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A B S T R A C T   

A number of environmental, agronomic and engineering applications require knowledge of the Atterberg limits 
(liquid limit, LL; plastic limit, PL) and the plasticity index, PI of soils. The tedious and costly nature of standard 
experimental methods, as well as challenges with measurement repeatability motivated the development of 
regressions as well as more sophisticated techniques to estimate the Atterberg limits from other properties such 
as clay content, cation exchange capacity (CEC), and soil specific surface area. The amount of water adsorbed to 
particle surfaces at relative humidity (RH)  <  95% is intimately linked to these soil properties, which suggests 
that hygroscopic water content (wh) may be a better predictor of the Atterberg limits. The present study (i) 
proposes regression models that estimate the LL, PL, and PI from wh at different relative humidity values ranging 
from 10 to 90% and considering water sorption hysteresis, and (ii) compares the performance of the models to 
other models that comprise clay, silt and organic carbon contents and CEC. For model development, wh was 
measured by water adsorption and desorption for 168 soil samples that varied widely in terms of geographic 
origin, clay mineralogy, and soil organic carbon content. The LL and PL were determined with the drop cone 
penetrometer and rolling device, respectively. Regression models were developed for both sorption directions for 
nine RH values between 10 and 90%. For 44 independent soil samples, the models estimated LL, PL and PI 
accurately (e.g., for desorption wh measured at 90% RH, RMSE and r2 values were 6.43% & 0.89; 3.95% & 0.83 
and 6.69% & 0.79, respectively). There was no clear effect of sorption direction on the estimation accuracy. The 
wh determined at higher RH tended to better estimate the Atterberg limits compared to that measured at lower 
RH. The wh models were superior in estimating LL and PL compared to models that were based on clay content 
and organic carbon or CEC. For the PI, the models based on CEC performed slightly better than the wh models. 
Thus, a single measure of wh can provide reliable estimates of the Atterberg limits and PI.   

1. Introduction 

The Atterberg limits (liquid limit and plastic limit) and the plasticity 
index of soils, originally proposed by Atterberg (1911), are crucially 
important for civil engineering, environmental, and agronomic appli-
cations. For example, the Atterberg limits serve as the basis for quan-
tifying the swelling and or shrinkage potential of engineering materials 
(Sivakumar et al., 2009), and in agronomy, the plastic limit (PL) is often 
used as a measure for the optimum water content for tillage (Keller and 
Dexter, 2012; Obour et al., 2018). Several methods exist to measure the 
Atterberg limits, each with their associated merits and demerits. Pop-
ular methods for determining the liquid limit (LL) are the classical 
Casagrande cup method (ASTM, 2017), or the drop cone penetrometer 

method (BS, 2018). The LL determined by these two methods are often 
similar for samples with LL < 150% (Kayabali et al., 2016; Rehman 
et al., 2020; Shimobe and Spagnoli, 2019; Spagnoli, 2012) or can be 
easily converted from one to the other via a linearity constant (Di 
Matteo, 2012; Mishra et al., 2012). The PL is traditionally determined 
with the thread rolling method (ASTM, 2017), which was modified to 
the rolling device (Bobrowski and Griekspoor, 1992) to eliminate 
methodological challenges related to the characteristics of the opera-
tor’s hand among others. Other methodologies for the PL include the 
Barnes (Barnes, 2009) and the thread bending test (Moreno-Maroto and 
Alonso-Azcarate, 2015). The commonly used thread rolling and rolling 
device methods often present similar PL values (Rehman et al., 2020) 
and may be used interchangeably. 
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All these aforementioned methods for LL and PL are tedious and 
costly for large sample quantities. Consequently, pedotransfer functions 
(PTFs) have been developed over the years to estimate LL and PL from 
easily measurable or readily available soil properties. Soil properties 
that have been used as predictors of the Atterberg limits include clay, 
silt, and organic matter contents (de Jong et al., 1990; Gupta et al., 
2016; Keller and Dexter, 2012; Stanchi et al., 2017), cation exchange 
capacity, CEC (Seybold et al., 2008), soil specific surface area, SA 
(Smith et al., 1985; Yukselen-Aksoy and Kaya, 2010), and soil water 
content at a matric potential of −1500 kPa (de Jong et al., 1990; 
Seybold et al., 2008). 

Utilizing clay, silt and organic carbon (OC) contents to estimate the 
Atterberg limits is convenient, as a majority of soil surveys often rou-
tinely measure these properties. Unfortunately, the large variations in 
the expansivity of different clay minerals limits the applicability of any 
PTF based on clay and silt contents to samples that have similar mi-
neralogy as the samples that were used to develop the PTFs. The CEC 
and SA of samples are often better estimators of the Atterberg limits, 
but these are not routinely measured and if the data are unavailable, the 
cost and time required to measure them are not much different from 
that required to directly measure the Atterberg limits. Aside the work of  
de Jong et al. (1990), Seybold et al. (2008), and Smith et al. (1985) 
where they estimated the Atterberg limits from the water content at 
−1500 kPa, and hygroscopic water content (wh), the potential of wh to 
estimate the Atterberg limits has received very limited attention. 

The wh is easier to measure, requires minimal laboratory in-
strumentation (a relative humidity meter, and a regular drying oven), 
and can be determined for a large number of samples simultaneously. 
The amount of water adsorbed to soil particle surfaces for relative 
humidity (RH)  <  95% is intimately linked to the clay content, clay 
mineralogy, silt content (in the case of silt-rich samples), OC content 
(for samples with large amounts of OC or low clay content) (Arthur 
et al., 2015), SA (Akin and Likos, 2014; Arthur et al., 2018; Moiseev, 
2008), as well as the kind and amount of exchangeable cations (Arthur, 
2017; Khorshidi and Lu, 2017). Consequently, wh or the full water 
vapor sorption isotherm, has been successfully used to estimate the clay 
content, SA, and CEC; and these soil properties contribute to the mag-
nitude of the Atterberg limits. Thus, there is a very high potential to use 
wh to estimate the Atterberg limits. Based on the above knowledge gaps, 
we set out to (i) develop a model framework to estimate the Atterberg 
limits (PL and LL) and PI from hygroscopic water content, considering 
water sorption hysteresis, and (ii) compared the model performance to 
direct measurements, PTFs based on CEC, and soil particle size dis-
tribution and soil organic carbon. 

2. Methodology 

2.1. Investigated samples 

The samples used for the study comprised 212 soil samples (top soil 
and sub soil) from 25 countries, with the majority from three continents 
(Europe 116, Africa 48, and Asia 37) and nine samples from South 
America and one each from the United States and New Zealand. 

2.2. Laboratory measurements 

2.2.1. Particle size distribution, and organic carbon content 
The particle size distribution of the samples was measured on 2-mm 

sieved air dry samples with a combination of the wet-sieving and pip-
ette methods after removal of OC and carbonates (when present in a 
pre-test) (Gee and Or, 2002). Soil organic carbon was determined on 
ball-milled subsamples by oxidation of carbon at 950 °C with an ele-
mental analyzer. 

2.2.2. Atterberg limits 
Based on the reported similarity between LL measured with the 

Casagrande cup and the drop-cone methods for samples with 
LL  <  150% (Shimobe and Spagnoli, 2019), we chose the drop cone 
method because it is simpler and shows better repeatability (Rehman 
et al., 2020). 

The samples for the determination of the Atterberg limits were 
sieved to 425 µm prior to the measurements. The LL was determined in 
triplicate with a semi-automated drop cone penetrometer with a 35 mm 
long and 30° angle test cone (BS, 2018). In brief, distilled water was 
added to about 100 g of sample, mixed thoroughly and pushed into the 
sample cup with a spatula while ensuring that no air was trapped within 
the sample. The surface of the sample was levelled, and the cone placed 
so it barely touched the soil surface. The cone was then released au-
tomatically for 5 s and the penetration depth recorded. When the pe-
netration depth was less than 12 mm, more water was mixed into the 
sample until the first reading was around 15 mm. The procedure was 
repeated three times until the penetration depth ranged between 15 and 
25 mm. The gravimetric water content by interpolation that corre-
sponded to a cone penetration depth of 20 mm was taken as the LL. 

The PL of the samples was determined in quadruplicate with the 
device rolling method (ASTM, 2017; Bobrowski and Griekspoor, 1992). 
About 30 g of sample was mixed with water until it became plastic and 
easily molded into a ball. The sample was initially rolled by hand into 
two short threads 5 to 10 mm thick. The soil threads were placed on the 
bottom plate of the rolling device and the top plate was used to apply a 
downward force simultaneously with a rolling motion until the top 
plate touched the 3 mm side rails. The soils were removed and re-
molded and the procedure repeated until they crumbled. The gravi-
metric water content of the crumbled samples was considered as the PL. 

For both LL and PL measurements, the gravimetric water content of 
the samples was obtained by oven drying at 105 °C for at least 48 h. 

The PI for the samples was calculated as LL – PL. 

2.2.3. Hygroscopic water content (wh) 
Water vapor adsorption and desorption isotherms covering the 

range from 3% ≤ RH ≤ 93% (resolution of 2% RH and measurement 
temperature of 25 °C) were determined on air dried samples with a 
vapor sorption analyzer (METER Group Inc., Pullman, WA, USA). After 
the measurements, the samples were oven dried for 48 h to determine 
the reference water contents. Full details of the measurement metho-
dology are reported in Arthur et al. (2014) and Likos et al. (2011). For 
modeling, the water contents at 18 selected RH values (10 to 90% with 
increments of 5%) were obtained directly from the adsorption and 
desorption data or by linear interpolation between the two closest 
points when the wh at the exact RH was not directly available. 

2.3. Modeling 

2.3.1. Modeling rationale and data exploration 
The use of wh as a predictor of the Atterberg limits is possible be-

cause the limits are controlled primarily by the soil clay mineralogy, 
surface area and the magnitude of CEC. These soil properties are often 
used in PTFs to predict the Atterberg limits (e.g., van Tol et al., 2016; 
Zolfaghari et al., 2015). Hygroscopic water content, is much easier to 
measure, and its magnitude is determined by a combination of clay 
content, clay mineralogy, silt content and OC (Karup et al., 2017). 
Previous work has emphasized the tight link between wh and both CEC 
and SA (Arthur et al., 2018; Khorshidi and Lu, 2017). Additionally, a 
few studies have shown that water content at different RH (or soil water 
potentials) can be used as predictors for both PL and LL (de Jong et al., 
1990; Seybold et al., 2008). It is thus clear that wh can serve as a reli-
able estimator of the Atterberg limits. 

Prior to the analyses, the relationships between wh and the LL, PL and 
PI were explored for all samples. Based on the relationship between wh and 
PL, the 212 samples were split into two groups. Group 1 [191 samples] 
comprised all types of samples, except tropical Vertisols from Ethiopia and 
Ghana, and Group 2 [21 samples] included the tropical Vertisols. 
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2.3.2. Data partitioning for modeling 
The two sample groups were further partitioned into two datasets 

each; the model development or calibration, and the model validation 
datasets. The partitioning was done in R v3.5.2 (R Development Core 
Team, 2018) using the “createDataPartition” data splitting function in 
the “caret” package (Kuhn, 2019). The function creates balanced splits 
of the data while preserving their overall class distribution. The samples 
were split into the two datasets based on LL as it had the largest data 
range among the three variables. Group 1 (G1) samples were split into 
80% [155 samples] and 20% [36 samples] and Group 2 (G2) samples 
were split as 60% [13 samples] and 40% [8 samples] for the calibration 
and validation datasets, respectively. 

2.3.3. Model development 
The suitability of the data for the regression analyses was de-

termined by assessing the normality of the residuals (Shapiro–Wilk test) 
and constant variance (computing the Spearman rank correlation be-
tween the absolute values of the residuals and the observed values) of 
the data. It was found that the data satisfied both criteria. 

2.3.3.1. Hygroscopic water content. For the two calibration datasets, the 
measured variables (LL, PL, and PI) were regressed individually against 
the predictor variables (18 wh values between 10 and 90% RH for 
adsorption and desorption). The analysis was conducted using the lm 
function in R to fit a linear model to the data. 

The general form of the model was: 

= + ×y a b w% %h (1)  

where y is LL, PL or PI, wh is hygroscopic water content at a given 
relative humidity (RH) and a and b are the intercept and slope of the 
regression model, respectively. 

After obtaining the 18 equations each for adsorption and desorption 
for all three variables (LL, PL, PI), the a-values did not vary significantly 
with RH, so an average a value is provided for each limit. Conversely, b 
varied markedly with increasing RH, so a polynomial function was used 
to relate the b values to RH. 

2.3.3.2. PTFs from other soil properties. The calibration datasets were 
also used to develop other PTFs based on either CEC or a combination 
of clay, silt and organic carbon contents (denoted as PSD). The CEC PTF 
was of the same form as for the wh, whereas the PSD PTF comprising 
clay, silt and OC was developed using forward stepwise regression, 
therefore in some cases, not all three variables significantly contributed 
to the regression and were not included (Table 3). Sand content was 
excluded as it was collinear with the clay content. Furthermore, as the 
CEC was strongly correlated to the clay content (r = 0.71***) the two 
variables were not included in the same PTF. 

2.4. Evaluation of model performance 

The LL, PL, and PI of the samples in the validation datasets was 
estimated from the models developed from wh and the other PTFs. The 
performance of the models was evaluated by the square of the Pearson 
correlation coefficient, the root mean square error (RMSE), and the 
standardized root mean square error (sRMSE) (Equation (2)). The 
sRMSE allows comparison of the model performance to previous studies 
(Arthur, 2017). 

=
=

=RMSE
sRMSE RMSE Range/

,i
n y y

n1
( )p m 2

(2)  

where n is the number of samples, yp represents the estimated LL, PL 
or PI, ym represents the reference or measured LL, PL or PI, and Range is 
the difference between the smallest and the largest value of the re-
spective variable. 

The sensitivity of the wh models to RH was determined by com-
paring the RMSE of the 18 RH levels for each sorption direction. 

3. Results and discussion 

3.1. Description of calibration and validation datasets 

The samples exhibited a large variation in Atterberg limits, PI, and 
other soil properties (Fig. 1, Table 1) and the soil types included 

Fig. 1. Distribution of the investigated samples displayed on the (a) USDA soil textural triangle and (b) Casagrande plasticity chart including classification of swelling 
classes. The samples are partitioned into calibration [grey symbols] and validation [white symbols] datasets for the two sample groups (G1 and G2). 
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Andisols, Luvisols, Oxisols, Vertisols, Chernozems, among others. 
The particle size distributions of the investigated samples covered 

all USDA soil textural classes, except silt (Fig. 1a). The OC and CEC 
ranged from 0 to 4.7% w/w and 3 to 87 cmol(+) kg−1, respectively 
(Table 1). Similarly, the Atterberg limits covered a wide range for the 
samples; LL from 20 to 106%; PL from 12 to 74%, and the PI from 6 to 
59%. Due to the wide variation in LL, the samples covered a broad 
range in swelling potential (low to extremely high) (Fig. 1b). This wide 
range in swelling potential of the samples is necessary to ensure broad 
applicability of the developed models. The partitioning of the dataset 
into the calibration and validation datasets yielded evenly distributed 
groups (Fig. 1), considering both the Atterberg limits on the one hand, 
and soil properties (clay, silt, sand, OC, and CEC) on the other hand 
(Table 1). 

3.2. Relationship between Atterberg limits and wh 

Examples of measured water vapor sorption isotherms for two 
samples that differ significantly in clay content and plasticity are shown 
in Fig. 2a. The sample with LL of 54% had significantly higher water 
sorption than the sample with 27% LL. For both samples, water sorption 
hysteresis was evident. Hysteresis of water vapor sorption occurs in the 
majority of soil types; larger hysteresis occurs in soil samples rich in 
expansive clays such as montmorillonite and limited hysteresis in 
samples rich in kaolinite (Arthur et al., 2020). The majority of in-
vestigated samples considered in this study had varying amounts of 
swelling clays and only a few samples (< 10 samples) had significantly 
large amounts of kaolinites or other non-expansive clays in their clay 
fraction. An example of how wh at RH of 50% (wh50d) was obtained for 
both adsorption and desorption is shown in Fig. 2a; for the sample with 
high LL, the wh at 50% RH was 3.01 and 3.65% during adsorption and 
desorption, respectively. This further justified the need for separate 
estimation models for adsorption and desorption. 

In Fig. 2b and 2c, the relationship between the LL and wh50d, and PL 
and wDs50, respectively, are presented. The relationship between PI and 
wDs50 was similar to that of LL and wDs50 (data not shown). The PL and 
LL increased linearly as wh increased. Based on the PL–wDs50 relation-
ship, the samples from G2 were distinctly different from the rest of the 
samples (Fig. 2c). 

The G2 samples were tropical Vertisols with high plasticity due to 
comparatively low PL relative to LL (Fig. 1b). The high plasticity of 
Vertisols is due to the strong expansivity of the montmorillonite clay 
minerals present (Woldeab, 1988). The trends presented for wDs50 and 
the Atterberg limits (Fig. 2b and 2c) were similar for all considered RH 
levels. Besides a few studies (de Jong et al., 1990; Seybold et al., 2008; 
Smith et al., 1985), the potential of using water content as an estimator 
for the Atterberg limits has not been widely investigated. The work of  
Smith et al. (1985) considering 66 samples from 32 sites in Israel, 
showed that wh (RH undefined) better explained the variations in LL 
and PL, when compared to clay content, CEC or SA. In Seybold et al. 
(2008), based on samples from all over the U.S., the water content at 

−1500 kPa (w1500), in combination with OC, was used to estimate LL 
and PL of Andisols, but w1500 was only considered because for Andisols, 
accurate determination of clay content, which was the main predictor 
for LL and PL, was challenging. In addition to the water content 
at −1500 kPa, de Jong et al. (1990) found, based on 448 samples from 
southern Saskatchewan, Canada, that the water content at −33 kPa 
was better correlated to the Atterberg limits than other soil properties 
(clay, OC and inorganic C). Beside the Atterberg limits, Lu and Dong 
(2017) also reported that the maximum adsorption water content was 
strongly correlated (r = 0.89) to the shrinkage rate for seven samples. 
Based on the data from Fig. 2 and the literature, it is evident that the 
soil consistency limits are correlated to wh. 

3.3. Regression models 

3.3.1. Hygroscopic water content considering hysteresis 
The developed models for the Atterberg limits based on wh at se-

lected RH values between 10 and 90% obtained via adsorption or 
desorption, are presented in Tables S1 and S2 for the G1 and G2 sam-
ples, respectively. For all models, the strength of the relationship be-
tween the Atterberg limits and wh (r2) exhibited in the regression 
models tended to increase as RH increased from 10 to 90% (Tables S1 
and S2). 

For G1 samples, the average coefficient of determination (r2) for the 
Atterberg limits regression models based on wh decreased in the order 
LL (0.76)  >  PL (0.69)  >  PI (0.51). Thus, wh accounted for the 
variability in LL more than the variability in PL or PI of the investigated 
samples. Similarly, Smith et al. (1985) reported stronger correlations 
between wh and LL (r2 = 0.72), compared to wh and PL (r2 = 0.67). The 
case was different for the G2 samples, where the relationship between 
wh and PL (r2 = 0.88) was stronger than between wh and LL (r2 = 0.74) 
or PI (r2 = 32). The highly plastic nature of the Vertisols in G2 suggest 
that the PL, rather than the LL, may be more strongly linked to the 
montmorillonite-dominated mineralogy, and consequently wh. 

For each model, the intercept a did not vary significantly with RH, 
as observed from the low standard error values of < 1% (Table 2). The 
average a values for the RH range are reported in Table 2 for both 
sample groups and sorption direction. The a values for the G1 samples 
averaged approximately 26, 14, and 12% for LL, PL and PI, respec-
tively, and were not significantly affected by sorption hysteresis. Con-
versely, for the G2 samples, a values for adsorption and desorption were 
noticeably different (e.g., 16.8 and 20.5% for LL). This may be ex-
plained by the larger hysteresis that is observed for samples rich in 
montmorillonite clay compared to other samples (Arthur et al., 2020). 
On the other hand, the slope b values changed markedly with RH, and 
the generated b-RH polynomial relationships are presented in Table 2. 
An example of the fit of the polynomial function to the b-RH data is 
presented in Fig. 3 for the LL of the G1 samples. The polynomial 
function accurately fitted the b-RH data for all sample groups and for 
both sorption directions. For all the Atterberg limits, sorption directions 
and two sample groups, the polynomial function fits to the b-RH data 

Table 1 
Descriptive statistics of soil properties for investigated samples (n = 212).        

Property  Min Max Mean CV%  

Clay %w/w 8 [8, 11] 89 [87, 89] 35 [35, 36] 51 [50, 54] 
Silt 2 [2, 2] 85 [85, 59] 31 [32, 25] 57 [55, 66] 
Sand 0 [0, 0] 85 [85, 84] 34 [32, 39] 70 [72, 61] 
OC 0.0 [0.0, 0.0] 4.7 [4.7, 3.4] 1.1 [1.2, 1.0] 95 [97, 86] 
LL 20 [22, 20] 106 [106, 102] 49 [49, 50] 37 [37, 38] 
PL 12 [12, 13] 74 [74, 67] 25 [25, 23] 39 [38, 42] 
PI 6 [7, 6] 59 [59, 59] 25 [24, 27] 50 [50, 51] 
CEC cmol(+) kg−1 3 [3, 5] 87 [87, 79] 28 [27, 30] 67 [66, 70] 

CV = coefficient of variation; OC = soil organic carbon; LL = liquid limit; PL = plastic limit; PI= plasticity index; CEC = cation exchange capacity. For each soil 
property, numbers outside square brackets are for the full dataset and the numbers in square brackets are for the calibration and validation datasets, respectively.  
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had r2 values between 0.966 and 0.998 and residual standard error 
values between 0.058 and 0.193 (Table 2). 

3.3.2. PTFs based on other soil properties 
The use of soil texture, OC, CEC, and other soil properties to esti-

mate the Atterberg limits using regression analyses has been exploited 
in several studies with varying degrees (0.47  <  r2  <  0.87) of success 
(e.g., Ahmadi et al., 2012; Seybold et al., 2008; Spagnoli and Shimobe, 
2019; van Tol et al., 2016). In Table 3, the regression coefficients for the 

PTFs based on clay, silt and OC content (denoted as PSD), and based on 
CEC are presented. Although sand content is sometimes used as an es-
timator variable for the Atterberg limits (Deng et al., 2017; Keller and 
Dexter, 2012), it was excluded from the analyses because the amount of 
water sorbed by sand particles is negligible and the sand content of the 
datasets was collinear with the clay content. Clay content was a sig-
nificant (p  <  0.001) predictor variable for PL, LL and PI for both 
sample groups. In general, higher clay content is linked to higher 
plasticity and shrink-swell potential in soils. Also, silt content was an 
important variable to estimate the LL and PI for both sample groups, 
but less so for the PL. Although the majority of existing PTFs do not 
include silt in regression models, the fine silt fraction can reportedly 
absorb substantial amounts of water during the soil wetting process 
(Karup et al., 2017). Organic carbon content did not significantly 
contribute to all the Atterberg limits for G2 samples, while for G1 
samples, OC had no significant contribution to PL. This can be partly 
explained by the low average OC (1.1%) of the entire dataset (Table 1). 
For samples with substantial amounts of OC, previous studies have 
indicated a strong correlation between OC and the PL (de Jong et al., 
1990; Keller and Dexter, 2012; Mbagwu and Abeh, 1998). For example,  
Keller and Dexter (2012) reported that for samples with similar soil 
texture, OC strongly affected the PL. Also, de Jong et al. (1990) showed 
that OC was equally important as clay content in estimating LL of 
samples from Ap horizons. Conversely, Seybold et al. (2008) found no 
significant correlation between OC and the Atterberg limits (LL and PI). 

Additionally, for soil samples with clay contents > 20% and 
OC < 2.0%, the contribution of OC to water content is reportedly in-
significant relative to that of clay content (Arthur et al., 2015). Since 
the average clay content of the investigated samples was 35%, this may 
also explain the limited effect of OC on the Atterberg limits for the G1 
samples. For some of the PSD models for the G2 samples, the intercepts 
were not significant and were removed from the equation; this implies 
that the r2 values of these equations cannot be compared to the other 

Fig. 2. (a) Soil water vapor sorption isotherms for two samples with different clay content (CL) and Atterberg limits, depicting adsorption and desorption, hysteresis 
and derivation of the hygroscopic water contents (wh) at relative humidity (RH) of 50% (wh50d), and the relationship between wh50d and (b) liquid limit, and (c) 
plastic limit for the two soil sample groups. 

Fig. 3. Relation between relative humidity and water content coefficient, b, of 
the proposed equation for estimating the liquid limit (LL% = a + b × wh%) for 
Group 1 samples. The intercept, a, averaged 26.62 and 26.11% for water vapor 
adsorption and desorption, respectively. The average a values and polynomial 
functions for estimating plastic limit and the plasticity index are provided in  
Table 2. 
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equations that include intercepts. 
The CEC tended to more strongly relate to the Atterberg limits than 

the clay, silt and OC contents; as CEC integrates the three soil properties 
in addition to the clay mineralogy to estimate the Atterberg limits. 
Based on different types and number of soil samples, Seybold et al. 
(2008) and Smith et al. (1985) also reported similar strong correlations 
between CEC and the Atterberg limits. 

3.4. Validation of developed models 

3.4.1. Hygroscopic water content models 
The performance of the developed models was evaluated for all 44 

validation samples together (36 and 8 for G1 and G2, respectively). The 
validation dataset comprised of samples from 14 countries that varied 
widely in clay mineralogy (kaolinite, illite, and montmorillonite clay 
minerals) and the magnitude of the estimated parameters (LL, PL and 
PI). Further details of each sample in the validation set is provided in  
Table S1. The validation was done by (i) scatterplots of the measured 
and estimated Atterberg limits (Fig. 4 and Fig. 5), and (ii) comparison 
of the estimated swelling classes based on the LL and PI (Fig. 1b;  
Table 4). 

A comparison of the measured and estimated Atterberg limits from 
desorption wh measured at RH of 50 and 90%, respectively, is presented 
in Fig. 4 and for all RH levels and sorption directions in Fig. S1. In 

general, there was slightly better estimation of Atterberg limits based 
on the wh at 90% RH compared to 50% RH (Fig. 4). When the whole RH 
range is considered, the trend is clearer; the estimation accuracy for LL 
and PL increases (decreasing RMSE) with increasing RH (Fig. S1). The 
discontinuity in the trend for PI in Fig. S1 is possibly an artefact from 
combining the two sample groups. 

For different sorption directions, the average RMSE (%) over the 
entire RH range from 10 to 90% for adsorption (LL = 7.73%; 
PL = 4.58%, and PI = 6.68%) was slightly larger than for desorption 
(LL = 7.39%; PL = 4.35%, and PI = 6.65%), and beside the PI, the 
desorption-based estimations were always better than for adsorption 
(Fig. S1). The seemingly better estimation of Atterberg limits based on 
desorption water content, is possibly due to the greater intermolecular 
forces the adsorption process has to overcome compared to desorption. 
Previous studies also suggest to use desorption data for estimating soil 
properties (Arthur, 2017; Lu and Khorshidi, 2015). The performance of 
the models was in the order LL  >  PL  >  PI (e.g., estimation based wh 

at 90% RH gave r2 values of 0.89, 0.83 and 0.79, respectively for LL, PL 
and PI). 

3.4.2. CEC and PSD models 
The performance of the CEC- and PSD-based models for estimating 

the Atterberg limits is shown in Fig. 5. Results indicate that CEC was 
better at estimating the Atterberg limits compared to the PSD. Both 

Table 2 
Parameters of the Atterberg limits (liquid limit, LL and plastic limit, PL) and the plasticity index (PI) regression models (y% = a + b × wh%) from hygroscopic water 
content, wh, considering hysteresis for Group 1 and Group 2 samples. a and b values for each relative humidity are provided in Tables S1 and S2.         

Property (%) Sd a b 

Equation adj. r 2 p-value RSE  

Group 1 samples 
LL Ads 26.6  ±  0.35 18.8–0.48x + 0.0067x2 − 3.55 × 10−5x3  0.997   < 0.0001  0.167 

Des 26.1  ±  0.32 16.0–0.43x + 0.0057x2 − 2.79 × 10−5x3  0.996   < 0.0001  0.159 
PL Ads 14.5  ±  0.19 9.19–0.25x + 0.0035x2 − 1.90 × 10−5x3  0.997   < 0.0001  0.085 

Des 14.2  ±  0.17 8.08–0.21x + 0.0029x2 − 1.42 × 10−5x3  0.995   < 0.0001  0.094 
PI Ads 12.1  ±  0.16 8.92–0.23x + 0.0032x2 − 1.65 × 10−5x3  0.997   < 0.0001  0.082 

Des 11.9  ±  0.16 7.91–0.21x + 0.0028x2 − 1.37 × 10−5x3  0.997   < 0.0001  0.067 
Group 2 samples 
LL Ads 16.8  ±  0.46 23.1–1.02x + 0.024x2 − 2.64 × 10−4x3 + 1.05 × 10−6x4  0.998   < 0.0001  0.135 

Des 20.5  ±  0.72 13.3 − 0.33x + 0.0044x2 − 2.17 × 10−5x3  0.991   < 0.0001  0.193 
PL Ads −7.0  ±  0.21 12.8–0.51x + 0.013x2 − 1.16 × 10−4x3 + 4.31 × 10−7x4  0.998   < 0.0001  0.084 

Des −6.2  ±  0.24 8.38 − 0.22x + 0.0031x2 − 1.54 × 10−5x3  0.998   < 0.0001  0.054 
PI Ads 23.8  ±  0.32 10.5–0.50x + 0.013x2 − 1.48 × 10−4x3 + 6.21 × 10−7x4  0.998   < 0.0001  0.058 

Des 26.7  ±  0.54 5.07 − 0.13x + 0.0019x2 − 9.99 × 10−6x3  0.966   < 0.0001  0.134 

Sd = sorption direction, Ads = adsorption, Des = desorption, x  = relative humidity (%) between 10 and 90%, RSE = residual standard error of regression, adj. 
r2 = adjusted r-squared of regression; p-value = significance of the regression. All regression coefficients were significant at the 0.001 level.  

Table 3 
Regression coefficients for pedotransfer functions based on clay, silt and organic carbon contents (PSD) and based on cation exchange capacity (CEC) for Group 1 and 
Group 2 samples.            

LL  PL  PI  

Group 1 Group 2  Group 1 Group 2  Group 1 Group 2  

Partial regression coefficients - Model 1 (PSD) 
Intercept  16.5***  –   12.2***  –   5.6**  – 
Clay [%]  0.82***  1.40***   0.39***  0.27***   0.44***  1.12*** 

Silt [%]  0.18***  0.70*   –  0.30*   0.13***  –1.00*** 

OC [%]  −2.29**  –   –  –   −1.84***  – 
Adj. r2  0.66  0.99   0.46  0.99   0.57  0.99 
RSE  10.44  4.84   7.10  1.95   7.02  4.00 
Partial regression coefficients - Model 2 (CEC) 
Intercept  23.9***  25.8**   13.6***  –   10.3***  20.9** 

CEC [cmol(+) kg−1]  0.95***  0.73***   0.47***  0.37***   0.48***  0.44*** 

Adj. r 2  0.77  0.73   0.62  0.96   0.56  0.64 
RSE  8.16  5.19   5.73  4.23   6.32  3.79 

***, **, and * denote statistical significance of the regression parameters at p  <  0.001, 0.01 and 0.05, respectively. 
OC = organic carbon, RSE = residual standard error of regression, adj. r2 = adjusted r-squared of regression.  
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models exhibited Atterberg limits estimation values that were evenly 
distributed along the 1:1 line with no clear underestimations or over-
estimations. 

3.5. Comparison of newly developed models 

Comparison of the wh-based models (Fig. 4) and the models based 
on CEC and PSD (Fig. 5) showed that for the LL and PL, the model based 
on wh was superior to the other two models. For the PI, however, the 
difference among the three developed models was minimal; but the CEC 
based model tended to better estimate PI when compared to the wh and 
PSD models. 

How this translates to the classification of the samples into swelling 
classes for engineering purposes is shown in Table 4. The data in the 
table describe the percentage of samples that were classified into the 
same swelling class based on the model estimations compared to the 
measured LL data (see Fig. 1b for swelling class classification). 

For the samples with low swelling potential, wh and CEC correctly 
classified 78% compared to the just 44% by the PSD-based model. For 
the samples with medium and high swelling potential, wh classified 
93% and 81%, respectively; better than using CEC and PSD. 
Additionally, CEC and wh were both good at correctly classifying the 
five samples with very high and extremely high swelling potential. 
Overall, this was also consistent with what was observed earlier in  
Figs. 4 and 5, that among the three model types, the PSD had the 
highest estimation error. Nevertheless, the estimation accuracy of PSD 
will be sufficient for the purpose of screening samples into plasticity or 
swelling groups. Additionally, since wh data are not readily available at 
regional or country scale, the CEC and PSD models may be more con-
venient to use as the data is often readily available from standard soil 
surveys. 

3.6. Evaluation of models from literature 

Existing PTFs from three studies were evaluated and their perfor-
mance compared with the models developed in this study. Firstly, de 
Jong et al. (1990), based on 279 samples from Saskatchewan, Canada, 
used stepwise multiple linear regression to develop equations for the 

Fig. 4. Measured versus estimated (a) liquid limit, (b) plastic limit, and (c) plasticity index from desorption water content at 50% [w50] and at 90% relative humidity 
[w90] for Group 1 (○) and Group 2 (Δ) samples. RMSE = root mean square error; r2 = square of the Pearson correlation coefficient. 

Fig. 5. Measured versus estimated liquid limit (a), plastic limit (b), and plasticity index (c) from clay, silt and organic carbon contents [PSD] and cation exchange 
capacity [CEC] for Group 1 (○) and Group 2 (Δ) samples. RMSE = root mean square error; r2 = square of the Pearson correlation coefficient. 

Table 4 
Comparison of percentage of samples classified into the correct swelling class 
after estimation of liquid limit using desorption water content at 90%RH 
(wh90d), cation exchange capacity (CEC), or a combination of clay, silt and 
organic carbon contents (PSD).      

Swelling class based on LL (Fig. 1) Percent correctly classified 

wh90d CEC PSD  

Low [9] 78 78 44 
Medium [14] 93 64 43 
High [16] 81 75 75 
Very high [4] 100 75 50 
Extremely high [1] 100 100 100 
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LL, PL and PI from clay and OC contents. Secondly, Keller and Dexter 
(2012) used 89 samples from nine countries to develop equations, from 
clay and organic matter contents, for PL, LL and PI. Finally, Seybold 
et al. (2008) utilized a database of 2797 samples from all over the USA, 
and developed predictive equations for the LL and PI by combining clay 
content and CEC. All the equations are provided in Table S4. 

In Fig. 6, the performance of the three groups of models are pre-
sented for the validation dataset (both G1 and G2 samples). The three 
considered models estimated the Atterberg limits with varying degrees 
of accuracy. For LL, the Seybold et al. (2008) model performed best 
(RMSE = 8.56%) among the three studies, while the model of de Jong 
et al. (1990) had the highest estimation error (RMSE = 15.3%) 
(Fig. 6a). For PL, the performance of the two evaluated models was 
significantly poorer than for LL (Fig. 6b). For PI, the performance of the  
Keller and Dexter (2012) model was the lowest among the three 
(RMSE = 15.11%), while the Seybold et al. (2008) model performed 
creditably well (RMSE = 7.77%). The better performance of the  
Seybold et al. (2008) model is due to the inclusion of CEC, which as 
mentioned earlier is a more representative variable for available sur-
faces for water absorption. The use of clay and OC or OM contents alone 
do not account for the significant contribution of clay mineralogy in 
determining the magnitude of the Atterberg limits. 

The three literature models estimated the LL, PL, and PI with a 
lower accuracy (Fig. 6) than the models based on the wh (Fig. 4), pri-
marily because wh better explains the variability in the Atterberg limits 
and PI, compared to soil texture or OC. Although the CEC and PSD 
models presented here used the same soil properties as used in the 
models from literature, the performance of the proposed models (Fig. 5) 
were better than the models from literature. This is due to the large 
variability in the samples used for developing the models in our study. 

3.7. Model limitations 

The maximum LL, PL and PI of the samples considered in the study 
were 106, 74, and 59%, respectively. Consequently, the models devel-
oped may not be applicable for high plastic samples (LL  >  110%) or to 
samples of very low plasticity (PI  <  10%). Further, the investigated 
samples did not contain large amounts of salts, so the applicability of 
the models for saline, sodic or gypsic samples may be limited. 

4. Conclusion 

We propose regression models that estimate the Atterberg limits and 
the plasticity index (PI) from hygroscopic water content (wh) measured 
between 10 and 90% relative humidity (RH) and considering hysteresis. 
Furthermore, we compared wh models with models based on cation 
exchange capacity (CEC), clay, silt, and organic carbon contents. The 
wh–based models accurately predicted liquid limit (LL) and plastic limit 
(PL) regardless of the RH at which wh is measured or the sorption di-
rection for a wide range of soil types. Furthermore, the wh–based 
models for LL and PL were superior to models developed in the study or 
from the literature that were based on other soil properties. For PI, 
although the wh–based models performed creditably well, other models 
that incorporated CEC performed slightly better. Thus, for studies that 
require the Atterberg limits on a large scale with no available soil data, 
the wh–based models will prove useful as they require only a RH meter 
and a drying oven. 
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