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Given a fixed product system model, with the current computational framework of Life

Cycle Assessment (LCA) the potential environmental impacts associated to demanding

one thousand units of a product will be one thousand times larger than what results

from demanding 1 unit only – a linear relationship. However, due to economies of

scale, industrial synergies, efficiency gains, and system design, activities at different

scales will perform differently in terms of life cycle impact – in a non-linear way. This

study addresses the issue of using the linear framework of LCA to study scalable and

emerging technologies, by looking at different examples where technology scale up

reflects non-linearly on the impact of a product. First, a computer simulation applied to

an entire database is used to quantitatively estimate the effect of assuming activities in a

product system are subject to improvements in efficiency. This provides a theoretical but

indicative idea of how much uncertainty can be introduced by non-linear relationships

between input values and results at the database level. Then the non-linear relations

between the environmental burden per tkm of transport on one end, and the cargo mass

and range autonomy on the other end is highlighted using a parametrized LCA model

for heavy goods vehicles combined with learning scenarios that reflect different load

factors and improvement in battery technology. Finally, a last example explores the case

of activities related to the mining of the cryptocurrency Bitcoin, an emerging technology,

and how the impact of scaling the Bitcoin mining production is affected non-linearly by

factors such as increase in mining efficiency and geographical distribution of miners. The

paper concludes by discussing the relation between non-linearity and uncertainty and by

providing recommendations for accounting for non-linearity in prospective LCA studies.

Keywords: uncertainty analysis, technological learning, efficiency, bitcoin, transportation

INTRODUCTION

The matrix-based computational structure of Life Cycle Assessment (LCA) is well-described in
literature (Heijungs and Suh, 2002) and this framework is often presented as linear, even though
the term linear can be interpreted in several ways (Heijungs, 2020). One interpretation is that,
mathematically, product systems scale up linearly. This interpretation is based on the fact that,
given a fixed product system model, the potential environmental impacts associated to demanding
one thousand units of a product are one thousand times larger than results from demanding 1
unit only. The key assumption in such a linear LCA framework is that each activity in the product
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systemwill maintain a constant ratio between inputs and outputs,
no matter how much product is demanded.

Yet real-world systems are more complex than this and do
not follow such a linear trend. Due to economies of scale,
industrial synergies, efficiency gains, and system design, activities
at different scales and technological maturity will perform
differently and display different output to input ratios (Caduff
et al., 2011). Their life cycle impact will also be different (Caduff
et al., 2012, 2014).

In these cases, the impact per unit of product output will be
different between a small-scale system, technology, or facility S
and a larger one S′ that is upscaled and can potentially produce
a quantity of product that is – for example – thousands of
times higher. While the functional unit of the LCA remains
the same, as it is always the impact per 1 unit of product
that is calculated, the system used to determine the impact
associated with this functional unit is different. Mathematically,
the LCA matrix algebra remains unchanged, and even in
the new upscaled system, S′, calculating the impact of 1,000
units will return a result that is 1,000 times higher than the
impact of producing 1 unit. However, the impact of 1 unit
produced with this upscaled system S’ is not necessarily the
same as the impact of producing 1 unit with the original small
scale system S. Thus, while non-linearity with respect to the
production output is an intrinsic property of the system under
analysis, linearity with respect to the functional unit is an
intrinsic property of the LCA model used to study this system.
This is precisely the mismatch that the present study intends
to address.

This mismatch between model and reality becomes critical
and potentially problematic in the study of technology upscaling,
and particularly in the case of emerging technologies. For
example, upscaling effects for green technologies are substantial
and well-documented (Grubb, 2004; Piccinno et al., 2016; Nemet
et al., 2018) and can lead to increases in efficiency and reduction
in the impact per output ratio for a specific activity. It is
notably the case with renewable energy systems, where the initial
environmental burden of manufacture spreads as the load factor
of the plant increases (Padey et al., 2013; Miotti et al., 2017).

This effect is then particularly evident for emerging
technologies in which data are available only on a pilot
scale, and it is realistic to expect substantial improvements
when reaching industrial scale. With emerging technologies,
a massive increase in production volumes lead to reduction
in the environmental burden thanks to economies of scale
and technological learning (Piccinno et al., 2016; Sacchi et al.,
2019). Miotti et al. (2017) illustrated such a case, where the
environmental impact of hydrogen fuel cell stacks is reduced
by two thirds as the production volume increases from 200
units/year in 2014 to 500,000 units in 2030.

It is worth noting that the upscaling challenge and
potential gain is highly technology-specific. For example,
the upscaling of emerging technologies for the treatment
of biomass are challenged by the need to work continually
and keep controlled physical-chemical conditions but
can benefit from synergies such as for example heat
recovery aspects that are not appreciable at pilot scale.

Another example is the mass-production of complex new
technologies such as fuel cells that depend heavily on
automatization and robotics and are substantially different
from the manual work of manufacturing these technologies in
small quantities.

Thus, modeling the upscaling of emerging technologies
goes beyond the sole use of upscaling relationships. In their
recent review Tsoy et al. (2020) list several data estimation
methods relevant in this context such as process simulation,
manual calculations, molecular structure models (only for
chemical technologies), and use of proxies. According to these
authors, a framework to create LCAs of new technologies
at scale includes collaborating with technology experts
to define hypothetical upscaled scenarios. This mirrors
previous findings of Arvidsson et al. (2017) who also
recommend modeling various scenarios using literature,
expert interviews, simulation software, and a combination of
these methods.

While current research on the LCA of emerging technologies
(Valsasina et al., 2017; Bergerson et al., 2019; Blanco et al., 2020)
deals indirectly with non-linear effects, the non-linear relations
between technological upscaling and life cycle assessment has not
been explicitly covered in the literature.

As already pointed out by Heijungs (2020) the impact of a
product system on a small interval looks like a straight line,
but on a larger interval it becomes non-linear. What remains
unaddressed is on a practical level why, where, and how much
this is a problem.

In this context, the main objective of this article is to
present and discuss different cases of LCAs of product systems
that do not scale up linearly. The study intends to show the
diversity of potentially non-linear cases to derive more general
considerations on how extensively non-linearity can become a
problem in the LCA of scalable and emerging technologies as well
as to propose possible ways to address this problem.

METHODS

This work is based on the analysis of different case studies.
The cases are illustrative and were selected because they
allow the problem of non-linearity in scalable and emerging
technologies to be addressed specifically. The cases were
also chosen in order to cover different levels of complexity
and various types of uncertainty. Finally, the cases were
chosen pragmatically based on data directly available from
previous and current research work of the authors on scalable
and emerging technologies. All cases were analyzed using
the ecoinvent database (Wernet et al., 2016) with different
versions and system models depending on the case, cf.
Supplementary Table 3. The impact of the different systems
under analysis was characterized using the midpoint impact
indicator Global Warming measured in kg of Carbon Dioxide
equivalents (kg CO2-eq) using the IPCC 2013 method with
a time horizon of 100 years (IPCC, 2013). The analysis was
performed using the open source software Brightway2 (Mutel,
2017) unless specifically indicated. Code and data used for

Frontiers in Sustainability | www.frontiersin.org 2 January 2021 | Volume 1 | Article 611593

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Pizzol et al. Non-linear LCA of Emerging Technologies

the analysis can be openly accessed at an online repository
(Pizzol et al., 2020).

Estimating the Effect of Improvements in
Technology Efficiency at Database Scale
The first case explores how efficiency gains that are theoretically
achievable via technology upscaling result in changes in impacts,
by taking a whole life cycle inventory database as unit of analysis.
The hypothesis is that data used to build a database bottom-up
via industry surveys — like in the case of ecoinvent (Wernet
et al., 2016)—may not always reflect technologies at their highest
readiness level or technological maturity. In other words, the
datasets representing some activities might have been collected
from a plant or facility that does not operate at large industrial
scale and is therefore far from achieving its potential maximum
efficiency. The data supplier might thus have measured an
exchange in a process that is far from maximum efficiency.

The challenge in studying the effect of this inaccuracy at
database scale is then two-fold. On one hand, it is virtually
impossible to know in detail which flows can be improved and
where the upscaling uncertainty lies. It then becomes necessary
to assume an upscaling uncertainty for each exchange in each
activity, intended as a probability of being wrong about the
efficiency of this activity regarding the input exchange. On the
other hand, it is reasonable to expect that the effect of improving
the efficiency of one or more activities in the database would be
rather different depending on the activity that is considered for
the analysis, meaning the functional unit for which the life cycle
impacts are calculated.

To tackle these challenges, a computer simulation was
performed where the change in the environmental burden of a
sample of activities from the ecoinvent database was measured
after increasing the efficiency of a number of other activities,
thus simulating an improvement that is potentially achievable
via technology upscaling or learning effects. Mathematically, the
efficiency improvement in an activity is here achieved via a
reduction c in the amount of technosphere or biosphere input
x required to obtain the production output y.

y = f (x) = cx with 0 < c < 1 (1)

The idea was then to simulate this efficiency improvement
as realistically as possible at whole database scale to provide
a theoretical but indicative idea of how much uncertainty
may be introduced by non-linearities associated with
technology upscaling.

The ratio r was calculated by defining h as the impact vector,
Q as the characterization matrix, B as the intervention matrix, A
as the technology matrix, and f as the demand vector (Heijungs
and Suh, 2002).

r =
h′

h
(2)

Where h was taken as the “base” value of the impact of an activity
before changing its efficiency.

h = QB(y)
(

A(y)
)−1

f (3)

And h′ was obtained by improving the efficiency of specific
activities in the database. This is further explained in the
following, by using different examples of increasing complexity.

The first simple example measured the effects of progressively
increasing the efficiency of coal power plants in the production
of electricity. This example allowed working under rather
controlled conditions before dealing with the intrinsically high
variability of the entire database, due to the fact that the database
includes several types of activities.

Initially, the improvement was only modeled in terms of a
reduction in energy and material inputs. This means that only
the values in the technosphere matrix were changed to obtain a
new technosphere matrix A′ and calculate h′:

h′ = QBA
′−1

f (4)

Where the a′i,jelement of A′ was obtained as:

a′i,j = cai,j where i 6= j (4.1)

Where aj is anymatrix column representing coal-based electricity
production, and all coal-based electricity production activities
in the database were simultaneously modified. c is the fixed
coefficient of efficiency improvement. Note that A is assumed
square with diagonal values equal to 1. A more visual example
is provided below considering the technology matrix A where
each unit process j has production output qjand technosphere
inputs xi,j and where both columns aj=1 and aj=2 represent coal
power plants:

A=







q1
q1

= 1 −
x1,2
q2

= a1,2 . . .

−
x2,1
q1

= a2,1
q2
q2

= 1 . . .

. . . . . . . . .






=





1 a1,2 . . .

a2,1 1 . . .

. . . . . . . . .



 (4.2)

A′ is obtained by multiplying the off-diagonal values of column
aj=1 and aj=2 by the same coefficient of efficiency improvement.
In this upscaled system the production output is denoted q′jand

technosphere inputs are denoted x′i,j. The assumption is then that
x′i,j is not just proportional but more efficient than proportional:

x′i,j = cai,jq
′
j (4.3)

This allows to obtain:

A′=







q′1
q′1

= 1 −
x′1,2
q′2

= ca1,2 . . .

−
x′2,1
q′1

= ca2,1
q′2
q′2

= 1 . . .

. . . . . . . . .






=





1 ca1,2 . . .

ca2,1 1 . . .

. . . . . . . . .





(4.4)

This simple example was then extended to additionally consider
the improvement in terms of emission reduction together
with the reduction in material and energy requirements. This
means that h′ values were this time obtained by changing both
the values in the technosphere matrix and the values in the
intervention matrix.

h′ = QB′A
′−1

f (5)
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Where the a′i,jelement of A′ is obtained as in Equation (4.1) and
the b′i,j element of B′ is obtained as:

b′i,j = cbi,j (5.1)

Where aj and bjare the columns representing coal-based power
plants in eachmatrix. More visually, considering the intervention
matrix B where each unit process j has production output qjand
environmental exchanges zi,j and where both columns bj=1 and
bj=2 represent coal power plants, then:

B=







z1,1
q1

= b1,1
z1,2
q2

= b1,2 . . .
z2,1
q1

= b2,1
z2,2
q2

= b2,2 . . .

. . . . . . . . .






=





b1,1 b1,2 . . .

b2,1 b2,2 . . .

. . . . . . . . .



 (5.2)

The improvement is again described as an increase in efficiency:

z′i,j = cbi,jq
′
j (5.3)

To obtain the upscaled intervention matrix B
′
:

B′=







z′1,1
q′1

= cb1,1
z′1,2
q′2

= cb1,2 . . .

z′2,1
q′1

= cb2,1
z′2,2
q′2

= cb2,2 . . .

. . . . . . . . .






=





cb1,1 cb1,2 . . .

cb2,1 cb2,2 . . .

. . . . . . . . .





(5.4)

The simulation consisted in calculating r values (Equation 2)
using Global Warming impact values obtained via Equations
(3–5) for 10 randomly selected activities (10 different f ) in the
database and nine progressively increasing values of c ranging
from 0.2 to 1.0 in 0.1 increments to cover a theoretical efficiency
increase up to 400%.

This simple example allowed a clear understanding of the
relationship between efficiency increase and impact. It did not,
however, allow conclusions to be drawn that were generalizable
at a whole database level. Thus, a more complex example
was introduced by measuring the effects of more random and
widespread improvements in the efficiency of different activities
in the database.

The approach presented in Equations (3–4.4) was upscaled
to database level by simultaneously modifying all transformation
activities in the ecoinvent database. In principle, efficiency gains
can only be observed in transformation activities, as opposed to
market activities which only represent the combined supply of
similar products based on trade statistics. Again, at first only the
technosphere exchanges were modified and h′ calculated as in
Equation (4), but this time a′i,jwas obtained as:

a′i,j = Ckai,j where i 6= j (4.5)

Where aj is any matrix column representing a transformation
activity, and all transformation activities in the database were
simultaneously modified. Ck is again a coefficient with value
between zero and one (0 < Ck < 1) representing efficiency
improvements, but as opposed to c that was fixed, Ck was instead
randomly sampled from a specific probability distribution.

The following presents a visual example of how the A′ matrix
was obtained in this more complex simulation, assuming that
columns aj=2 and aj=4 of A are both transformation activities
and c1, c2, c3, . . . are randomly sampled instances of Ck (i.e.,
randomly sampled coefficients).

A′=









1 c1a1,2 . . . c4a1,4
. . . 1 . . . c5a2,4
. . . c2a3,2 1 c6a3,4
. . . c3a4,2 . . . 1









(4.6)

Once again, this example was further extended to consider
both improvements in terms of reduced material and energy
requirements and in terms of emission reductions. Thus, a′i,j was
obtained as in Equation (4.6) and b′i,j as:

b′i,j = Ckbi,j (5.5)

This operation was performed on all bj columns representing
transformation activities and using randomly generated
coefficients as from Equation (5.5). Thus, the way B′ was
obtained in was similar to Equation (4.6) with the only difference
that all values in the columns bj=2 and bj=4 are multiplied by a
coefficient and not only the off-diagonal ones.

B
′

=









. . . c1b1,2 . . . c5b1,4

. . . c2b2,2 . . . c6b2,4

. . . c3b3,2 . . . c7b3,4

. . . c4b4,2 . . . c8b4,4









(5.6)

The simulation at entire database level consisted in performing
the operations described in Equations (4.5, 5.5) repeatedly 1,000
times, randomly sampling different coefficients at each iteration,
and then calculating r values via Equation (2) using Global
Warming impact values obtained via Equations (3–5) for 50
randomly selected market activities (fifty different f ) in the
database. In order to provide clearer results, treatment and waste
management activities were excluded from the selection as these
can return negative results and complicate the interpretation. The
result was a matrix of 1,000× 50 r values where rows represented
iterations and columns represented the market activities under
analysis. Moreover, this simulation was performed in four
different scenarios obtained by using two versions of the same
database and two probability distributions of Ck to appreciate
the differences due to modeling choices and assumptions. In
particular, both the consequential and cutoff version of the
ecoinvent v.3.6 database were used and both the beta distribution
Ck ∼ Beta (α,β) with α = 5 and β = 1, and an uniform
distribution Ck ∼ U(0, 1).

The reason for choosing a beta distribution, which resembles
an exponential distribution between zero and one, is that it
can be considered a suitable model for the random behavior
of percentages and proportions. As the specific exchanges that
can potentially be improved are unknown to the authors, it was
assumed that most exchanges are already close to maximum
efficiency. The Beta distribution with the selected values allows
modeling this assumption, i.e., the probability to sampling a value
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close to 1 is higher than the probability of sampling a value close
to 0. Using a beta distribution was amiddle ground between using
the same efficiency gain for all input exchanges of an activity
and completely randomly selecting efficiency from a uniform
distribution between zero and one — which was also performed
for the sake of comparison.

The reason for performing the simulation on two versions of
the ecoinvent database was that the consequential system model
adopts system expansion as a method to solve multifunctionality,
resulting in a number of activities being associated with a
(mathematically speaking) negative impact. This produces r
values >1 and can skew the distribution of results to the right.
The comparison with the cutoff version allowed appreciating this
additional factor of variability.

Non-linearity in Upscaling Services, the
Case of Freight Transportation
The first case was theoretical, and only considered potentially
achievable changes in the value of specific flows while not
explaining how in detail these changes might manifest.

To show more concretely how a specific technology might
display a different behavior at different scales a second
case was chosen that considers the transportation of goods.
Transportation systems are a case where a non-linear behavior
in upscaling can be observed. This can be exemplified with
freight transportation where fluctuations of the load factor or
fluctuations in the vehicle size and carrying capacity can affect
the environmental burden per ton transported in a non-linear
manner (Rizet et al., 2012; Pizzol, 2019).

This case provides two examples on how technology
upscaling and technology improvement affect the environmental
performance of transportation via heavy duty trucks in a non-
linear manner. The first example of a 40-ton diesel truck was
considered to highlight the non-linear relation between the load
factor of the system and its environmental performance per
tkm of transportation. The second example of a battery electric
truck was used to highlight the non-linear relation between the
driving range autonomy and its environmental performance per
tkm. These models allow accounting for the variability in the
operating conditions of two different transportation technologies
at different scales.

The parametrized LCA model for heavy goods vehicles
carculator_truck (Sacchi et al., submitted) was used for this
case. The tool models trucks of various powertrain types (i.e.,
internal combustion engine, battery electric, fuel cell electric)
and sizes (i.e., from 3.5 to 60 t of gross weight), across time
(i.e., from 2000 to 2050), and for different duty cycles (i.e.,
urban and regional delivery, long haul). Further information is
available from the online documentation of the library1 including
a detailed description of data sources and modeling assumptions.
The library uses the cutoff system model of the ecoinvent v.3.7
database to model the supply of material, services, and energy.

The first example, highlighting the effect of technology
upscaling, focused on assessing the non-linear relation between
the load factor of a truck and its global warming impact per

1https://carculator-truck.readthedocs.io/en/latest/index.html

tkm. To do that, a 40-ton articulated curtainside truck with a
diesel engine and a lifetime of 1 million km was modeled with
a load factor ranging from 0 to 100% with a 1% increment step.
For each increment in the load factor, the vehicle components
and drivetrain were sized, after which the tank-to-wheel energy
consumption of the vehicle was calculated given a specific
driving cycle.

In this case, the driving cycle chosen reflects long haul
operations. The tank-to-wheel energy consumption entails the
energy needed to overcome different types of resistance, such
as the inertia of the vehicle itself, the rolling resistance, the
aerodynamic drag, the road gradient, as well as resistance in
the transmission shaft and the engine. The curb mass mc [t] of
the vehicle was obtained as being the sum of the components’
mass, including the energy storage mass me, but excluding
passengers and cargo (Equation 6). The available payload mP is
the difference between the gross mass mg of the vehicle and its
curb mass (Equation 6.1). When the vehicle is “built,” its material
and energy inventory is solved. Such inventory contains all the
relevant life cycle phases of the vehicle, including its manufacture,
maintenance, use and end-of-life. The life cycle Global Warming
impact per tkm ht [kg CO2-eq/tkm] is obtained by dividing the
total life cycle carbon emissions of the vehicle hl [kg CO2-eq]
with the number of kilometers driven l [km] and the payload
transported, which is itself the product of the available payload
mp and the load factor r [without unit] (Equation 6.2).

mc = me + . . . (6)

mp = mg −mc (6.1)

ht = hll
−1(mpr)

−1 (6.2)

A second example, highlighting the effect of technology
improvement, focused on assessing the non-linear relation
between range autonomy (the distance a truck is required to
drive without refueling) and the truck’s global warming impact
per tkm in 2020 and 2050. The analysis followed a similar
approach as in the first simulation but considered a 40-ton
articulated truck powered by an electric powertrain instead of
a diesel engine. In this case, the energy storage mass me was
sized based on the required range autonomy a [km], tank-to-
wheel energy consumption of the vehicle Ew [kWh/km], the
depth of battery discharge b [without unit] and the energy density
of the battery cells d [kWh/kg] (Equation 6.3). As the range
autonomy increases, the mass of the energy storage increases as
well, reducing the maximum payload available by an equivalent
amount. This can however be compensated by an increase in
the battery cell energy density. It is worth noting that unlike
diesel powertrains, a part of the energy used for braking during
downhill or decelerating sections of the driving cycle is recovered
here using the electric motor. Also, as a new curb mass is defined,
the tank-to-wheel energy consumption of the vehicle needs to be
re-calculated, which itself redefines a new energy storage mass
and curb mass. Such process stops when the curb mass of the
vehicle converges.

me = aEwb
−1d−1 (6.3)
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The energy storage mass was modeled using lithium-ion
batteries based on a nickel manganese cobalt chemistry. It
assumed a battery cell energy density of approximately 0.2 kWh
per kg of cell today, increasing to 0.5 kWh per kg in 2050 (Ding
et al., 2019) and a depth of discharge of 20%. Material and energy
inventories were solved for a required range autonomy of 100
to 1,200 km, by increment step of 100 km. As with the diesel
truck, the resulting carbon emissions were normalized to a tkm
by dividing the overall burden successively by the number of
kilometers driven along the use phase of the vehicle and the cargo
mass transported — see Equation (6.2).

Non-linearity in Upscaling Networks, the
Case of Bitcoin Mining
A key feature of the previous cases is that while the performance
of the product system is different at different scales due to
improvements, the fundamental structure of the system does not
change. More concretely, the structure of the inventory model
remains the same and only the values of its exchanges change.
However, there are situations where the upscaling of a technology
might result in a structural change of the product system itself.

To account for this type of change, the third case considers
the mining of Bitcoin as emerging technology and explores the
non-linear effects of expanding its mining network. This builds
on previous research (Köhler and Pizzol, 2019) that considers a
model of the network of Bitcoin miners as a snapshot of the year
2018. In rather simplified mathematical terms, in this model the
life cycle impact hm [kg CO2-eq/TH] associated with mining is
given by the product of the horizontal vector sl [without unit]
representing the share of mining performed in each location with
the vertical vector hl [kg CO2-eq/kWh] representing the life cycle
impact of electricity production in each location, and the energy
consumption Em [kWh/TH] of the machines (special computers)
used for mining.

hm = slhlEm (7)

In turn, the energy consumption is a function of the hash rate p
[TH/s], and the power P [W] of the machine.

Em = Pp−1 (8)

This product system does not scale linearly, which is mainly
due to two factors: the new mining equipment employed is
more energy efficient than the average equipment for 2018, and
new mining capacity is not installed proportionally in current
locations and is even installed in new locations.

To address this upscaling issue, previous research (Köhler and
Pizzol, 2019) adopted a consequential approach and attempted
to provide an outlook of the Bitcoin mining network upscaling
for early 2019. Since then, however, the hashrate of the Bitcoin
mining network has increased and both mining efficiency
and miner locations have continued to change. This study
considers new upscaling scenarios for early 2020 that allow a
comparison with the upscaling scenarios of early 2019 taken
from the previous study. The upscaling scenarios consider
changes in location of miners and energy efficiency of the
mining equipment.

A baseline business-as-usual (BAU) scenario was first
obtained (Equation 7). This BAU scenario illustrated linear
growth and was taken as reference against which all other
scenarios were compared. The same prospective model for early
2019 as in the previous study (Köhler and Pizzol, 2019) was used
in the calculation. The result is the Global Warming impact for
increasing computing demand by one tera hash (TH).

Scenario 1 represented instead a location-sensitive
scenario where new mining facilities are only installed in
more competitive conditions (e.g., lower energy prices). In
this scenario, the impact of the upscaled system h′m was
calculated as:

h′m = s′lhlEm (7.1)

Scenario 2 represented then an equipment-sensitive scenario,
where only more efficient mining equipment was used, intended

as equipment that uses less energy in mining (E
′
< E).

h′m = slhlE
′
m (7.2)

Finally, Scenario 3 assumed both more efficient mining
equipment and more competitive mining locations.

hm = s′lhlE
′
m (7.3)

For the BAU scenario and Scenario 2, which were not location-
sensitive, the share of mining in each location slwas modeled
using the distribution reported in Table 1. The data was taken
from the Cambridge Bitcoin Electricity Consumption Index for
September to December 2019 (Cambridge Centre for Alternative
Finance, 2020). Only locations that contributed at least 2%
(rounded) were included. The percentages were then scaled
to 100%. For the location-sensitive Scenarios 1 and 3, the
share of mining in each location s′l reported in Table 1 was
used. The data shows the difference from miner distribution
between Sept-Dec 2019 and January–March 2020s (Cambridge
Centre for Alternative Finance, 2020). Those locations where an
increase in shares compared to September–December 2019 has
occurred were included. Their shares were then scaled to 100%
representing the marginal mining locations.

Details on the parameters used to model the material and
energy requirements of the mining equipment in the different
scenarios are provided in Table 2. For the BAU scenario and
Scenario 1, data regarding the amount of equipment still in
use was taken from “The Bitcoin Mining Network–December
2019 Update” (Gibbons and Bendiksen, 2019). The specifications
for each machine were taken from the homepage ASIC Miner
Value (ASIC-MinerValue, 2020) and a mining equipment mix for
2019 was modeled from these data sources. For the equipment-
sensitive scenarios, the mining equipment that was still profitable
and already produced by the beginning of 2020 was identified.
A mining equipment mix for Scenario 2 and Scenario 3
was then determined based on the share of equipment in
terms of profitability. Additional details on the methodology
used to derive the mining equipment mixes are provided in
Supplementary Tables 1, 2.
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TABLE 1 | Distribution of mining locations sl and s′ l in different scenarios.

sl s′

l

Location BAU and Scenario 2 % Scenario 1 and 3

(Location-sensitive)

Xinjiang 31.1 67.0%

Sichuan 26.4 –

Yunnan 8.9 –

Nei Mongol 8.7 6.1%

Russia 7.1 –

US 6.2 –

Malaysia 4.2 3.0%

Gansu 3.1 –

Iran 2.3 8.1%

Kazakhstan 2.0 15.8%

TABLE 2 | Parameters used to model the energy consumption Em and E ′
m of the

mining equipment in the different scenarios.

Em E′

m

Parameter BAU and Scenario 1 Scenario 2 and 3

(Equipment-sensitive)

Hash rate (p) 21.6 TH/s 63.67 TH/s

Power (P) 1660 Watt 2541 Watt

RESULTS

Non-linearities in Efficiency Improvements
at Large Scale
Results reported in Figure 1 show clearly how a progressive
increase in efficiency of electricity production in coal-based
power plants results in a non-linear decrease in impact for
several activities. The effect of such improvement, that one
could theoretically ascribe to generic technological learning, is
not equally pronounced for all activities under analysis, as this
depends on the direct and indirect upstream inputs of electricity
produced from coal to these activities. Supplementary Figure 1

shows the similar effect obtained by performing the analysis on a
different database system model.

Results reported in Figures 2, 3 show how a random change
of efficiencies for several transformation activities is reflected
on the impact of several randomly selected database activities.
This effect is highly dependent on the activity under analysis,
and no clear relationship can be identified between the change
in efficiency and its effect. While the effect can be explained for
single activities it is not generalizable in a straightforward way at
database level, as each activity will behave differently and might
be affected substantially even if the change occurs several steps
upstream in its life cycle. Boxplots for each of the 50 functional
units considered are provided in Supplementary information,
Supplementary Figures 2–5.

It is important to focus on the comparison between the
random uniform sampling and the random beta sampling of
efficiency improvements. The interesting aspect is that none
of the distributions in fact resembles the distribution of the

efficiency improvements. In other words, the distribution of the
output does not reflect the distribution of the input, as it would
be expected if the effect was linear. This confirms once again
that the effect of technology upscaling on the impact of a system
is non-linear.

A further note should be added on the comparison between
databases and how the high variability in the type and nature
of activities considered affects the results. In Figure 2, in
all distributions and database versions, a small number of
invariant activities can be observed (the ratio between base and
simulation result close to one). These are activities that are not
affected substantially by a change in efficiency for transformation
activities; for example, “market for land tenure, arable land,
measured as carbon net primary productivity, perennial crop”
and “market for electricity, high voltage.” This might be due to
several reasons, for example because they link to transformation
activities that do not include any technosphere exchange or
that only include biosphere exchanges that do not contribute to
the Global Warming impact category. The comparison between
Figures 2, 3 allows appreciation of this additional variability in
the database.

Furthermore, when using the consequential system model of
the ecoinvent database, ratios higher than one can be observed.
This is explained by the fact that the substitution (system
expansion) method is used to solve multifunctionality and
therefore a number of activities return a negative impact. For
these, an increase in efficiency as modeled in this simulation
results in an increase in net impact.

Non-linearities in The Impact of Freight
Transportation
As expected, total carbon emissions increase as the utilization
rate of the available payload increases. As shown in the left panel
of Figure 4, this corresponds to the minimum emission over the
entire lifetime of the 40-ton diesel vehicle of 1 million kg of CO2-
eq. with a load factor of 0%, to 1.6 million kg of CO2-eq. for a
load factor of 100% (i.e., the transport of 25 t of cargo). On a per
tkm basis, the first ton transported has a Global Warming impact
of 0.6 kg CO2-eq., against 0.06 for the 25th ton, as shown in the
center panel of the same figure. Hence, the assumed initial load
factor is important in determining the environmental burden of
a ton transported over 1 km.

Similarly, it appears clear that transporting 1 ton of cargo
(which corresponds to a load factor of about 40%) yields a
different result than transporting 10 times 1 ton of cargo.

The right panel in Figure 4 shows the change in carbon
emissions on a tkm basis associated with adding an extra ton
of cargo, given an initial amount of cargo already loaded.
For example, adding 1 ton of cargo with an initial load of
5 tons reduces the impact per tkm by about 0.05 kg CO2-eq.
On the other end, past an initial load of 15 t, the benefits
of adding an additional ton on the per tkm impacts become
comparatively negligible.

In the second case, where the range autonomy of a 40-ton
battery electric truck is incremented by steps of 100 km, another
trend is observed. As the range autonomy increases, the available
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FIGURE 1 | Effect of improving from 0–400% the efficiency of electricity production in all coal-based power plants datasets of the ecoinvent database (consequential)

on the Global Warming impact calculated for 10 randomly selected activities from same database. The effect is expressed as the ratio between the impact of the

improved dataset and the impact of the unmodified dataset: values closer to 1 indicate a weaker effect. (A) shows the effect of improving only technosphere

exchanges, while (B) the effect of improving both technosphere and biosphere exchanges.

payload decreases because of the mass increase of the energy
storage components. This effect is different for the cases of 2020
and 2050, due to improvements in the energy density of battery
cells. On the left panel of Figure 5, a required range autonomy of
100 km with a truck in 2020 allows to transport 25 t of cargo for
0.95 million kg of CO2-eq., while a range autonomy of 1,000 km
only allows transporting 10 t of cargo for a total emission of 2.2
million kg of CO2-eq. The dark blue area, which represents kg of
CO2-eq. emissions associated to electricity supply, and indirectly,
energy consumption, does not vary much as the range autonomy
increases. This is because the driving mass of the vehicle does
not increase despite the energy storage becoming voluminous,
as the cargo mass diminishes. It also explains why the emissions
associated to the road manufacture and maintenance remain
constant, as they are scaled on the vehicle mass. This indicates a
certain limitation of battery electric trucks for long distance trips.

This pattern is equally illustrated in the central panel of
Figure 5, where the performance per tkm of both trucks (2020
and 2050) is illustrated. Transporting 1 ton of cargo with a truck
designed with a range autonomy of 1,200 km yields a different
result per tkm than transporting the same ton of cargo with two

trucks consecutively designed to have an autonomy of 600 km
each. However, improving the energy density of battery cells by a
factor of 2.5 between 2020 and 2050 yields to improvements far
superior to a factor of 2.5 as the range autonomy increases. This
is explained by the fact that the truck in 2050 would only reduce
its payload capacity by 4 t to increase the autonomy range from
100 to 1,200 km, against 19 t for the truck in 2020.

The right panel in Figure 5 shows the change in carbon
emissions per tkm from adding 100 km of range autonomy,
function of an initial range autonomy, for both trucks. For
example, for a 40-ton battery electric truck in 2020 with an initial
range autonomy of 200 km, adding another 100 km of autonomy
will only add 0.05 kg CO2-eq., to a tkm. This is to be contrasted
with adding 100 km of range autonomy to the same truck with
an initial autonomy of 1,000 km, where such change would add
0.2 kg CO2-eq. to the impacts per tkm. In parallel, a loss in
utility is also observed as adding 100 km of range autonomy
would lead to losing 2 t of payload capacity for the truck in 2020
(from 10 to 8 t), against <0.1 t for the truck in 2050. Thanks to
expected improvements by 2050, increasing the range autonomy
of the vehicle does not lead to marginally increasing emissions,
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FIGURE 2 | Effect of efficiency improvements at database scale. The effect is obtained by randomly modifying the efficiency of all transformation activity datasets in

the ecoinvent database and calculating the global warming impact for 50 randomly selected market activities. The effect is expressed as the ratio between the impact

calculated using the improved datasets and the impact calculated using the unmodified dataset: values closer to 1 indicate a weaker effect. The efficiency

improvement is performed on the technosphere matrix only and the values of the efficiency improvement are randomly selected using a uniform and beta distribution,

respectively, and in both the cut-off and consequential system models of the ecoinvent database.

as illustrated by the almost flat curve. This is because the battery
has become by then a minor component in terms of mass, and a
slight increase of its mass will not affect the driving mass or the
electricity consumption of the truck in a significant manner.

Non-linearities in The Upscaling of The
Bitcoin Mining Network
The results from the BAU scenario represent a linear growth of
the Bitcoin mining network. However, in reality an expansion
of such a network will result in changes in the geographical
distribution of miners and in improvements in mining efficiency.
In particular, Figure 6 shows the impact of the network under
the various scenarios considered in this study. It is clear from
the figure how the Global Warming impact of Bitcoin mining
heavily depends onwhere theminers are located— thus onwhich
electricity mix they rely on.

An enlargement in the Bitcoin mining network leading to
miners choosing new locations results in a potential increase in
Global Warming impact by 31%. The upscaling also substantially
depends on the mining equipment efficiency and shows a
potential decrease in impact by 48% using current projections for
more efficient mining equipment.

The combined upscaling effect of both changing the
geographical distribution and of using more efficient mining
machines results in a net decrease in impact by 32%. Based on the
historical record of increasing efficiency and varying geography
of the Bitcoin mining network, it is very reasonable to assume
that over time there will be an improvement in mining efficiency
(TH/sec increase) and that new facilities will not be installed
at every existing location. Consequently, a linear growth model
that does not take into account these factors would likely return
inaccurate results.

DISCUSSION

Limitations of The Methods Used to
Identify Non-linear Effects
It is important to address the validity of results both in light of
the choice of methods and cases, and also how well they allow
answering the research question of whether a non-linear effect
can be observed for scalable and emerging technologies.

The first case is defined as theoretical because substantial
simplifications were made in the simulation due to lack of
information on the values of the efficiency improvement c.
For example, in reality not all coal-based power plants will
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FIGURE 3 | Effect of efficiency improvements at database scale. The effect is obtained by randomly modifying the efficiency of all transformation activity datasets in

the ecoinvent database and calculating the global warming impact for 50 randomly selected market activities. The effect is expressed as the ratio between the impact

calculated using the improved datasets and the impact calculated using the unmodified dataset: values closer to 1 indicate a weaker effect. The efficiency

improvement is performed on both the technosphere and biosphere matrices and the values of the efficiency improvement are randomly selected using a uniform and

beta distribution, respectively, and in both the cut-off and consequential system models of the ecoinvent database.

FIGURE 4 | Upscaling scenarios for transportation with a 40-ton diesel truck. Left: Total Global Warming impact in kg CO2 -eq as a function of the capacity utilization.

Center: Global Warming impact in kg CO2 -eq/tkm as a function of capacity utilization. Right: Change Global Warming impact in kg CO2 -eq/tkm as a function of

cargo mass.

be improved in the same way (fixed c). Similarly, some
improvements like fuel use and emission generation would
be correlated and therefore using a different coefficient for

each exchange of a transformation activity (randomly sampled
instances of Ck) was also a simplification. These simplifications
were however necessary to performing the simulation at the
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FIGURE 5 | Upscaling scenarios for a 40-ton battery electric truck Left: Total Global Warming impact in kg CO2 -eq as a function of vehicle range autonomy in 2020.

Center: Global Warming impact in kg CO2 -eq/tkm as a function of vehicle range autonomy in 2020 and 2050. Right: marginal Global Warming impact in kg CO2

-eq/tkm as a function of vehicle range autonomy in 2020 and 2050.

FIGURE 6 | Global Warming impact in kg CO2 -eq/TH (Terahash) for different

Bitcoin mining scenarios. BAU: Business as usual scenario (linear growth):

Scenario 1: location-sensitive scenario. Scenario 2: equipment-sensitive

scenario. Scenario 3: location- and equipment-sensitive scenario.

scale of the entire database, which was the primary purpose of
the analysis.

When looking at the improvement of a specific activity such as
coal-based electricity production the non-linear relation between
changes in efficiency and changes in impacts is clear for single
activities. The magnitude of this non-linear effect is activity-
specific and therefore hardly generalizable at database level.
Technological maturity is relative to time, thus the database
is bound to have dated information, including when it comes
to efficiency. It is, however, largely unknown to what extent
the database fails to represent technologies at their highest
technological maturity, and which specific flows can be improved
in terms of efficiency.

When conducting the analysis at database scale, it is
unfeasible to hand-pick activities or flows to selectively

improve, and the stochastic approach remains the most
pragmatic solution. An alternative approach could have
been to selectively extract specific types of activities, for
example all activities related to energy production or raw
material extraction, or to specific sectors known to be highly
impacting (e.g., energy, transportation, agriculture), and
evaluate the effect of upscaling-related efficiency improvements
in these groups. This could potentially result in more
easily explainable relationships between the change in
efficiency and the change in impact, but the validity of this
conclusion would remain constrained by subjective selection
of the groups of activities and would still remain difficult
to generalize.

The choice of using a specific beta distribution for efficiency
improvements is also subjective and was here presented in
comparison with the choice of a uniform distribution. While
assuming that all flows could be improved in any amount was
considered an excessively unrealistic assumption, assuming that
all flows could be potentially improved marginally seemed a
more conservative and realistic one. It should be stressed that
while to the best of the Authors’ knowledge no information is
available in literature on the observed distribution of efficiency
improvements, previous studies in specific domains show that, in
fact, efficiency improvements are usually of relatively contained
size, e.g., 14–16% for CO2-eq/kWh from wind power (Caduff
et al., 2012).

Therefore, selecting random activities within the database and
changing their efficiency is beneficial to provide an indication
of the potential upscaling-related uncertainty. Even if a single
relationship cannot be clearly generalized for all activities, the
simulation provides evidence suggesting that globally, at database
scale, technological upscaling on the impact of a system is in
fact non-linear.

Regarding the transportation case, several assumptions were
made. In the first example, a truck with a load factor ranging
from 0 to 100% was considered. In reality, the load factor for
trucks in Europe is rather constant and comprised between 20

Frontiers in Sustainability | www.frontiersin.org 11 January 2021 | Volume 1 | Article 611593

https://www.frontiersin.org/journals/sustainability
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainability#articles


Pizzol et al. Non-linear LCA of Emerging Technologies

and 40% for the size considered in this study (Eurostat, 2020).
Trucks with a load factor below 20% or above 50% are not
highly representative of the transport market. If the average load
factor is in fact constant and always within the same range of
values, one may not encounter the non-linear variations that
have been shown here. In the second example, the most critical
assumption is probably relating to the future development of
battery technology and whether the energy density of battery cells
will reach the value used for the year 2050. However, even if this
assumption is inaccurate, it would not invalidate the non-linear
relations observed.

The model of the Bitcoin mining network includes only
parameters that directly influence the environmental impacts
of Bitcoin mining. Such a model is not able to reflect the
emerging technology’s vulnerability to outside shocks such as
changes of miner revenues like Bitcoin halving (Meynkhard,
2019), or legislative changes like restricting miner locations
(Alvarez, 2018) that likely would also lead to non-linear changes
in environmental impacts. Changes to miner revenues directly
impact which locations are profitable. Both an increase and
a decrease in miner revenues caused by large Bitcoin market
price fluctuations or the Bitcoin halving can influence where
new mining locations are opened. Legislative changes can also
be important for modeling upscaling of Bitcoin mining. China’s
crackdown on China-based miners in 2018 is one example of
legislative changes that influenced themining locations of Bitcoin
miners (Alvarez, 2018). These factors are not included in this
model but can be relevant when modeling the impacts of the
Bitcoin mining network and lead to further non-linear effects.

It is important to discuss the general validity of these findings
beyond the cases presented here. While it is beyond the ambition
of this work to provide a comprehensive overview of all possible
cases of non-linearity in the LCA of scalable and emerging
technologies, these cases are exemplary as they allow appreciation
of several different facets of the non-linearity problem and thus
address it in its complexity. In particular, the selection covered
the non-linearity due to both foreground and background
modeling assumption, both theoretical and concrete examples
of non-linearity (considering several activities at once with low
detail vs. one activity with high detail), and the non-linearity
introduced by changes in the values of a model vs. the change
in the structure of a model.

On the Relationship With Uncertainty and
Sensitivity Analysis
Essentially, the present work can be interpreted as a study
of uncertainty and sensitivity in the LCA models referring
to a specific domain: technology upscaling and emerging
technologies. It is thus relevant to draw a parallel between existing
research on uncertainty in LCA and the current study.

The LCA literature on uncertainty is already mature, as
testified by recent remarkable contributions where advanced
probabilistic techniques are used to study the uncertainty of
LCA models for current technologies (AzariJafari et al., 2018)
or emerging ones (Mendoza Beltran et al., 2018a; Blanco et al.,
2020), as well as more theoretical contributions (Bisinella et al.,

2016; Cucurachi et al., 2016; Mendoza Beltran et al., 2018b).
There are different ways of defining uncertainty, and for the
LCA domain Igos et al. (2019) suggest classifying uncertainty
either according to its intrinsic nature - epistemic or aleatory
— or according to its location in a LCA model. In the latter
case, one can distinguish between uncertainty regarding the
structure of the model, the quantities used in the model, or
the context in which the model is used. While some techniques
like stochastic simulation allow quantification of the uncertainty
associated with the output of a LCAmodel, techniques like global
sensitivity analysis allow linking it to the uncertainty of the
model inputs.

The uncertainties related to location are considered more
closely here as they fit well to the analysis of the cases
presented in this study and are also easily linked with other
literature addressing uncertainty in models more generally
(Saltelli, 2008). Briefly, while quantity-uncertainties reflect the
unknowns associated with the specific value associated to a
model parameter or input, model-uncertainties refer to the
unknowns associated with how the model operates on these
quantities, intended as how the different model parameter and
inputs are combined together in a structure that provides a
simplified representation of reality. Context-uncertainties refer
to how the context of the decision affects the LCA modeling,
and while they can be significant, they are not particularly
relevant in the analysis of the specific cases presented in
this study.

The simulation performed at database level by increasing
efficiency for specific activities could be defined as a semi-Monte
Carlo approach (Heijungs and Lenzen, 2014). This analysis
targeted quantity-uncertainties specifically and disregarded
model-uncertainties. The approach indeed has limitations as it
is reasonable to assume that when upscaling a specific activity,
some inputs would be replaced by others, for example when
changing the material composition of specific components of the
technology or shifting from one source of energy to another.
This has been observed in previous studies, for example by
Blanco et al. (2020) and van der Hulst et al. (2020). The
simulation performed here was not able to take this sort of
model-uncertainty into account and the conclusions provided
here should be interpreted considering such limitation. Changes
in the number and type of inputs of an activity might lead to
possibly even more non-linear effects.

The case of the transportation model focuses again on
quantity-uncertainty, investigating the effect of changes in the
value of two specific model parameters: load factor and range
autonomy. This is not a stochastic approach but could be
intended as a simple local (one at the time) sensitivity analysis
(Bisinella et al., 2016) showing how variations in their value
leads to non-linear effects on the model output. In this case
the interesting part is that a parametrized model is used to
build a foreground inventory and therefore it is possible to
study the non-linear effects of changing the quantity of one
parameter at the time.Many LCA studies in fact operate similarly,
as especially nowadays the domain of LCA has been enriched
by the use of models taken from other disciplines (De Rosa
et al., 2017; Pizzol, 2019). Thus, the case of transportation
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here presented is representative of those situations where a
complex phenomenon - characterized by a dynamic and possibly
non-linear element that nevertheless can be described in good
detail with a parametrized model — is then simplified to
generate a static life cycle inventory that is thus a snapshot of
such complexity.

The LCA model of Bitcoin mining is dependent on data
for mining locations and mining equipment use. This data is
scarce and, in some cases, diverging. It is therefore important
to highlight that this analysis and its results have an intrinsic
uncertainty. These have been addressed in a previous study
(Köhler and Pizzol, 2019) by conducting both a stochastic
simulation and a sensitivity analysis for all parameters and
providing an insight of the range of results and of which
parameters most strongly influence the results. However, for the
purpose of this study — addressing non-linearity of upscaling
— this quantity-uncertainty is subordinate as it only influences
the magnitude of results, but not the conclusion that upscaling
the Bitcoin mining network does not lead to linear increases
of impact.

Additionally, the scenarios are a projection of the future, and
should therefore be considered an exploration of potential future
impacts. In particular the location-sensitive scenarios provide
insights on how changing the model structure influence the
results and thus address directly the model-uncertainty. Here,
not only the quantities (percentage of total mining performed in
each location) but also the model structure (number and types of
locations) are different from the BAU scenario. The equipment-
sensitive scenarios focus on one parameter only, the efficiency
of mining equipment, and thus address quantity-uncertainty
directly. Due to its simplicity, considering the combined effect
in changes of both location and efficiency via scenarios cannot be
formally considered as a global sensitivity analysis (Saltelli et al.,
2008) but is indeed a step toward this direction.

How Much Is Non-linearity a Problem?
What the present work suggests is that the uncertainties
introduced by non-linear effects can be substantial and should be
explicitly considered in the life cycle assessment of technologies
that are emerging and not yet operating at scale. These findings
confirm previous research on the uncertainties in the LCA of
emerging technologies (Lacirignola et al., 2017; van der Hulst
et al., 2020).

The non-linear effect of improving the efficiency of a
technology can have unexpected consequences at database
level, when considering all the upstream and downstream
processes that are interconnected with the activities employing
such technology. The non-linearity becomes critical when
investigating the impact of new technologies that are energy and
material intensive in their early stages, but also when forecasting
the impact of existing mature technologies under different future
technology scenario mixes, for example for energy production.
The effect of upscaling specific activities, under the assumption
that this upscaling returns higher efficiency — which is justified
by examples in literature — might have an unpredictable and
non-linear effect on the impact of a product system and of related
product systems.

Using datasets that are built using data from pilot scale
activities and are not representative of the potential of such
activities at large industrial scale might thus skew results in
unexpected ways. Broad and updated data coverage of the
database used for the foreground modeling is thus of critical
importance in LCA studies of emerging technologies. While
database providers should naturally strive for data collection on
unit processes that are as close as possible to a high maturity
stage, the practitioner should model background systems that
are relevant to the time when the system is modeled, to
avoid temporal mismatch — as Arvidsson et al. (2017) point
out. This study confirms this finding showing the non-linear
effect that using an efficiency-improved version of the database
might introduce and highlights the importance of considering
background system changes in the assessment of emerging
technologies. The feasibility and relevance of this approach has
already been demonstrated in practice (Hertwich et al., 2015;
Mendoza Beltran et al., 2018a).

In the case of the transport model, non-linear relationships
between inputs and outputs of the truck model are less of
an issue, as those linearities are in fact considered in both
real life and current models. Hence, improving the engine
efficiency of a vehicle by a factor of two will certainly not
affect the fuel consumption to a similar extent in real life,
and nor will it in the LCA model used, as fuel consumption
is the result of complex interactions between components
placed between the tank and the wheels of a vehicle (e.g., the
engine, but also the gearbox, transmission shaft, wheels, etc.).
In this case, the issue of non-linearity and the uncertainty
associated to it lies outside the truck model and becomes
more relevant when addressing future technological scenarios
such as how the fuel cell suppliers and the energy efficiency
of fuel cell stacks will develop as demand increases, and
whether the lithium-ion based batteries will be replaced by a
disruptive technology.

This study shows how using a linear assumption in the
modeling of the Bitcoin mining network is a strong and
excessive simplification of reality. In the location-sensitive
scenario (Scenario 1), the impact per additional TH computed
increases by over 30% compared to the BAU scenario, while in the
equipment-sensitive scenario (Scenario 2), the impact decreases
by almost half. In contrast, Köhler and Pizzol (2019) model
upscaling scenarios for the Bitcoin mining network for early 2019
and show a decrease in the impacts for both their technology
and equipment-sensitive scenarios. The location and equipment-
sensitive scenario (Scenario 3) has 32% lower impacts than the
linear BAU scenario. In Köhler and Pizzol (2019), the results from
the location and equipment-sensitive scenario are 76% lower. It
seems therefore to be especially important in the Bitcoin mining
case to retrieve accurate data on where new mining facilities are
installed and what kind of electricity they consume as the impacts
can both decrease or increase per additional TH computed,
depending on the assumptions on the geographical distribution
of miners. This highlights the importance of building relevant
scenarios when upscaling an LCA model for a product system
where the structure is expected to change at different scales and
levels of maturity.
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CONCLUSION

By challenging the idea that product systems scale linearly,
this work shows that non-linear effects should be explicitly
considered in the life cycle assessment of technologies that are
scalable or emerging. In these cases, a production activity will
perform differently and with different efficiencies at different
scales and levels of maturity, and its impact per unit of
production output is therefore not fixed. Thus, the product
system model should reflect the scale and technological maturity
of the activities under analysis.

One innovation that this paper introduced is highlighting that
— especially for the case for scalable and emerging technologies
– the production output (y) of an activity is a separately
varying entity than the functional unit of a product system f. In
mainstream LCA,

h = h(f ) (8)

is a linear function (Heijungs, 2020). What is proposed here is
instead that:

h = h
(

f , y
)

= h1
(

y
)

· f (9)

where the dependence on f is linear but the dependence on y is
not, as h1(y) is a non-linear function.

While the LCA is only linear in terms of functional unit
dependence, the coefficients that define each activity (values used
in A and B) are based on the technologies as the practitioner
defines them. In this sense, the use of parametrized LCA is
one useful way of modeling systems that exhibit non-linear
properties. In this respect, Heijungs (2020) already observes that
“the whole idea of parametrized LCA obviously deserves a more
rigorous treatment” and the results of this study strengthen this
hypothesis and make steps forward in this direction. However,
cases such as the Bitcoin network one here presented show that
not all non-linearity problems can be addressed by only changing
parameters in one single model structure, as it is expectable that
system upscaling will influence the type of inputs needed to
generate the production output, and this will require changing
the structure of the LCA model (number and type of activities
and exchanges in A and B).

The study has also shown that addressing non-linearity is
essentially amatter of addressing uncertainty in LCAmodels, and
therefore classic uncertainty and sensitivity analysis techniques
can be used effectively to investigate and highlight non-linearity.
These include, for example, stochastic simulation, developing
and assessing scenarios, and studying the effect of a change in
output due to a change in specific inputs.

There is currently great attention and expectations to the
role of new innovative and emerging technologies for the
sustainability transition. The study of the environmental benefits

of these technologies is challenged by the availability of pilot-
scale data only, and inevitably requires the use of assumptions
and the generation of scenarios, and therefore is characterized by
intrinsic uncertainties. This study has shown that non-linearity is
definitely an uncertainty issue in the study of new technological
developments and their impact. Thus, future studies operating
in this line of research are strongly encouraged to manifest
an explicit awareness of where technological upscaling could
occur and to address potential non-linearity issues as part of the
uncertainties, and the examples provided in the present work
can ideally provide a good inspiration for both identifying and
addressing non-linearity.
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