txn, where gm =
[gm1 , · · · , gmK , 0, · · · , 0]T denotes the RIR from the virtual

source to the mth control point. Note that, in reverberated

scenarios, the RIRs gm can be truncated to contain only the

direct path or early reflections. Then, all the algorithms for

the generation of sound zones also perform dereverberation.

The mean-squared-error (MSE) between the desired and re-

produced signal over N time samples and M control points

can be expressed as

J(q) =
1

NM

M∑
m=1

N∑
n=1

(dmn − ymn )2

=qTRq− 2qT r+ κ, (3)

where R = 1
M

∑M
m=1 H

mRx(H
m)T denotes the spatial

autocorrelation matrix, r = 1
M

∑M
m=1 H

mRxg
m denotes the

spatial cross-correlation vector, κ = 1
M

∑M
m=1(g

m)TRxg
m

is a constant term, and Rx = 1
N

∑N
n=1 xnx

T
n denotes the

input signal autocorrelation matrix. Note that the desired sound

signal for the dark zone is usually set to dm,D
n = 0, leading

to rD = 0 and κD = 0. We will use this setting throughout

this paper. The remaining term qTRDqT in (3) is commonly

referred to as the acoustic power in the dark zone. The rank

of R can be found as

rank(R) ≤ min{MN,M(K + J − 1), LJ} . (4)

The objective of generating sound zones is to find q to165

minimize the MSEs (3) for both the bright and dark zones,

simultaneously. It is also worth mentioning that the MSE cost

function (3) is input data xn-dependent. Most of the state-

of-the-art approaches are data-independent. However, data-

independent methods can also be obtained using (3) with a170

pre-defined Rx. For example, by assuming the input signal is

a white Gaussian noise with a unit variance, i.e., Rx = I, the

MSE cost function is only dependent on the RIRs. Moreover,

the perceptual weighting filters can also be integrated in Rx

and r to take the characteristics of the human auditory system175

into account, as proposed in [34].

Only considering the bright zone, the MSE cost function (3)

is minimized by setting its derivative w.r.t. q equal to zero,

leading to the well-known Wiener-Hopf solution

q̂opt = (RB)−1rB . (5)

When the virtual source is placed at one of the loudspeakers

(e.g., the lth loudspeaker), setting the RIRs from the virtual

source to all control points are identical to the RIRs from the

lth loudspeaker, the spatial cross-correlation vector becomes 180

rB = RBi(J−1)l+1, where i(J−1)l+1 denotes an all zeros vector

except that the ((J−1)l+1)th element is one. In this case, the

Wiener-Hopf solution is q̂opt = i(J−1)l+1 and J(q) = 0, that

is playing the lth loudspeaker and muting all the others. Only

considering the dark zone, since rD = 0, the Wiener-Hopf 185

solution is simply q̂opt = 0, that is muting all the loudspeakers.

To minimize the MSEs in (3) for both the bright and dark

zones, a combined cost function is typically used [37], i.e.,

q̂ = argmin
q

JB(q) + μJD(q) , (6)

where μ denotes the regularization/weighting parameter. For

the generation of sound zones, subspace-based approaches

have also been proposed. Next, we introduce these approaches

from a subspace perspective and present their pros and cons. 190

B. GEVD-based approach

Let KV be a V -dimensional subspace of RLJ ( V ≤ LJ)

with a basis {u1, · · · ,uV }, and form a rank-V matrix UV =
[u1, · · · ,uV ]. We assume that the control filter q is a vector in

KV , i.e., q = UV z and z ∈ RV , and consider the optimization

problem

ẑ = argmin
z

JB(UV z) + μJD(UVz) . (7)

Plugging (3) into (7), the optimal control filter can be written

as

q̂ = UV ẑ = UV (U
T
V R

BUV + μUT
V R

DUV )
−1UT

V r
B . (8)

The subspace KV can be chosen in multiple ways. One

example is to set V = LJ , μ = 1 and ULJ = ILJ , then (8)

reduces to the time-domain PM method (originally proposed in

the frequency-domain in [15]). Another example is to set V =
1 and the basis vector u1 to the eigenvector corresponding to

the largest eigenvalue for the generalized eigenvalue problem

RBui = λiR
Dui, 1 ≤ i ≤ LJ . In this case, the optimal filter

(8) reduces to the time-domain ACC method [20] (originally

proposed in the frequency-domain [14]). The motivation for

setting the control filter q to the eigenvector corresponding to

the largest eigenvalue is that the acoustic contrast ξac, defined

as the acoustic energy ratio between the bright zone and dark

zone, i.e.,

ξac =
qTRBq

qTRDq
, (9)

is maximized for this choice of q. Recently, motivated by

a framework called the variable span linear filters which was

proposed in speech enhancement [30], a variable span trade-off

filter for the generation of sound zones has been proposed [32].

The essence of this approach is to form the V -dimensional

subspace using V eigenvectors corresponding to the V largest

eigenvalues after computing a GEVD. One of the important

properties of the GEVD is that the rank-V matrix UV , formed

by the eigenvectors, can jointly diagonalize both the matrices

RB and RD, i.e.,

UT
V R

BUV = ΛV , UT
V R

DUV = IV , (10)
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where ΛV = diag(λ1, · · · , λV ) is a diagonal matrix whose

diagonal elements are eigenvalues sorted as λ1 ≥ λ2 ≥ · · · ≥
λV . Substituting (10) into (8), the optimal control filter can

be further written as

q̂ =UV (ΛV + μIV )
−1UT

V r
B

=

V∑
i=1

uT
i r

B

λi + μ
ui, (11)

Obviously, when V = 1, (11) reduces to the time-domain ACC

approach [20], and when V = LJ , (11) reduces to the time-

domain ACC-PM approach [26]. Moreover, when V = LJ
and μ = 0, (11) reduces to the Wiener-Hopf equation (5).195

To explain the trade-off property of (11), we introduce

another performance metric in addition to the acoustic contrast

ξac in (9), named the normalized signal distortion ξsd, defined

as

ξsd =
1

NMB

∑MB

m=1

∑N
n=1(d

m,B
n − ym,B

n )2

1
NMB

∑MB

m=1

∑N
n=1(d

m,B
n )2

(12)

=
qTRBq− 2qT rB + κB

κB
.

Substituting the optimal control filter (11) into (12), we can

obtain

ξo
sd =

κB −∑V
i=1

λi+2μ
(λi+μ)2 ci

κB
, (13)

where ci = |uT
i r

B|2. Clearly, for the optimal control filter

(11), the signal distortion metric ξsd is always within the range

[0, 1]. A simpler form of the acoustic contrast metric can also

be obtained by substituting (11) into (9), and we can obtain

ξo
ac =

∑V
i=1 λici/(λi + μ)2∑V
i=1 ci/(λi + μ)2

. (14)

As can be seen from (13) and (14), both the signal distortion

and the acoustic contrast are functions of the regularization

parameter μ and the subspace dimension V . For a fixed μ ≥ 0,

with increasing V , the signal distortion ξo
sd becomes smaller

but the acoustic contrast ξo
ac becomes lower, and vice versa.200

Therefore, the trade-off between ξo
sd and ξo

ac can be obtained

by adjusting the subspace dimension V . The largest acoustic

contrast λ1 can be obtained by setting V = 1 (i.e., the time-

domain ACC approach), but this also results in the highest

signal distortion in the bright zone. Using all the eigenvectors205

by setting V = LJ , the smallest signal distortion is obtained,

but the acoustic contrast is also the lowest. The advantage of

the VAST approach is that, based on the users’ preference,

the subspace dimension V can be adjusted to strike a balance

between high acoustic contrast and low signal distortion.210

However, μ and V are not physically meaningful and hard

to tune. In the next section, we consider different performance

metrics which can be set as constraints and present approaches

to find an optimal value which fulfils the corresponding

constraints.215

Fig. 2. An illustration for performance metrics in the scenario of multiple
bright zones.

III. THE OPTIMAL REGULARIZATION PARAMETER FOR

GENERATING SOUND ZONES

In this section, except for the acoustic contrast and signal

distortion metrics respectively defined in (9) and (12), we

introduce additional performance metrics, named dark zone 220

energy reduction (ER) and signal to interference ratio (SIR)1.

These metrics are depicted in Fig. 2. The influence of the

regularization parameter μ on these performance metrics is

analyzed and the solution space of μ for constraints on these

performance metrics are derived. Finally, we show that the 225

optimal regularization parameter can be obtained based on a

variety of constrained optimization problems.

The dark zone energy reduction (ER) is defined as the ratio

of energies between the unprocessed signal and the linearly

filtered signal in the dark zone, i.e.,

ξer =
1

NMD

∑MD

m=1

∑N
n=1 |qT

u H
mxn|2

1
NMD

∑MD

m=1

∑N
n=1 |ym,D

n |2

=
qT

u R
Dqu

qTRDq
, (15)

where qu = 1L⊗i1 and 1L denotes an all ones vector of length

L. Clearly, for the generation of sound zones, it is desired to

obtain a high ER. Note that the ER metric defined in (15)

is similar to the noise reduction factor in signal enhancement

defined in [39]. Substituting the optimal control filter (11) into

1In literature, for example, [38], the target-to-interferer ratio (TIR) is
defined as the acoustic potential energy ratio or the loudness ratio between the
reproduced and interfering sound fields in a given zone. Here, we specifically
define SIR as the power ratio between the two sound fields in a given zone
to avoid a confusion.
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(15), we obtain

ξo
er =

qT
u R

Dqu∑V
i=1 ci/(λi + μ)2

. (16)

The signal to interference ratio (SIR) is defined as the ratio

of energies between the linearly filtered target signal (e.g.,

source α) and the linearly filtered interference signal (e.g.,

source β) in the bright zone, i.e.,

ξsir(μα, μβ) =

1
NMB

α

∑MB
α

m=1

∑N
n=1 |ym,B

n,α |2/σ2
α

1
NMD

β

∑MD
β

m=1

∑N
n=1 |ym,D

n,β |2/σ2
β

=
σ2
βq

T
αR

B
αqα

σ2
αq

T
βR

D
βqβ

, (17)

where the subscripts (·)α and (·)β represent the target α and

interference β, respectively, and σ2
α = 1

N

∑N
n=1 x

2
n,α, σ2

β =
1
N

∑N
n=1 x

2
n,β . Substituting the optimal control filter (11) for

the target signal and interference signal into (17), we obtain

ξo
sir(μα, μβ) =

σ2
β

∑Vα

i=1 λi,αci,α/(λi,α + μα)
2

σ2
α

∑Vβ

i=1 ci,β/(λi,β + μβ)2
. (18)

The SIR is closely related to the AC. In fact, it can be easily

shown that

ξo
ac(μα)ξ

o
ac(μβ) = ξo

sir(μα, μβ)ξ
o
sir(μβ , μα) , (19)

where ξo
ac(μα) and ξo

ac(μβ) denotes the AC for source α and

β, respectively.

A. The regularization parameter for different constraints230

In this subsection, we propose different methods to obtain

the regularization parameter based on constraints on the phys-

ically meaningful metrics, i.e., AC, SD, ER, and SIR.

1) Constraint on the acoustic contrast (AC): A natural

choice of the constraint on the acoustic contrast is

ξo
ac ≥ gac , (20)

where gac is a constant, and it represents the lowest allowed

acoustic contrast. To solve (20), we first present the derivative

of ξo
ac w.r.t. μ (μ ≥ 0). When V = 1,

∂ξo
ac

∂μ = 0. When V ≥ 2,

we have

∂ξo
ac

∂μ
=2

V∑
i=1

V∑
j=1

cicj(λj − λi)

(λi + μ)3(λj + μ)2(
V∑
i=1

ci
(λi + μ)2

)2

=2

V−1∑
i=1

V∑
j=i+1

cicj(λi − λj)
2

(λi + μ)3(λj + μ)3(
V∑
i=1

ci
(λi + μ)2

)2 ,

≥0 . (21)

Therefore, for a fixed V , ξo
ac is a nondecreasing func-

tion for μ ≥ 0. The acoustic contrast ξo
ac is in the

range [limμ→0 ξ
o
ac, limμ→∞ ξo

ac). It can be readily shown

that limμ→0 ξ
o
ac = (

∑V
i=1 ci/λi)/(

∑V
i=1 ci/λ

2
i ). Based on

the L’Hôpital’s rule [40], for a fixed V , the upper bound

for the acoustic contrast can be written as limμ→∞ ξo
ac =

(
∑V

i=1 ciλi)/(
∑V

i=1 ci). In conclusion, for a fixed V , the

solution for (20) exists when gac ∈ [0, limμ→∞ ξo
ac). For

simplicity, we assume that, for V ≥ 2, not all the eigenvalues

are equal and at least two elements in {ci, 1 ≤ i ≤ V } are

not zeros. With this assumption, ξo
ac is a strictly increasing

function w.r.t. μ (μ ≥ 0). When V ≥ 2, the solution space of

μ for the acoustic contrast constraint (20) can be written as

μ ∈
{
[0,∞) gac < limμ→0 ξ

o
ac,

[ξo
ac
−1(gac),∞) gac ∈ [limμ→0 ξ

o
ac, limμ→∞ ξo

ac),

(22)

where ξo
ac
−1 denote the inverse function of ξo

ac defined in (14),

and ξo
ac
−1(gac) can be obtained using Newton’s method [41] 235

for the problem ξo
ac = gac. When V = 1 and gac ≤ λ1, the

solution space for μ is [0,∞).
2) Constraint on the signal distortion (SD): A natural

choice of the constraint on the signal distortion is

ξo
sd ≤ gsd , (23)

where gsd is a constant, and it denotes the maximum allowed

signal distortion. The derivative of ξsd w.r.t. μ can be written

as

∂ξo
sd

∂μ
=
2
∑V

i=1
μ

(λi+μ)3 ci

κB
. (24)

As can be seen from (24), for a fixed V , ξo
sd is a strictly

increasing function w.r.t. μ when μ > 0, and it has a

stationary point when μ = 0. Therefore, the smallest and

highest signal distortion can be obtained when μ = 0 and

μ → ∞, respectively. The signal distortion ξo
sd is in the

range [limμ→0 ξ
o
sd, 1), where limμ→0 ξ

o
sd can be computed by

substituting μ = 0 into (13). The solution space of μ for the

signal distortion constraint (23) can be written as

μ ∈ [0, ξo
sd
−1(gsd)] for gsd ∈ [ lim

μ→0
ξo

sd, 1) , (25)

where ξo
ac
−1(gsd) can be obtained using Newton’s method for

the problem ξo
sd = gsd.

3) Constraint on the dark zone energy reduction (ER):
A natural choice of the constraint on the dark zone energy

reduction is

ξo
er ≥ ger . (26)

where ger is a constant, and it denotes the minimum allowed

dark zone energy reduction. For a fixed V , it can be easily

verified that ξo
er is a strictly increasing function of μ when

μ ≥ 0. The dark zone energy reduction ξo
er is in the range

[limμ→0 ξ
o
er,∞), where limμ→0 ξ

o
er can be computed by sub-

stituting μ = 0 into (16). For a fixed V , the solution for (26)

exists when ger ∈ [0,∞). The solution space of μ can be

written as

μ ∈
{
[0,∞) ger < limμ→0 ξ

o
er,

[ξo
ac
−1(ger),∞) ger ≥ limμ→0 ξ

o
er,

(27)



Pre
pr

in
t

6

where ξo
er
−1(ger) can be obtained using Newton’s method for240

the problem ξo
er = ger.

4) Constraint on the signal to interference ratio (SIR):
The constraints presented subsections in III-A1, III-A2 and

III-A3 can be seen as source-independent approaches, since

the optimal regularization parameters μα and μβ for different

sources (e.g., sources α and β) are obtained independently

given the RIRs. Here, we present an approach to obtain μα

and μβ simultaneously by applying constraints on the SIRs for

the considered two sources. The constraints can be formulated

as follows:

ξo
sir(μα, μβ) ≥ gα,sir, (28)

ξo
sir(μβ , μα) ≥ gβ,sir,

where gα,sir and gβ,sir are constants and they denote the

minimum allowed SIRs for source α and β, respectively. The

solution space is shown in (52) (see details in Appendix A).

B. Optimization criterion and the optimal regularization pa-245

rameter

In this subsection, we present some optimization criteria

for the generation of sound zones and derive the optimal

regularization parameter.

1) Minimizing SD with a constraint on ER (SD-ER): The

optimization criterion can be written as

argmin
μ

ξo
sd, s.t., ξo

er ≥ ger. (29)

Since ξo
sd is a nondecreasing function of μ, using (27), the

solution for (29) can be written as

μ̂ =

{
0 ger < limμ→0 ξ

o
er,

ξo
ac
−1(ger) ger ≥ limμ→0 ξ

o
er.

(30)

2) Maximizing ER with a constraint on SD (ER-SD): The

optimization criterion can be written as

argmax
μ

ξo
er, s.t., ξo

sd ≤ gsd. (31)

Since ξo
er is an increasing function of μ, using (25), the solution

for (31) can be written as

μ̂ = ξo
sd
−1(gsd) for gsd ∈ [ lim

μ→0
ξo

sd, 1), (32)

3) Minimizing SD with a constraint on AC (SD-AC): The

optimization criterion can be written as

argmin
μ

ξo
sd, s.t., ξo

ac ≥ gac. (33)

Since ξo
sd is a nondecreasing function of μ, using (22), the

solution for (33) can be written as

μ̂ =

{
0 gac < limμ→0 ξ

o
ac,

ξo
ac
−1(gac) gac ∈ [limμ→0 ξ

o
ac, limμ→∞ ξo

ac),
(34)

Algorithm 1 The GEVD algorithm for the generation of sound

zones
1: Perform the GEVD for the generalized eigenvalue problem

RBui = λiR
Dui.

2: Compute ci = |uT
i r

B|2, 1 ≤ i ≤ LJ
3: Select a subspace dimension V based on the performance

bounds presented in Section III-A.

4: Obtain the optimal regularization parameter μ based on

the optimization criteria presented in Section III-B.

5: Obtain the reduced-rank filter using (11).

4) Minimizing SD with constraints on SIR (SD-SIR): The

optimization criterion can be written as

arg min
μα,μβ

ξo
sd(μα) + ξo

sd(μβ), (35)

s.t., ξo
sir(μα, μβ) ≥ gα,tir,

ξo
sir(μβ , μα) ≥ gβ,tir,

Since ξo
sd(μα) and ξo

sd(μβ) are nondecreasing functions w.r.t. 250

α and β, respectively, using (52), the solution for (33) can be

obtained as follows:

1. When k2(μ̂
start
α ) ≥ k(μ̂start

α ), (μ̂α, μ̂β) = (μ̂start
α , k(μ̂start

α ))
is the solution, where k(·), k2(·), μ̂start

α are defined in (47),

(51) and (50), respectively. 255

2. When k2(μ̂
start
α ) < k(μ̂start

α ) and k2(∞) ≥ k(∞), the

solution of (33) can be obtained by solving ξo
sir(μα, μβ) =

gα,tir and ξo
sir(μβ , μα) = gβ,tir, which can be obtained using

Newton’s method.

3. When k2(μ̂
start
α ) < k(μ̂start

α ) and k2(∞) < k(∞), no 260

solution exists for (33).

The LJ-dimensional GEVD algorithm for the generation of

sound zones is summarized in Algorithm 1.

IV. THE CONJUGATE GRADIENT METHOD FOR

GENERATING SOUND ZONES 265

As noted before, the GEVD-based approach for the gen-

eration of sound zones suffers from a high signal distortion

when the subspace dimension V is small. Moreover, when

LJ is large, it is computationally complex to solve the LJ-

dimensional generalized eigenvalue problem. To mitigate these 270

problems, a conjugate gradient (CG) method for the generation

of sound zones has recently been proposed in [36], which is

referred to as RR-CG. In RR-CG, the subspace is constructed

by using the search directions in the CG method for solving

RBq = rB. Clearly, compared to the GEVD-based method, 275

rB that contains the desired signal information is exploited

when constructing the subspace. Unfortunately, a degradation

of 4 − 5 dB in performance in terms of AC or SD has

been reported due to the loss of orthogonality of the search

directions in the CG method [42] when V is large. Moreover, 280

the RR-CG method does not have a trade-off property in terms

of AC and SD by adjusting the subspace dimension, as in the

GEVD-based method.

In this section, we propose an improved approach for the

generation of sound zones based on the CG method. Unlike 285

the GEVD-based method and RR-CG, the subspace in the

proposed method is constructed with the search directions
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in the CG method by utilizing all the available information

contained in RB, RD, and rB. Moreover, to deal with the loss

of orthogonality problem in the CG method, a V1 < LJ-290

dimensional GEVD (V1 is the number of iterations of the CG

method) is used to rotate the subspace and find the generalized

eigenvalues. To have a trade-off property like the GEVD-

based method, a V -dimensional subspace (V ≤ V1) is formed

by using the V eigenvectors corresponding to the V largest295

eigenvalues. Furthermore, the approaches for computing the

optimal regularization parameter, described in Section III, can

be easily integrated into the proposed method.

A. Reduced-rank filtering and the CG method

Definition 1. For a square matrix R and a nonzero vector

r, the subspace defined by

KV (R, r) = span{r,Rr,R2r, · · · ,RV−1r} , (36)

is referred to as a V -dimensional Krylov subspace associated300

with the pair (R, r).
Consider solving the following MSE minimization problem:

q̂ = argmin
q

qTRq− 2qT r+ κ (37)

on a V -dimensional subspace KV associated with a basis

matrix UV . The V -dimensional reduced-rank Wiener filter

with the basis matrix UV for solving (37) can be written as

q̂ = UV (U
T
V RUV )

−1UT
V r . (38)

The Krylov subspace KV (R, r) is commonly used to build

the basis matrix, i.e., UV = [r,Rr,R2r, · · · ,RV−1r]. The

motivations for this particular choice of the subspace can

be found in [43]. A variety of approaches was proposed305

to obtain (38) using the Krylov subspace (36), such as the

powers of R receiver [44], the multi-stage Wiener filter [45],

and the conjugate gradient approach. Mathematically, these

approaches are equivalent and have the same results. The

computational complexity and the robustness against round-310

off errors are major concerns among these algorithms. In this

paper, we focus on the CG algorithm because the search

directions form the Krylov subspace KV (R, r), and they are

mutually R-orthogonal, which will be explained later.

The CG algorithm iteratively minimizes the quadratic cost

function (37) along with a set of R-orthogonal search direc-

tions. The CG algorithm and its computational complexity for

each step is shown in Algorithm 2 where dp and rp denote

the search direction and the residual vector at the pth iteration,

respectively. One important property of the CG algorithm

is that the search directions dn, n ≥ 1 are R-orthogonal

mathematically, i.e.,

DT
p RDp = ΛCG

p , 1 ≤ p ≤ P, (39)

where ΛCG
p = diag{dT

1 Rd1, · · · ,dT
p Rdp}, P is the total315

number of iterations, and Dp = [d1, · · · ,dp].

Algorithm 2 The conjugate gradient (CG) algorithm

1: Initiate q1 = 0,d1 = r1 = r, g1 = rT1 r1
2: for p = 1, 2, · · · , P do
3: cp = Rdp O(P 2)
4: αp =

gp
dT

p cp
O(P )

5: qp+1 = qp + αpdp O(P )
6: rp+1 = rp − αpcp O(P )
7: gp+1 = rTp+1rp+1 O(P )
8: βp+1 =

gp+1

gp
O(1)

9: dp+1 = rp+1 + βp+1dp O(P )
10: end for

B. Proposed CG algorithm for generating sound zones

We consider building the Krylov subspace KV1(R
B +

μCGRD, rB) using the search directions in the CG algorithm

(with V1−1 iterations) for solving the following optimization

problem:

argmin
q

JB(q) + μCGJD(q) (40)

where μCG is a pre-defined constant value. The basis matrix

UV1 can be obtained by collecting the search directions, i.e.,

UV1 = DV1 . Substituting q = UV1z into the acoustic contrast

metric (9), we can obtain

ξac =
zTUT

V1
RBUV1

z

zTUT
V1
RDUV1

z
. (41)

Similar to the VAST approach, we form a V1-dimensional

subspace MV1
that can jointly diagonalize both of the matrices

UT
V1
RBUV1 and UT

V1
RDUV1 using V1 eigenvectors corre-

sponding to the V1 largest eigenvalues, i.e.,

MT
V1
UT

V1
RBUV1MV1 = ΛV1 , (42a)

MT
V1
UT

V1
RDUV1MV1 = IV1 , (42b)

where ΛV1
= diag(λ1, · · · , λV1

) denotes a diagonal matrix

whose diagonal elements are the eigenvalues sorted as λ1 ≥
λ2 ≥ · · · ≥ λV1

. Using only the first V columns of MV and

letting z = MV g, the optimization problem (7) can be written

as

ĝ = argmin
g

JB(UV1
MV g) + μJD(UV1

MV g) . (43)

Using (42) and (8), the optimal control filter can be further

written as

q̂ =UV1

V∑
i=1

mT
i UV1

rB

λi + μ
mi, (44)

where mi denotes the ith column of MV . Defining ci =
|mT

i UV1r
B|2 and substituting (44) into AC, SD, ER and

SIR metrics defined in (9), (12), (15) and (17), respectively, 320

it can be shown that these metrics can also be re-written

in the same formulas as (14), (13), (16) and (18), respec-

tively. Therefore, the analysis of influence of μ on these

performance metrics presented in Section III can also be

applied for the proposed approximated algorithm. Note that 325

when μCG = 0, since the directions in the CG algorithm

are RB–orthogonal, one V dimensional EVD can be used to
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Algorithm 3 The CG algorithm for the generation of sound

zones

1: Initiate μCG, V1.

2: Run V1−1 iterations of the CG algorithm for solving (40).

3: Build the basis matrix UV1
based on the search directions.

4: Perform the GEVD for the generalized eigenvalue problem

UT
V1
RBUV1mi = λi(U

T
V1
RDUV1)mi.

5: Compute ci = |mT
i UV1r

B|2, 1 ≤ i ≤ V1

6: Select a subspace dimension V based on the performance

bounds presented in Section III-A.

7: Obtain the optimal regularization parameter μ based on

the optimization criterions presented in Section III-B.

8: Obtain the reduced-rank filter using (44).

obtain MV . In this case, the generalized eigenvalue problem

UT
V R

BUV mi = λi(U
T
V R

DUV )mi reduces to 1/λimi =
(ΛCG

V )−1(UT
V R

DUV )mi. The proposed algorithm using CG330

for the generation of sound zones is summarized in Algo-

rithm 3.

V. SIMULATIONS

In this section, the performance of AC, SD, ER, and

SIR accomplished by the proposed algorithms is evaluated335

under a specific sound zone setup with a circular array of

loudspeakers. We first describe the experimental setup, data,

different algorithms, and their acronyms in subsection V-A.

The simulation results are shown in subsections V-B and V-C2.

A. Experimental setup, data, algorithms and acronyms340

Experimental setup: We consider a system that consists of a

circular array with 16 evenly distributed loudspeakers with a

radius of 2 m, two zones, and two virtual sources in a room

of dimension 6.38 m × 5.4 m × 4.05 m, as shown in Fig. 3.

It is assumed that zones A/B are the bright/dark zones for the345

source α and that zones B/A are the bright/dark zones for the

source β, respectively. The number of control points (5 cm

distance between the control points) used in each zone is set

to M = 25. We assume that all the loudspeakers, control

points, and virtual sources are located in the same plane at the350

height of 1.5 m. The sampling frequency is set to 16 kHz. The

RIRs are generated using the RIR Generator toolbox [46],

which is based on the image method [47]. The reverberation

time is set to RT60 = 200 ms (i.e., K = 3200). The desired

signal for the source α/β is generated by convolving the355

sound signal with the free-field RIRs, generated with the

RIR Generator toolbox with RT60 = 0 s, from the virtual

source α/β to the control points in zone A/B. The length

of the control filters is set to J = 240 (15 ms). Therefore,

the subspace dimension varies between 1 ≤ V ≤ LJ = 3840.360

Data: In the first and second experiments, two six-

seconds long speech signals from the movie “Zootopia”

in two different languages, i.e., English and Danish, are

2The MATLAB code and all the sound signals are available at https://
tinyurl.com/rszern5

0 1 2 3 4 5
0

1

2

3

4

5

6

x [m]
y
[m

]

Loudspeakers Zone A Zone B

Virtual source α Virtual source β

Fig. 3. An example of the system setup for sound zones with 16 loudspeakers,
25 control points in each zone and two virtual sources.

used as the sources α and β, respectively. In the third 365

and fourth experiments, two ten-seconds long speech signal

and music signal are used as the sources α and β, respectively.

Algorithms and acronyms: In general, the performance

of ER, SD, AC, and SIR performed by the proposed 370

CG-based algorithms is compared to the traditional LJ-

dimensional GEVD-based subspace construction method, i.e.,

VAST-GEVD [32] with a fixed μ but different choices of

subspace dimension V . The proposed CG-based subspace

construction algorithm with a fixed regularization parameter is 375

referred to as VAST-CG. The SD-ER-GEVD and SD-ER-CG

denote the GEVD-based and CG-based subspace construction

algorithms using the criterion of minimizing the signal

distortion with a constraint on energy reduction presented in

subsection III-B1. Similarly, ER-SD-GEVD and ER-SD-CG 380

denote the GEVD-based and CG-based subspace construction

algorithms using the criterion of minimizing the energy

reduction with a constraint on signal distortion presented in

subsection III-B2. SD-AC-GEVD and SD-AC-CG denote the

GEVD-based and CG-based subspace construction algorithms 385

using the criterion of minimizing the signal distortion with

a constraint on the acoustic contrast presented in subsection

III-B3. SD-SIR-GEVD and SD-SIR-CG denote the GEVD-

based and CG-based subspace construction algorithms using

the criterion of minimizing the signal distortion with a 390

constraints on the signal to interference ratio presented in

subsection III-B4.

B. Results on the “speech and speech” example

In this subsection, we evaluate the performance of the

GEVD and CG-based algorithms in terms of ER, SD, and 395

AC with a fixed regularization parameter and optimal regu-
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Fig. 4. The performance of SD and AC in different subspace dimensions
using a fixed regularization parameter (solid) and using the SD-ER criterion
(dashed) in Section III-B1. The GEVD-based and CG-based methods are in
red and in blue, respectively.

larization parameters. Two speech signals are used, and the

signal powers for them are set to be identical.

1) SD-ER criterion: In this section, we consider the opti-

mization problem explained in Section III-B1; therefore, the400

performance of the VAST-GEVD, VAST-CG, SD-ER-GEVD,

and SD-ER-CG in terms of SD followed by AC is tested for

different choices of the subspace dimensions. The number of

iterations for the CG-based methods is set to V1 = LJ/2
(i.e., 1920), and so is the number of subspace dimension for405

the GEVD-based methods. The constraint ger is set to 40 dB

for SD-ER-CG and SD-ER-GEVD. A fixed regularization

parameter is used for VAST-GEVD and VAST-CG, i.e., μ = 1.

The SD and AC of the GEVD-based and CG-based methods

for source α with a fixed regularization parameter and an410

optimal regularization parameter are shown in Fig. 4. As can

be seen, the GEVD-based methods, i.e., VAST-GEVD and SD-

ER-GEVD, have a larger ER and AC but a lower SD than

the CG-based methods, i.e., VAST-CG and SD-ER-CG, when

V ≤ LJ/2. Moreover, for SD-ER-GEVD, when V ≥ 1440,415

the dark zone energy reduction ξer is about 40 dB. In contrast

to this observation, for the CG-based method, a smaller V is

required, i.e., V ≥ 160, to reach ξer ≈ 40 dB. Furthermore,

the SD from both of the GEVD-based and CG-based methods

is around −13 dB when V = 1440 and V = 160, respectively.420

By using the information of the spatial cross-correlation vector

r, the CG-based methods can obtain a low signal distortion

with a smaller subspace dimension V compared to the GEVD-

based methods.

2) ER-SD criterion: In the second experiment, we consider425

the optimization problem explained in Section III-B2; thus, the

160 755 1,000 1,900

40

45

50

55

Subspace dimension V

E
R

[d
B
]

VAST-GEVD (μ = 1) ER-SD-GEVD

VAST-CG (μ = 1) ER-SD-CG

160 755 1,000 1,900
16

21.5
23

30

Subspace dimension V
A
C

[d
B
]

Fig. 5. The performance of ER and AC in different subspace dimensions
using a fixed regularization parameter (solid) and using the ER-SD criterion
(dashed) in Section III-B2. The GEVD-based and CG-based methods are in
red and in blue, respectively.

performance of the VAST-GEVD, VAST-CG, ER-SD-GEVD

and ER-SD-CG in terms of ER and AC is tested for different

choices of the subspace dimensions. The constraint gsd is set

to −12 dB for the SD-ER-CG and SD-ER-GEVD. All the 430

other parameters are set to the same as the first experiment.

ER and AC of the GEVD-based and CG-based methods with

different regularization parameters for source α are shown in

Fig. 5. As can be seen, for the SD-ER-GEVD, the signal

distortion converges to the target value ξsd ≈ −12 dB when 435

V ≥ 755; therefore, ER and AC increase. When V ≥ 1000,

ER and AC of the GEVD method with the optimal μ are

around 2 dB higher than those of the CG based method with

the optimal μ. Both ER and SD decrease with increasing V
regardless of the methods if a fixed μ is used. Because the CG- 440

based methods take r into account, they converge to the target

optimization criterion faster than the GEVD-based methods.

In this experiment, we can observe such a convergence from

the CG-based and GEVD-based methods for V ≈ 160 and

V ≈ 755, respectively. A similar observation can be drawn 445

for the case of source β.

C. Results on the “speech and music” example

In this subsection, we evaluate the performance of the

GEVD-based and CG-based algorithms with optimal regular-

ization parameters using speech and music signals. The signal 450

powers for the speech and music signals are set to be the same.

Except for the audio examples, all the other parameters and

the system setup are the same as the previous section.

1) SD-AC criterion: In the third experiment, we consider

the optimization problem described in Section III-B3; hence, 455
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Fig. 6. SD, AC and SIR performance in different subspace dimensions using SD-AC criterion in Section III-B3. The upper and lower rows are the performance
of each metric from zone A and zone B, respectively.
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Fig. 7. The lower and upper bounds of AC in different subspace dimensions
using SD-AC criterion in Section III-B3 for two different approaches.

the performance of the VAST-GEVD, VAST-CG, SD-AC-

GEVD and SD-AC-CG in terms of SD, AC, and SIR is tested

for different choices of the subspace dimensions. The upper

and lower rows in Fig. 6 represent SD, AC, and SIR for source

α and source β, respectively. The constraint on AC gac is set460

to 20 dB for the SD-AC-CG and SD-AC-GEVD. As can be

seen, for the SD-AC-GEVD, when V ≥ 985 for source α and

V ≥ 635 for source β, the acoustic contrast is ξac ≈ 20 dB. In

contrast to the CG-based method, for the SD-AC-CG, when

V ≥ 130 for source α and V ≥ 110 for source β, ξac ≈ 20 dB. 465

For the speech source α, the SD, AC and SIR of the SD-AC-

GEVD is close to the SD-AC-CG when V = 1900. For the

music source β, the SD of the SD-AC-GEVD is around 1 dB

lower than the SD-AC-CG when V = 1900. It is also shown

that although the signal powers for the two sources are set to 470

be the same and the AC for both sources are equal, there is a

significant discrepancy between the SIRs of the two sources.

The SIR is around 24 dB in zone A (the bright zone for source

α), whereas the SIR in zone B (the bright zone for source β)

is around 17 dB when V = 1900. 475

Besides, as shown in Fig. 7, we can observe the lower

and upper bounds of AC for the GEVD-based and CG-

based methods. AC-LB-GEVD, AC-UB-GEVD and AC-LB-

CG, AC-UB-CG denote the lower and upper bounds of AC

using the GEVD-based and CG-based methods, respectively. 480

The upper bounds from both of the methods barely change

with respect to the subspace dimension V . Also, the lower

bound of AC for the CG-based method is constant when V is

larger than a certain value (e.g., 760) in the upper panel. This

is because the rank of UV is 760. The similar trend can also 485

be seen in the lower panel when V is approximately 800.

2) SD-SIR criterion: In the fourth experiment, we consider

the optimization problem described in Section III-B4. It is

worth noting that except for the optimization problem and

the corresponding constraint, all the other parameters and 490

the system setup are identical to the third experiment. The

performance of the VAST-GEVD, VAST-CG, SD-SIR-GEVD

and SD-SIR-CG in terms of SD, AC, and SIR is tested for
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Fig. 8. SD, AC and SIR performance in different subspace dimensions using SD-SIR criterion in Section III-B4.

different choices of the subspace dimensions. The upper and

lower rows in Fig. 8 represent SD, AC, and SIR for source495

α and source β, respectively. The constraint on SIR gsir is

set to 20 dB for the SD-SIR-CG and SD-SIR-GEVD. As can

be seen, for the GEVD-based method, SIR ξsir converges to

20 dB when V ≥ 1200 and V ≥ 300 for sources α and β,

respectively. In contrast, for the CG-based method, the SIR500

ξsir converges to 20 dB for sources α and β when V ≥ 200
and V ≥ 70, respectively. For source α, The SD performed

by the GEVD-based method is less than 2 dB lower than the

CG-based method when V ≥ 1200.

VI. CONCLUSIONS505

In this paper, subspace-based methods for sound zone

control are proposed. Since it has proven in [36] that the

CG-based sound zone control method is less computationally

complex compared to the GEVD-based method in [32], but at

the cost of performance degradation and loss of orthogonality510

of the basis functions, a modified version is proposed to persist

the orthogonality of the basis functions as in the GEVD-

based method and to introduce a fast convergence to the target

response compared to the GEVD-based method.

The physically meaningful metrics, i.e., the acoustic contrast515

(AC), the signal distortion in the bright zone (SD), the energy

reduction in the dark zone (ER), and the signal to interference

ratio (SIR), are used as the constraints for reformulating the

problem of generating sound zones. To this end, the control

filters that accurately fulfill the constraints are successfully520

obtained. These diverse constraints are integrated into the two

methods that based on GEVD and CG.

The performance of the proposed algorithms is evaluated

on a circular array of loudspeakers for two bright zones

scenario. Different constraints, which are summarized above,525

are considered for different audio data sets. It is shown that

the CG-based method converges faster to the target constraints

than the GEVD-based method because it takes the desired

sound field into account when it seeks the basis functions.

APPENDIX 530

A. The solution space for the SIR constraints

Using the SIR definition (18), it can be easily shown that, for

any μα ≥ 0, the SIR is a strictly increasing function of μβ for

μβ ≥ 0 where the SIR is in the range of [ξo
sir(μα, 0),∞]. For

the convenience of derivation, it is able to write the nominator

and denominator in (18) as

f(μα) = σ2
β

Vα∑
i=1

λi,αci,α/(λi,α + μα)
2, (45)

t(μβ) = σ2
α

Vβ∑
i=1

ci,β/(λi,β + μβ)
2.

The solution space for the first constraint in (26) can be

expressed as

{(μ̂α, μ̂β)|μ̂α ≥ 0, k(μ̂α) ≤ μ̂β ≤ ∞}, (46)

where the boundary function is defined as

k(μ̂α) =

{
0 f(μ̂α) > gα,sirt(0),

t−1(f(μ̂α)/gα,sir) f(μ̂α) ≤ gα,sirt(0)
. (47)

By noting that f(μα) is a strictly decreasing function w.r.t.

μα and t(μβ) is a strictly decreasing function w.r.t. μβ , it

can be easily shown that the boundary function k(μ̂α) is a

nondecreasing function w.r.t. μ̂α for μ̂α ≥ 0. Next, we present 535
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the solution space for the second constraint in (26). Define the

nominator and denominator of ξo
sir(μβ , μα) as

f2(μβ) = σ2
α

Vβ∑
i=1

λi,βci,β/(λi,β + μβ)
2 ,

t2(μα) = σ2
β

Vα∑
i=1

ci,α/(λi,α + μα)
2 .

(48)

It can be easily shown that, for any μα ≥ 0, ξo
sir(μβ , μα) is

a decreasing function w.r.t. μβ , and its value is in the range

of (0, ξo
sir(0, μα)]. Therefore, the solution space for the second

constraint in (26) can be expressed as

{(μ̂α, μ̂β)|μ̂α ≥ μ̂start
α , 0 ≤ μ̂β ≤ k2(μ̂α)}, (49)

where

μ̂start
α =

{
0 ξo

sir(0, 0) > gβ,sir,

t−1
2 (f2(0)/gβ,sir) ξo

sir(0, 0) ≤ gβ,sir,
(50)

and the boundary function is defined as

k2(μ̂α) = f−1
2 (t2(μ̂α)gβ,sir). (51)

It can be easily shown that the boundary function k2(μ̂α) is

a strictly increasing function w.r.t. μ̂α. The solution space for

(26) is the intersection area between the sets defined in (46)

and (49), i.e.,

{(μ̂α, μ̂β)|μ̂α ≥ μ̂start
α , k(μ̂α) ≤ μ̂β ≤ k2(μ̂α)}. (52)
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