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Abstract: Microgrids have emerged as a practical solution to improve the power system resilience
against unpredicted failures and power outages. Microgrids offer substantial benefits for customers
through the local supply of domestic demands as well as reducing curtailment during possible
disruptions. Furthermore, the interdependency of natural gas and power networks is a key factor in
energy systems’ resilience during critical hours. This paper suggests a probabilistic optimization of
networked multi-carrier microgrids (NMCMG), addressing the uncertainties associated with thermal
and electrical demands, renewable power generation, and the electricity market. The approach
aims to minimize the NMCMG costs associated with the operation, maintenance, CO2e emission,
startup and shutdown cost of units, incentive and penalty payments, as well as load curtailment
during unpredicted failures. Moreover, two types of demand response programs (DRPs), including
time-based and incentive-based DRPs, are addressed. The DRPs unlock the flexibility potentials
of domestic demands to compensate for the power shortage during critical hours. The heat-power
dual dependency characteristic of combined heat and power systems as a substantial technology in
microgrids is considered in the model. The simulation results confirm that the suggested NMCMG
not only integrates the flexibility potentials into the microgrids but also enhances the resilience of the
energy systems.

Keywords: demand response; flexibility; multi-carrier microgrid; resiliency; probabilistic; uncertainty

1. Introduction

Improving the power system’s resilience against incidents and natural disasters has at-
tracted much attention during the last decade. Resiliency depicts the capability of a system
to withstand low-probability and high-impact incidents without causing a power outage.
Microgrid (MG) deployments are considered a viable solution to cope with major extreme
events [1]. Besides, coupling adjacent MGs is offered as an effective solution to enhance
power system resilience [2]. In this way, MGs’ local power generation is an alternative
backup for the critical loads of the adjacent MGs during extreme events [3]. Due to the
striking proliferation of gas-fired generations, energy infrastructure interdependencies,
e.g., electricity and natural gas, are significant [4]. Therefore, economic dispatch of power
and gas is a necessity to enhance the resiliency of networked multi-carrier microgrids
(NMCMG). On the other hand, the integration of distributed generations (DG) into the
energy networks has created many challenges for power system operation. In this way,
the uncertainties of non-dispatchable DGs, demands, and the electricity market make the
problem non-deterministic. The uncertainties mentioned above should be addressed in the
multi-carrier microgrids (MCMG)’ operational strategies to overcome the problem.
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Demand response programs (DRPs) are workable solutions to hedge against the
intermittency and volatility of renewable energy sources (RES) [5]. The DRPs make it
possible to integrate flexibility potentials of demand sectors, including residential [6,7],
industrial [8], commercial [9], and agricultural sectors [10], university districts [11], and
seaports [12] into the power systems. The paper [13] described several categories of DRPs.
The research study [14] presented a linear programming method to design isolated MGs
considering electrical batteries’ aging model. The benefits of DRPs in the presence of local
RES were estimated for typical isolated hybrid MGs in [15]. In [16], real-time pricing
of DRP was utilized to encourage customers to shift and/or curtail demands in critical
hours. The model investigates the impacts of demand response intensity and the cost
of energy not served on MGs’ reliability and economy. The results show that the need
for load shedding decreases as the penetration of responsive consumers increase. In [17],
interruptible load programs with price-based DRPs were addressed. The paper classified
electrical demands into shiftable, adjustable, interruptible, and fixed loads. Reference [18]
employed a novel dynamic pricing scheme to make a profit for both responsive and non-
responsive consumers. The dynamic pricing was measured based on the imported energy
from the main grid and local generation of RES. The paper in [19] proposed a hybrid
robust/stochastic framework for optimal scheduling of a multi-energy MG comprised of
electric vehicle parking lots, power-to-gas facility, and price-responsive shiftable loads.

Reference [20] proposed a hybrid analytical-heuristic approach to determine the opti-
mal generation of domestic units in the day-ahead market. Reference [21] studied heuristic
algorithms to optimize DGs’ size and location as voltage regulators in distribution systems.
Different charging/discharging strategies for electric vehicles were addressed considering
the uncertainties associated with RES and demands in [22]. In [23], electric vehicles and
charging stations were offered as distributed resources to enhance power system resiliency.
Reference [24] analyzed the real-time performance of a rooftop solar-based MG. The pa-
per took advantage of financial incentives to reach 40 GW power generation capacity for
rooftop photovoltaic panels to compensate for the high investment cost of batteries. Refer-
ence [25] proposed a resiliency-oriented energy scheduling for hybrid MGs considering
feasible islanding and survivability of sensitive demands. The model is split into normal
and emergency modes. The objectives of normal and emergency modes are to minimize the
operational cost considering feasible islanding in normal mode and maximize the power
system reliability for islanding mode. The joint optimization of energy and reserve schedul-
ing of renewable-powered MGs was proposed to minimize the cost-emission function
using the epsilon-constraint approach in [26]. The optimal operation of MGs under normal
and emergency operating conditions was facilitated incorporating efficient time-rate-based
DRP as an effective reserve option to smooth the usage pattern of consumers and minimize
the procurement costs. Reference [27] employed the moth-flame algorithm to optimize
the operation of a hybrid energy system, including various distributed energy resources
(DERs). An efficient joint optimization problem was presented to minimize the overall
fuel and emission costs in a photovoltaic-based MG in [28]. In [29], an economic pollution
dispatch problem was suggested to minimize the operation cost of urban MGs addressing
the local pollution from power and heat generation facilities.

An iterative energy scheduling model was proposed to quantify MGs’ local power
exchange price and unused capacity in [30]. A robust game-theoretic model was devised to
cope with energy trading between coupled MGs in [31]. In this way, the Nash equilibrium
point is determined under a scenario-based model. A coalitional game-theoretic algorithm
was proposed to optimize the energy exchange among MGs in [32]. In [33], the concept of
adjustable demand was adopted to optimally schedule low-cost resources for meeting the
resiliency requirements of multiple MGs. A dynamic pricing mechanism was proposed
to optimize the operational strategies of multiple MGs in [34]. A novel bi-level energy
management system for isolated networked MGs was proposed utilizing a step-wise DRP
model in [35]. This paper also introduced a novel pricing model based on MG marginal
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pricing for the power exchange between interconnected MGs. Furthermore, employing
DRPs resulted in the convergence of buses’ voltages to their rated values.

The NMCMG is initially inspired by the multi-carrier energy hub model. The NMCMG
can be exploited to streamline the complex tasks of energy management and efficiently deal
with different load growth scenarios in market prices within a network of MCMGs [36].
In [37], the MG resilience against severe events was reviewed from centralized, decentral-
ized, and hybrid energy management systems. A distributed method was presented to
satisfy the demands in decentralized energy management in [38]. The results showed that
centralized energy management enhances MGs’ resiliency considerably compared with the
other strategies. Reference [39] proposed a central controller for NMCMG systems aggre-
gating signals from local central controllers to simplify energy management. A strategy for
optimal energy management of MCMGs was proposed to minimize thermal energy loss
in [40]. The potential benefits of cooperation between multiple MCMGs at the distribution
level were highlighted in [41]. Simulation results confirmed that the financial feasibility of
MCMGs can be enhanced through a local power exchange between MCMGs.

To narrow this gap, this paper proposes a probabilistic optimal dispatch of energy
in electric and natural gas networks in an NMCMG. To integrate flexibility potentials of
MCMGs into the main grid, the approach uses a combination of incentive-based and time-
based DRPs (IBDRP and TBDRP). In this way, the approach unlocks the flexibility potentials
of responsive consumers to compensate for the power shortage during unpredicted failures
in power/gas lines. Furthermore, the dual dependency of heat and power generation in
combined heat and power (CHP) units is regarded in the model where the overall efficiency
and heat to power (H2P) ratio are in variation with the loading level. The model aims to
minimize the costs associated with the operation, maintenance, unserved energy, CO2e
emission, CHP startup and shutdown, penalty, and incentive payments while satisfying
local customers’ power and heat demand. The uncertainties associated with the thermal
and electrical load forecast errors, RES power generations, and electricity market are
modeled with probability distribution functions (PDFs). To sum up, the main contributions
of the study can be stated as follows:

• Proposing a mathematical model of NMCMG addressing the interdependencies of
gas and electricity networks;

• Optimizing the operational strategies of NMCMG in the presence of uncertainties
associated with electrical and thermal demands, electricity market, and RES;

• Introducing varying H2P ratio of CHP units with respect to the loading level;
• Integrating the flexibility potentials of responsive thermal/electrical consumers into

the main grid using IBDRP and TBDRP.

The rest of the paper is organized as follows: In Section 2, the key points of the
suggested approach are described qualitatively. This section gives the authors a general
insight into the problem. Section 3 provides the mathematical formulations of the proposed
approach in detail. In Section 4, the simulation results and discussions are stated. Finally,
Section 5 concludes the suggested approach.

2. Problem Description

The microgrid is defined as a set of aggregated DERs and loads that can be operated in
both grid-connected and islanded modes [42]. In addition to the electricity, heat energy will
be integrated into future power systems to increase energy efficiency by joining small-scale
energy zones. Therefore, this paper elaborates on the simple vision of smart interconnected
MCMGs in a roadmap while the issues that have been manifested in the previous papers
are still standing. Figure 1 describes the schematic diagram of the suggested MCMGs. The
roadmap visualizes a trend performed over five phases to enhance the performance of
energy systems.
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Figure 1. Roadmap for the microgrid of the future.

This paper analyzes the probabilistic optimal energy dispatch of a centralized multi-
carrier network with three MCMGs. Figure 2 illustrates the grid structure as partitioned
into three energy zones residing by residential, agricultural, and industrial customers
on a single 20 kV distribution feeder with a capacity of 230 Ampere. The DER units
include photovoltaic (PV) panels, wind turbines (WT), CHP, transformer, gas boilers, and
electrical/thermal storage systems. The electric and natural gas networks are designed
radially in the proposed network. The district heating network is modeled as a ring
network without considering heat loss in the distribution pipes. The central controller
of the NMCMG has two-way communication with the local controllers of the MCMGs.
The central controller of the NMCMG is an intermediary agent between the MCMGs and
the main grid. The central controller optimizes the operational strategies of the MCMGs
by sending dispatch signals to the local controllers. In this work, batteries, dispatchable
DGs, DRPs, and load curtailment schemes serve as fast-responding frequency and voltage
support for the NMCMG in emergency mode. The MCMGs are in emergency mode when
an unpredicted failure and/or a severe power shortage occurs. The normal mode will be
switched immediately to the emergency mode after detecting a fault occurrence to cope
with the disturbances. It will return to normal mode again after fault clearance. MCMGs
are resynchronized automatically with the main grid once the fault is cleared. Furthermore,
by making internal connections between MCMGs, the network operator can overcome the
power/heat shortage without being supplied by the main grid during disturbances.
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Figure 2. The general structure of the NMCMG with interconnected MCMGs.

3. Mathematical Formulations

In this section, the fundamentals of the suggested approach are modeled mathemati-
cally. For the sake of clarity, subscript/superscript is introduced to distinguish the terms
related to the introduced variables or parameters of the same symbol from those related to
their variations as indices.

3.1. Uncertainty Characterization

In energy studies, energy systems are subject to uncertain variables, e.g., energy price,
demand level, renewable power generation, etc. In this way, the deterministic approaches
may fail to optimize energy systems’ operation, especially in multi-carrier energy systems.
To overcome the barrier, this study suggests the probabilistic optimal dispatch considering
uncertainties associated with electrical/thermal demand, electricity prices, and renewable
power generation. To model the uncertain behavior of the stochastic variables, the best-
fitted PDFs are incorporated into the problem. Consequently, the operational strategies of
the MCMGs are optimized, addressing the probability distribution of the imperfect data.

The normal PDF fits the electrical and thermal demands reasonably well [43]. The
normal PDF can be stated as follows:

f (x) =
1

σl
√

2π
exp

(
− (x− µl)

2

2σl
2

)
(1)

where x is the uncertain variable with imperfect data, µ and σ are the mean and standard
deviation of the normal PDF, respectively.

In the electricity market, energy price is widely modeled by the lognormal PDF [44].
Therefore, the distribution of the electricity price is formulated by the lognormal PDF
as follows:

f (x) =
1

x σc
√

2π
exp

(
− (ln(x)− µc)

2

2σc2

)
(2)

A lognormal distribution with mean m and variance v has parameters:

µc = ln(m2/
√

m2 + ν) (3)

σc =
√

ln(ν/m2 + 1) (4)
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The power generation of WTs is strongly dependent on the wind regime. In this way,
the Weibull PDF normally fits the wind velocity [45]. Therefore, the Weibull PDF is adopted
in this study as follows:

f (υs) =


(

β
α

)
·
( υs

α

)β−1· exp
(
−
( υs

α

)β
)

υs ≥ 0

0 otherwise
(5)

where υs is the wind velocity, α is the scale parameter, and β denotes the shape parameter.
Afterward, the wind turbines’ power curves indicate how large the electrical power

output is generated at different wind speeds. The power curves of the wind turbines are
formulated as follows [46,47]:

Emuts(υs) =


0 0 ≤ υs ≤ υci or υs ≥ vco

Eu· υ2
s−υci2

υr2
s −υci2

·αe f ,converter
u ·κut υci ≤ υs ≤ υr

Eu·αe f ,converter
u ·κut υr ≤ υs ≤ υco

∀u ∈ wt

(6)

Finally, the beta distribution function [48] is employed to model the uncertainty of
solar irradiation as follows:

f (Rs) =
Γ(ϕ, ζ)

Γ(ϕ)·Γ(ζ) ·R
(ϕ−1)

s ·(1− Rs)
ζ (7)

where Γ(.) denotes the gamma function.
In the same way, there is a strong correlation between solar irradiation and PV output

power. Therefore, the power curves of solar panels are modeled to describe the power
output of the PV units as follows:

Emuts(Rs) =


Eu·
(

Rs
2

Rsta ·Rce

)
·αe f ,inverter

u ·κpv,t 0 ≤ Rs ≤ Rce

Eu·
(

Rs
Rsta

)
·αe f ,inverter

u ·κut Rce ≤ Rs ≤ Rsta

Eu·αe f ,inverter
u ·κut Rsta ≤ Rs

∀u ∈ pv (8)

3.2. Energy Storage

The energy storage systems have great flexibility potentials to enhance the resiliency
of MGs [49]. The storage systems provide operational flexibility for the MGs when a power
outage occurs due to unpredicted failure in local DGs and/or power lines. Moreover, they
can hedge against the intermittency of RES. Therefore, the mathematical formulation of the
storage system can be presented as follows:

SOCmuts = SOCmus,t−1 − Bchar/disch
muts /αchar/disch

mu ·∆t− ELloss
muts u ∈ SS (9)

(1− DODmu)·SOCmu ≤ SOCmuts ≤ SOCmu u ∈ SS (10)

ELloss
muts = SOCmuts·αloss

mu u ∈ SS (11)

Equation (9) describes the state of charge (SoC) of the storage systems. Inequality
(10) illustrates the upper and lower thresholds of the storage capacity. The energy loss
of the storage unit is presented by (11). The energy storage system is subject to the
following constraints: ∣∣∣Bchar/disch

muts

∣∣∣ ≤ Bchar/disch
mu u ∈ SS (12)

SOCmus(1) = SOCmus(24) u ∈ SS (13)
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Equation (12) presents the upper and lower thresholds of energy storage capacity.
Equation (13) enforces that the initial charging state is equal to the charging state’s last cycle.

3.3. Power and Gas Flow

In multi-carrier energy systems, there is a strong correlation between optimal flows
of power and gas. The approach addresses the DC power flow in the electricity network
based on the nodal power balance and line constraints regarding the power network. The
nodal power balance at power node n can be stated as follows:

Pinj
tsj −∑

j′
φjj′ ·(δtsj − δtsj′) = 0 (14)

In the same way, the gas flow balance for node g can be formulated as follows:

Qinj
tsg −∑

g′
Mgg′ ·Signtsgg′ ·

√
Signtsgg′ ·(Υ2

tsg − Υ2
tsg′) = 0 (15)

Signtsgg′ =

{
+1 i f Υtsg ≥ Υtsg′

−1 else.
(16)

Equations (15) and (16) describe the gas flows to the connected nodes as a function of
upstream and downstream pressures. The flow equation is generally valid for all types of
isothermal pipelines, including liquid and gaseous.

3.4. Resilience Criteria

In this paper, a resilience index is developed to exhibit the resilience of MCMGs during
emergency modes. The resilience index denotes the supplied demand during disruptions
as follows:

RIl
mts = 1−

(
LSl

mts

DDRP,l
mts + Dl

mts

)
∀l ∈ {e, h} (17)

The resilience index is applied for both electricity and heat demands as l ∈ {e, h}.

3.5. Demand Response Programs

In this study, to unlock the flexibility potentials of the demand-side, two types of DRPs
are addressed, including IBDRPs and PBDRPs. The suggested DRPs are implemented to
electrical and heat demands. This model is comprised of a linear economic model of price-
based and incentive-based demand responses. The model can be presented mathematically
as follows [50]:

DDRP,l
mts = Dinitial,l

mts ·


1 + ELl

tt·
(

ρ
f inal,l
mst − ρinitial,l

mst + πincentive,l
t + π

penalty,l
t

)
/ρinitial,l

mst

+ ∑
t′

t 6= t′

ELl
tt′ ·
(

ρ
f inal,l
mst′ − ρinitial,l

mst′ + πincentive,l
t′ + π

penalty,l
t′

)
/ρinitial,l

mst′


∀l ∈ {e, h}

(18)

The initial price for flexible demands is described as follows:

ρinitial,l
mst =

Total Cost
Total Energy Consumption

=
∑
t

Dinitial,l
mts ·πelec

ts

∑
t

Dinitial,l
mts

∀l ∈ {e, h} (19)

In the DRP, the customers change their demands in response to operators’ requests.
The system operator allocates incentive costs to the consumers who participated in the
DRPs. In contrast, the contracted customers in the compulsory DRPs will be fined by a
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penalty cost if they refuse to provide demand flexibility according to the contract. Further
information about the DRPs can be found in [50,51].

3.6. Networked Multi-Carrier Microgrid

In this study, two-stage energy management is proposed to optimize the operational
strategies of the NMCMG in the presence of stochastic variables. In the first stage, a
significant number of scenarios are generated for the uncertain variables. In the second
stage, the uncertain scenarios are imported to the energy management of the NMCMG.
To present the mathematical model of the NMCMG, the cost function and the operational
constraints are illustrated in the following subsections.

3.6.1. Cost Function of the NMCMG

The objective is to minimize the total operation cost of the NMCMG. The total cost of
the NMCMG is comprised of the operation, maintenance, reliability, CO2e emission, CHP
startup and shutdown, energy incentive and penalty costs as follows:

Minimize(OFs) = OCs + MCs + LCs + ECs + SCs + ICs + PCs (20)

The cost function of the NMCMG is comprised of seven terms. The first term describes
the energy trading cost. The second term denotes the maintenance cost of the DGs. The
third term presents the reliability cost of curtailed demands. The fourth term denotes the
CO2e emission tax. The fifth term declares the startup and shutdown cost of CHP units.
Finally, the last two terms illustrate the incentive payment and penalty cost of responsive
demands.

The energy trading cost of the NMCMG can be formulated as follows:

OCs = ∆t·∑
t

∑
m
(EXmts·πelec

ts + GEmts·πgas) (21)

The utility grid power (EXmts) can be positive (import), negative (export) or zero.
The overall maintenance cost of local DERs is expressed as follows:

MCs = ∆t·∑
t

∑
m

∑
u∈DG

(Emuts + Hmuts)·αmain
mu + ∑

u∈SS
αmain

mu ·
∣∣∣Bchar/disch

muts

∣∣∣ (22)

The first term denotes the maintenance cost of DGs. The second term illustrates the
depreciation cost of energy storage systems.

The startup and shutdown cost of CHP units is expressed in (23). Equations (24) and
(25) declare CHP units’ startup and shutdown status by using binary variables SU and SD
as follows:

SCs = ∆t·∑
t

∑
m
(SUmuts + SDmuts)·πsud ∀u ∈ chp (23)

SUmuts = Imuts·(1− Imus,t−1) ∀u ∈ chp (24)

SDmuts = (1− Imuts)·Imus,t−1 ∀u ∈ chp (25)

The emission cost for the main grid and local DGs is calculated as follows:

EC = ∆t·
(

∑
t

∑
m

∑
u∈DG

(Emuts + Hmuts)·EFu + EX+
mts·EFNet

)
·πem (26)

The positive sign in EX+
mts denotes the electricity purchase from the utility grid.

Although DRPs and energy storage are employed to supply demands during un-
predicted disruptions, the load shedding scheme plays a key role in the contingency
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management of the NMCMG. Therefore, the reliability cost implies unserved energy costs
for reimbursing curtailed demands as follows:

LCs = ∆t·∑
t

∑
m

∑
l∈{e,h}

LSl
mts·πens,l (27)

The DRPs are comprised of incentive payment and penalty cost. In this way, the
payments can be formulated as follows:

ICs = −∆t· ∑
t∈peak hours

∑
m

∑
l∈{e,h}

[
πincentive,l

t ·
(

Dinitial,l
mts − DDRP,l

mts

)]
(28)

PCs = ∆t· ∑
t∈peak hours

∑
m

∑
l∈{e,h}

[
π

penalty,l
t ·

{
CLl

mts −
(

Dinitial,l
mts − DDRP,l

mts

)}]
(29)

CLl
mts = Dinitial,l

mts ·αreduction,l ∀l ∈ {e, h} (30)

Equation (28) describes the incentive payment for contracted consumers who fulfilled
the flexibility requirements. Equation (29) states the penalty cost for consumers who have
refused to meet the flexibility requirements of the contracts. In this way, the penalty cost
is allocated based on the participation rate of the consumers. If the participation rate is
lower than the agreed value in the contract, the consumers are faced with a penalty cost.
Equation (30) shows the participation rate of the flexible demands. Detailed information
about the DRPs is found in [52].

3.6.2. Constraints of the NMCMG

In addition to the previous constraints, the NMCMG is subject to additional opera-
tional constraints associated with self-generation facilities, power balance, and required
reserve. In this section, the complementary constraints are explained.

The following equations describe the power generation of the CHP and gas boilers in
terms of power and heat. The fuel consumption function of the CHP units is modeled as
(31) based on [53]. Equations (31)–(34) are used to represent the features of CHPs using the
power–heat feasible operating regions of type-one CHP units in [54]. Inequalities (35) and
(36) show the upper and lower thresholds of the electrical and thermal power generated
by CHPs.

Fmuts = a·(Emuts)
2 + b·Emuts + c·(Hmuts)

2 + d·Hmuts + e·Emuts·Hmuts + g
∀u ∈ chp

(31)

Emuts − EA
u −

EA
u − EB

u
HA

u − HB
u
·
(

Hmuts − HA
u

)
≤ 0 ∀u ∈ chp (32)

Emuts − EB
u −

EB
u − EC

u

HB
u − HC

u
·
(

Hh
muts − HB

u

)
≥ −(1− Imuts)·Mbig ∀u ∈ chp (33)

Emuts − EC
u −

EC
u − ED

u

HC
u − HD

u
·
(

Hmuts − HC
u

)
≥ −(1− Imuts)·Mbig ∀u ∈ chp (34)

EC
u ·Imuts ≤ Emuts ≤ EA

u ·Imuts ∀u ∈ chp (35)

0 ≤ Hmuts ≤ HB
u ·Imuts ∀u ∈ chp (36)

The H2E ratio of CHPs is defined as the ratio of the heat output to the electricity
output, which is also closely linked with the overall efficiency and loading level of CHPs.
The H2E ratio is expressed in (37). The electricity and heat output ramp constraints of CHP
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units are expressed in (38) and (39). Here, R is the ramp rate of CHP units and ∆T is the
time step length of 60 min.

τmts = (Hmuts/Emuts)·Imuts =
(

α
e f ,h
muts/α

e f ,e
muts

)
·Imuts ∀u ∈ chp (37)

Emus,t−1 −
1

1 + τmts
·R·∆T ≤ Emuts ≤ Emus,t−1 +

1
1 + τmts

·R·∆T ∀u ∈ chp (38)

Hmus,t−1 −
τmts

1 + τmts
·R·∆T ≤ Hmuts ≤ Hmus,t−1 +

τmts

1 + τmts
·R·∆T ∀u ∈ chp (39)

The operation of gas-boilers satisfies the following constraints. Equation (40) denotes
boilers’ heat production as a function of injected natural gas and unit efficiency. Inequality
(41) shows the upper and lower thresholds of the generated power by boilers.

Hmuts = Fmuts·αe f
mu ∀u ∈ bo (40)

Hmu·Imuts ≤ Hmuts ≤ Hmu·Imuts ∀u ∈ bo (41)

Equation (42) illustrates the total gas consumption of gas-fired units, including CHPs
and boilers.

GEmts = ∑
u∈{chp,bo}

Fmuts (42)

The power and heat balance equations of the NMCMG are formulated as follows:

EXmts + ∑
u∈DG

Emuts + Bchar/disch
ESS,mts + LSl

mts = Ll
mts + DDRP,l

mts ∀l ∈ e (43)

∑
n,n 6=m

HEmnts + ∑
u∈DG

Hmuts + Bchar/disch
TSS,mts + LSl

mts ≥ Ll
mts + DDRP,l

mts ∀l ∈ h (44)

Equation (43) presents the power balance equation. As the equation reveals, the
summation of exchanged power with the electric utility network, power generation of
DERs, and curtailed demands are equal to the summation of non-responsive and responsive
electrical demand. In the same way, Equation (44) enforces that the exchanged heat with
adjacent MCMGs, the produced/converted thermal power by DERs and the amount of
curtailed heat demand are equal to the heat demand including both non-responsive and
responsive consumers.

The following equation balances the thermal power exchange of the MCMGs:

HEmnts + HEnmts = 0 (45)

Equation (45) ensures the thermal balance between MCMGs.
The power and gas distribution networks are subject to the following operational con-

straints: ∣∣∣φjj′ ·(δtsj − δtsj′)
∣∣∣ ≤ PLjj′ (46)∣∣∣∣Mgg′ ·Signtsgg′ ·

√
Signtsgg′ ·

(
Υ2

tsg − Υ2
tsg′

)∣∣∣∣ ≤ GLgg′ (47)∣∣∣δtsj − δtsj′
∣∣∣ ≤ ∆δ (48)

Υtsg ≤ Υtsg ≤ Υtsg (49)

Inequality (46) confines the power flow of distribution lines. In the same way, the
capacity of the gas flow in the gas distribution network is restricted by inequality (47). The
inequality (48) ensures that the voltage phase satisfies the upper and lower standard devia-
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tions at electrical nodes. The node pressure in the gas distribution network is guaranteed
by (49).

Reserve margin should be considered available to compensate for the unpredicted
power shortage in the generation units or increase in demand that might stem from the
probabilistic nature of resources [55]. Dispatchable units serving as fast-responding fre-
quency and voltage regulators must remain online to provide power once any disturbance
or power oscillation occurs. The battery charging can be utilized to contribute to reserve
availability. The constraints associated with reserve availability can be stated as follows:

ARms =

(
∑

t
(Ll

mts + Dinitial,l
mts )/Nt

)
·R ∀l ∈ e (50)

ARms ≤ +
(

EA
chp·Ichp,mts − Echp,mts

)
+
(

αchar/disch
ESS,m ·min (SOCESS,mts/Nt·∆t, Bchar/disch

ESS,m )
)

+
(

Ll
mts + DDRP,l

mts +
∣∣EX−mts

∣∣− LSl
mts

)
∀l ∈ e

(51)

Equation (50) describes that the available online reserve is proportional to the critical
demand of the MCMGs. Equation (51) explains that the generation capacity of DERs and
storage capacity of energy storage provides adequate reserve when the MCMGs face power
shortage. In the worst-case scenario, loads with low priorities will be curtailed to maintain
the MCMG frequency within the allowable limits.

4. Results

In this study, the suggested NMCMG comprises three MCMGs respectively resided by
504 residential, 7 agricultural, and 12 industrial customers. The MCMGs are interconnected
through the power and natural gas networks. In order to show the proficiency of the
proposed approach, two different modes are addressed, including normal and emergency
operation modes. The emergency mode makes it possible to optimize the operation of the
MCMGs under extreme conditions. Adversely, no failure and/or power outage occurs
in the normal operation mode. The time horizon of the problem is 24 h on an hourly
basis. The main aim is to unlock the flexibility potentials of electrical and heat demands to
minimize the total operation cost of the MCMGs.

Table 1 describes the technical characteristics of the electrical/thermal infrastructures
of the MCMGs. In order to hedge against the imperfect data of stochastic variables, 500
scenarios are generated for wind speed, solar irradiation, and demands. Figure 3 describes
the general procedure of the proposed approach. This diagram provides general insight
into the proposed approach.

The operation strategies of the MCMGs are optimized for four case studies. The
case studies describe the different failure and contingency modes in the power and gas
networks. Case Study 1 illustrates the normal operation mode for the three MCMGs. In
Case Study 2, a contingency analysis is carried out. Case Studies 3 and 4 are allocated to
failure modes. Note that the failure modes disrupt the power and gas networks. In contrast,
in the contingency mode, the congestion occurs in the distribution lines without severe
interruption. In Case Studies 3 and 4, it is assumed that the failure occurs at 07:00 p.m., and
it takes four hours to be cleared. Table 2 describes the characteristics of four case studies.

Figure 4 depicts the electrical and thermal load profiles of the MCMGs. The mean and
standard deviation values of lognormal PDF for electricity prices are considered 0.113 and
0.007, respectively. Moreover, the natural gas price is considered 0.023 (USD/kWh).
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Table 1. Technical characteristics of infrastructures in MCMGs.

Units MCMG 1 No.
Nominal Power/Energy

(kW/h) Units Efficiency (%) Maintenance Coefficient
(USD/kWh)

ElectricalThermal Total

Transformer
1

2000
92 - 92

0.0022 90 - 90
3 90 - 90

CHP 2
1 1100 Pertains to feasible

operating region 0.1452 1000
3 1400

Boiler
1 1700 - 85 85

0.12 1500 - 87 87
3 1900 - 90 90

Photovoltaic 1 2000 95 - 95 0.017

Wind Turbine 2 1000 90 - 90 0.04

Electrical Storage 1 to 3 30/90 95 - 95 0.001

Thermal Storage 1 to 3 90/90 - - - 0.001
1 MCMG: multi-carrier microgrid, 2 CHP: combined heat and power.

Table 2. Specifications of four case studies.

Network From Node To Node

Case Study

1 2 3 4

Networks Status

Electricity
0 1 Normal Contingency Fault Fault
1 2 Normal Contingency Fault Normal
2 3 Normal Contingency Fault Normal

Natural gas
0 1 Normal Contingency Normal Normal
1 2 Normal Normal Normal Normal
2 3 Normal Normal Normal Normal



Sustainability 2021, 13, 5792 13 of 30

Figure 3. Flowchart of the two-stage model.
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Figure 4. The demands of MCMGs: (a) electrical demand; (b) thermal demand.

The renewable generation units are comprised of WTs and PVs. In this way, 4× 250 kW wind
turbines are modeled in MCMG 2. Moreover, a 2 MW PV site is located in MCMG
1. Figure 5 depicts the characteristics of the WT and PV. The bar graphs illustrate the
probability distribution of wind velocity, output wind power, solar irradiation, and output
solar power for hour 12 of the day.

Figure 5. PDF of RESs including primary input and output power by PVs and WTs: (a) power output of PV; (b) power
output of WT; (c) solar irradiation; (d) wind velocity.

Table 3 illustrates the optimized operational strategies of the MCMGs in Case Study 1
for hour 12 of the day. The results indicate that the standard deviation of power generation
increases when they are located near RESs.
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Table 3. Operational analysis, Case Study 1.

MCMG 1 No. Distributed Energy Resources Power (kW) Standard Deviation of
Power (kW) Skewness of Power

MCMG 1

CHP 2 Electricity 577.345 322.984 −1.2305

Heat 525.385 293.916 −1.2305

Transformer 32.6554 113.279 3.9348

Photovoltaic 815.054 401.947 0.2643

Boiler 404.6 724.686 1.2305

Electrical storage 39.4126 25.7374 0.2154

Heat storage 11.184 15.597 1.1865

MCMG 2

CHP
Electricity 457.854 435.069 −0.1041

Heat 383.32 364.244 −0.1041

Transformer 369.174 393.28 0.1641

Boiler 1493.49 53.6406 −8.4078

Wind turbine 11.9822 9.24214 0.3556

Electrical storage 40.5039 25.2232 0.1706

Heat storage 2.18345 7.67646 4.0100

MCMG 3

CHP
Electricity 16.1298 114.063 7.0565

Heat 15.7791 110.901 6.9231

Transformer 1019.48 148.452 −2.9542

Boiler 1858.2 278.977 −6.5174

Electrical storage 44.5321 26.2621 0.0656

Heat storage 2.11265 9.10329 5.2248
1 MCMG: multi-carrier microgrid, 2 CHP: combined heat and power.

Table 4 describes the mean and deviation values of the daily purchased energy from
the main grid by the NMCMG. The results reveal that, as the penetration of RES increases,
the possibility of power purchase from the main grid decreases; thus, the possibility of
congestion in transmission lines decreases noticeably.

Table 4. The mean and standard deviation of daily purchased energy in NMCMG, Case Study 1.

Carrier Type

Total Purchased Energy in NMCMG 1

With RESs 2 (kW) Without RESs (kW)

Mean Standard
Deviation Skewness Mean Standard

Deviation Skewness

Electricity 29,061.6 9017.07 0.5052 31,755.8 13,079.7 0.7411
Natural gas 231,053 65,645.2 −0.2097 241,758 66,401.5 −0.5939

1 NMCMG: networked multi-carrier microgrid, 2 RES: renewable energy sources.

Figures 6 and 7 present the procurement strategies of thermal energy in terms of
imported and exported energy at hour 22 of the day. The graphs are plotted with and
without RES penetration. As shown, the thermal demand of MCMG 1 is partially supplied
by the adjacent MCMG 2, denoting the key role of thermal energy connectivity between
MCMGs in supplying the heat demand of adjacent demanding MCMGs. The average daily
thermal energy exchange between MCMGs with and without RESs penetration is 5818.77
and 6439.7, respectively. The results advocate that the overall performance of the system
increases with the availability of RESs.
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Figure 6. Imported thermal energy to MCMGs, Case Study 1: (a) node 1; (b) node 2; (c) node 3.

Figure 7. Exported thermal energy from MCMGs, Case Study 1: (a) node 1; (b) node 2; (c) node 3.

The daily thermal energy wastage in the proposed thermally energy-connected MCMG
system is illustrated in Figure 8. The result advocates that the daily thermal energy wastage
of the NMCMG penetrated with RESs increases by a mean and standard deviation value of
9% and 210% compared with a system without RESs penetration.

Figure 9 presents the gas pressure profile in three nodes of the gas network at hour 22
of the day. It can be seen that RESs penetration has an indirect impact on the gas nodes due
to CHP units as though, by increasing the RESs penetration, the pressure on CHP units
decreases. Due to the radial structure of power and gas distribution networks, the gas
pressure decreases in the subsequent nodes.
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Figure 8. Daily thermal energy wastage with and without RESs, Case Study 1.

Figure 9. Gas pressure for three gas nodes with and without RESs, Case Study 1: (a) node 1; (b) node 2; (c) node 3.

Figure 10 presents the probability distribution of power flow in three distribution lines
with and without RESs at hour 22 of the day in Case Study 2. In the same way, Figure 11
depicts the gas flow in three lines of the gas network at hour 22 of the day. The results
advocate that the impact of RES penetration on the gas network is considerably lower
than electric networks in Case Study 2. The reason is that the RES directly affects the
power balance at electrical nodes. Based on the graph, some parts of domestic demands
are supplied by local generation units with RES availability. As a result, the possibility of
congestion in transmission/distribution lines decreases.
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Figure 10. Power flow in three lines with and without RESs, Case Study 2: (a) line 0–1; (b) line 1–2; (c) line 2–3.

Figure 11. Gas flow in three lines with and without RESs, Case Study 2: (a) line 0–1; (b) line 1–2; (c) line 2–3.

In Case Study 2, the penetration of responsive consumers is considered 30%. This
means that only 30% of consumers participate in DRPs. In this way, the contracted con-
sumers must reduce 15% of energy consumption during critical hours. Figures 12 and 13
show the participation of flexible consumers in the DRPs for the electrical and thermal
networks at hour 22 of the day, respectively. The results advocate that responsive cus-
tomers have a tendency to shift their demands from peaks to off-peaks. Furthermore, the
penetration of RES changes the distribution of demand flexibility in MCMGs. Therefore,
more demand flexibility is available in some time intervals. The availability of demand
flexibility has a strong correlation with renewable power availability, which is an intermit-
tent variable.
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Figure 12. Flexibility potentials of electrical demands for TBDRP and IBDRP, Case Study 2: (a) node 1; (b) node 2; (c) node 3.

Figure 13. Flexibility potentials of thermal demands for TBDRP and IBDRP, Case Study 2: (a) node 1 (b) node 2 (c) node 3.

H2P ratio and overall efficiency of CHP units in each MCMG for different scenarios
are illustrated in Figures 14 and 15, respectively. At large, the mean values of H2P ratio and
overall efficiency levitate moderately without RES penetration as a means of generating
more heat. Additionally, the average overall efficiency of CHP units in each MCMG is 74%,
87%, 48%, respectively. The higher overall efficiency of MCMG 2’s CHP unit is stemmed
from heat transportation to adjacent demanding MCMGs.
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Figure 14. H2P ratio of CHP units, Case Study 2: (a) node 1; (b) node 2; (c) node 3.

Figure 15. Overall efficiency of CHP units, Case Study 2: (a) node 1; (b) node 2; (c) node 3.

Figure 16 describes the SoC of power and heat for Case Study 3 in MCMG 1 at hour
22 of the day. It can be seen that the performance of electrical storage varies during major
failures. Although the electrical storage usually tends to discharge its power during major
failures, the electrical storage system in MCMG 1 initiates charging due to RES penetrations
to stabilize the frequency and voltage in the emergency mode. Figure 17 depicts the daily
electrical energy not supplied in each MCMG for Case Study 3. As the graph reveals, the
daily expected energy not supplied of MCMG 2 is zero when an unpredicted failure occurs
on the supply side. The reason is that the WT compensates for the power shortage during
critical hours. An average power shortage of 2 kW and 833.6 kW is ensued in MCMG 1
and MCMG 3, respectively.
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Figure 16. Profile of SoC for power and heat, MCMG 1, Case Study 3: (a) SoC of power; (b) SoC of heat; (c) electric ramp
rate; (d) heat ramp rate.

Figure 17. Electrical energy not supplied, Case Study 3: (a) node 1; (b) node 2; (c) node 3.

Table 5 illustrates the resilience index for electrical demands in the emergency mode
of Case Study 3. Based on the table, the DRPs and RESs play key roles in the resiliency
enhancement of MCMGs. The results show that the flexibility potentials of the MCMGs
increase when the IBDRP and TBDRP are applied concurrently. The results illustrate that
resilience indices for MCMG 1 and 2 are notably higher than MCMG 3 during critical hours.
Additionally, MCMG 2 is completely resilient against the main grid outage. The main
reason is that the WT not only compensates for the lack of power generation in MCMG 2
but also supplies some parts of demands for adjacent MCMGs.

As shown, the resiliency of MCMG 3 is relatively lower than the other MCMGs. The
reason is that the RESs are not available in MCMG 3. It is worth noting that more penetra-
tion of RESs will result in higher survivability of loads during emergency intervals. Addi-
tionally, the resilience index for thermal demands is equal to one in all intervals. The reason
is that the gas-fired units supply the heat demand in all Case Studies uninterruptedly.
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Table 6 presents the cost analysis of the operational strategies for different DRPs.
In this way, the following points should be pointed out. First of all, power/gas flow
limitations and unpredicted failures of power/gas networks not only affect the power
balance of the networks but also increase the total cost of the NMCMG. The results of Case
Studies 1 and 2 led us to conclude that an optimum solution would be attained by applying
only TBDRP in normal and contingency circumstances; thus, employing both TBDRP and
IBDRP would result in sub-optimal solutions. Comparing Case Studies 1 and 2, the total
cost of the NMCMG is intensely affected by the contingencies. Besides, barely any change
can be seen in the total cost of the NMCMG employing TBDRP and IBDRP concurrently.

In Case Study 3, each MCMG switches to islanded mode during major failures to
supply domestic demands by local energy resources. In this way, a significant number of
demands is curtailed to stabilize the frequency and voltage in the emergency mode. In
Case Study 3, the total cost of the NMCMG is increased considerably compared with Case
Study 1, but a relatively slight decrease in total cost is ensued compared with Case Study 2.
The results manifest that contingency in gas networks impacts the system more critically
than unpredicted failures in the upstream transmission networks.

In Case Study 4, the total cost of the NMCMG is decreased by 5% compared with
Case Study 3. In this case study, the interconnectivity of MCMGs with the centralized
optimization of the network allows the operator to compensate for the power shortage
in MCMGs during unpredicted failures. The main reason is that the flexible consumers
participate in the TBDRP in addition to the IBDRP. The total cost of the NMCMG decreases
when the TBDRP and IBDRP are applied concurrently. Furthermore, the eminence of
applying both TBDRP and IBDRP under emergency conditions is highlighted in Case
Studies 3 and 4 as a substantial technology to reduce total cost. Last of all, the effectiveness
of the proposed DRP under uncertainties is confirmed, given that a 33% peak mitigation
is derived in this model and that the overall cost of Case Study 4 notably declines by
about 28% when compared with that of [56] under the assumption of 30% participation of
responsive customers. Thus, TBDRP along with voluntary and mandatory DRPs, plays a
vital role in bringing about a prominent decrease in the operation costs of MCMGs.

Figure 18 describes the total operation cost of the NMCMG for case study 4. The PDF
and cumulative distribution function (CDF) are depicted. As can be seen, the normal PDF
fits the total cost of the NMCMG reasonably well. Herein, the costs associated with energy
exchange, maintenance and CHP units startup/shutdown, emission, and DRP payments
embrace 74%, 14%, 12%, and 0.4% of the total cost on average, respectively. The reliability
cost of the system is wiped out wholly due to the interconnectivity of MCMGs.

To conclude, the proposed approach confirms that the interconnections of MCMGs
enhance the resiliency of the system. The centralized control approach changes the structure
of MCMGs from grid-connected to islanded modes during critical hours. In this way, the
interconnections between the MCMGs are preserved to integrate the flexibility potentials of
one MCMG into adjacent MCMGs. Residential communities, industrial parks, and urban
districts can be considered as practical applications to NMCMG.

To illustrate the proposed model’s merits, a comparison is made between the proposed
framework and other approaches used for MGs short-term operation scheduling, as in
Table 7. As illustrated, remarkable cost reduction and peak mitigation are found in this
work, addressing both time- and incentive-based DRPs within an NMCMG environment.
It is worth pointing out that the acquired higher cost reduction of paper [56] compared
with this work may stem from a larger participation ratio of responsive customers to total
demands.
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Table 5. Mean value of resilience index during power interruption on the main grid, Case Study 4.

MCMG 1 No. DRP

Hours

19 20 21 22

With RESs 2 Without RESs With RESs Without RESs With RESs Without RESs With RESs Without RESs

1

Without DRP 3 0.9853 0.9310 0.9745 0.9748 0.9795 0.9800 0.9976 0.9974
With TBDRP 4 0.9995 0.9931 0.9997 0.9996 0.9997 0.9997 1 1

With TBDRP and IBDRP 5 0.9994 0.9934 0.9998 0.9996 0.9997 0.9998 1 1

2

Without DRP 1 1 1 1 1 1 1 1
With TBDRP 1 1 1 1 1 1 1 1

With TBDRP and IBDRP 1 1 1 1 1 1 1 1

3

Without DRP 0.6969 0.6637 0.7095 0.7089 0.7217 0.7214 0.7841 0.7823
With TBDRP 0.8543 0.7879 0.8580 0.8596 0.8753 0.8752 0.9466 0.9440

With TBDRP and IBDRP 0.8547 0.7872 0.8593 0.8602 0.8747 0.8756 0.9466 0.9444
1 MCMG: multi-carrier microgrid, 2 RES: renewable energy sources, 3 DRP: demand response program, 4 TBDRP: time-based DRP, 5 IBDRP: incentive-based DRP.

Table 6. Cost analysis of case studies.

Case Studies DRP Status
Cost (USD)

Mean Standard Deviation Skewness

1
Without DRP 1 8103.23 1472.12 0.4859
With TBDRP 2 7291.59 1418.57 0.5037

With TBDRP and IBDRP 3 7308.19 1434.3 0.4757

2
Without DRP 8724.96 1054.82 0.8125
With TBDRP 7763.24 1044.45 0.7756

With TBDRP and IBDRP 7765.52 1024.89 0.7725

3
Without DRP 9915.33 735.798 0.0986
With TBDRP 7649.67 692.876 −0.0365

With TBDRP and IBDRP 7529.87 685.149 −0.0562

4
Without DRP 9468.94 688.337 −0.0147
With TBDRP 7518.97 574.185 −0.1174

With TBDRP and IBDRP 7404.52 570.808 −0.1219
1 DRP: demand response program, 2 TBDRP: time-based DRP, 3 IBDRP: incentive-based DRP.
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Table 7. Comparison of the proposed model with other references.

Refs Multi-Energy System
Scheduling

Power Network
Constraint

Gas
Network

Constraint
Exact Modeling

of CHP Units Model
DRP 1 Uncertainty Employed DRP Benefits

TBDRP 2 IBDRP 3 RESs 4 Load Market Cost Reduction
(%)

Peak Relief
(%)

[17] × √ × × Deterministic
√ × × × × - 8

[57] × √ × × Deterministic
√ √ × × × 13 2

[50] × × × × Stochastic
√ √ √ × × 3 12

[26] × √ × × Stochastic
√ × √ × × - -

[35] × √ × × Probabilistic
√ × √ √ × 8 -

[56] × × × × Probabilistic
√ × √ √ × 30.6 -

[38]
√ × × × Robust × × × × √

- -
[58]

√ √ √ × Stochastic
√ × √ √ × 2 1

[59]
√ √ √ × Stochastic

√ × √ √ × 15 -
This work

√ √ √ √
Probabilistic

√ √ √ √ √
28 33

1 DRP: demand response program, 2 TBDRP: time-based DRP, 3 IBDRP: incentive-based DRP, 4 RES: renewable energy sources.
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Figure 18. The total cost of NMCMG, Case Study 4: (a) PDF of the total cost (b) CDF of the total cost.

5. Conclusions

This paper proposed a mathematical formulation for enhancing the resiliency of net-
worked multi-carrier microgrids regarding severe uncertainties. Due to the uncertainties
associated with the generation, demand, and electricity market, the deterministic energy
scheduling fails to optimize the economic dispatch problem under uncertainties. Com-
pared with the deterministic energy dispatch studies, the probabilistic optimal dispatch
of energy in electric and natural gas networks helps system operators assess the system
in a much wider sense and yields reliable data. Therefore, the combined optimization
of the economic dispatch and coupled power flow for the electric and gas networks was
conducted to optimize microgrids’ operational strategies both in grid-tied and off-grid
modes. The uncertainties of thermal and electrical demands, photovoltaic sites, wind
turbine generations, and the electricity market price were embedded in this study. The pro-
posed network included three interconnected multi-carrier microgrids, where the electric
and natural gas networks were designed radially. In contrast, the district heating network
was modeled as a ring network without any heat transmission loss. To be more specific, the
district heating network was represented as one single node in the networked multi-carrier
microgrids; therefore, the multi-carrier microgrids could trade thermal energy internally.
Furthermore, during severe incidents, operators of the networked multi-carrier microgrid,
as a potential solution to deal with major power disruption events, were able to enter
into an emergency operation mode and, thereafter, supply local loads in islanded modes.
Besides, adjacent multi-carrier microgrids were able to link internally to share their unused
capacity and maintain their supply-demand balance as a whole interconnected system.
Besides, the capability of heat interchange between multi-carrier microgrids resulted in
lower energy wastages. Furthermore, it was indicated that multiple carriers’ considerations
could compensate for the power mismatch during contingencies or incidents. Moreover,
the responsiveness of demands to electricity and gas prices resulted in lower costs under
the centralized operation of networked multi-carrier microgrids. The results showed that
the concurrent implementation of time- and incentive-based demand response programs
mitigate congestion in power and gas networks. Moreover, it reduces the operation cost
of the NMCMG in the emergency mode. The resiliency of multi-carrier microgrids was
also enhanced by flexible consumers during the disturbance in the main grid. Network
parameters were demonstrated as probabilistic and cumulative distribution functions,
which can help assess the operation of interconnected networks.
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In summary, this model enables the energy systems to couple various energy carriers,
which yields various benefits from operational, CO2e emission, and economic perspectives,
to coordinate between the interconnected multi-carrier microgrid communities. Indeed,
leveraging demand response programs and coordination by the centralized optimization
of the proposed network brings the system into an optimum situation, particularly when
an incident occurs in the network. Moreover, the probabilistic method can increase the
trustworthiness of the optimal solution by considering more uncertain parameters. For
future works, the analysis of variance can be embedded into the model to guarantee a
robust solution, as well as employing a dynamic price-based local energy market evaluator
to avoid new peaks.
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Nomenclature

Acronyms
MG Microgrid
MCMG Multi-carrier microgrid
NMCMG Networked Multi-Carrier Microgrid
DG Distributed generation
Demand response program DRP
Distributed energy resources DER
Renewable energy sources RES
Incentive-based demand response program IBDRP
Time-based demand response program TBDRP
Probability distribution function PDF
Photovoltaic PV
Wind turbine WT
Combined heat and power CHP
SoC State of charge
Indices and Sets
bo Index of the gas-fired boilers
chp Index of CHPs
e Index of electricity
g, g′ Index on nodes in the gas network, g = 1, . . . , G
h Index of heat
j, j′ Index of nodes in the power network, j = 1, . . . , J
l Index of the energy carrier, i.e., electricity and/or heat, l ∈ {e, h}
m, n Index of microgrids, m = 1, . . . , M
pv Index of photovoltaic units
s Index of scenarios, s = 1, . . . , S
t, t′ Index of time (hour)
u Index of DER units
wt Index of the wind turbine units
ESS Index of electrical storage
TSS Index of thermal storage
DG Set of distributed generations
SS Set of storages including {TSS, ESS}
DER Set of distributed energy resources including {DG, SS}
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Constants and Parameters
a, b, c, d, e, g Coefficients of fuel consumption function of CHP
α , β Shape and scale parameters of Weibull PDF (W/m2)
µ, σ Mean value and standard deviation of normal PDF
υ Wind speed (m/s)
υci,co,r Cut-in, cut-out, and rated wind speed (m/s)
κ Normalized generation forecast of non-dispatchable genera-

tion units
ϕ, ζ Shape factors of beta distribution (kW/m2)
R Ramp rate of CHP units (kW/min)
R Percentage of the required online reserve for critical demand (%)
αchar/disch Charging and discharging efficiency of storage units
αe f ,l Efficiency of thermal units, i.e., CHPs and boilers for energy carrier

l ∈ {e, h}
αe f ,converter Efficiency of AC-to-AC converter for wind turbines
αe f ,inverter Efficiency of inverter for PV units
αloss Coefficient of energy loss for storage units
αmain Coefficient of maintenance cost for units (USD/kWh)
αreduction,l Contracted demand reduction by DRP users for energy carrier

l ∈ {e, h} (%)
πelec Electricity price (USD/kWh)
πem CO2e emission tax rate (USD/kg)
πens,l Value of energy not supplied for energy carrier l ∈ {e, h}

(USD/kWh)
πgas Natural gas price (USD/kWh)
πincentive,l Incentive price of IBDRP for energy carrier l ∈ {e, h} (USD/kWh)
πpenalty,l Penalty price of IBDRP for energy carrier l ∈ {e, h} (USD/kWh)
πsud Startup and shutdown cost of CHP units (USD)
ρinitial,l Initial energy price for flexible demands for energy carrier l ∈ {e, h}

(USD/kWh)
φjj′ Susceptance of the power line j and j’
∆t The time step length (hour)
∆T The time step length (minute)
AR Adequacy reserve maintained by microgrid (kW)
CLl Participation rate of flexible demands for energy carrier l ∈ {e, h}

(kW)
Dinitial,l Initial value of flexible demand for energy carrier l ∈ {e, h} (kW)
DOD Depth of discharge for storage units
EF, EFNet CO2e emission conversion factor for local generation and utility

network (kg/kWh)
ELl Price elasticity of the demand for energy carrier l ∈ {e, h}
E(∗)

chp, H(∗)
chp Feasible operating regions of CHP units for various marginal points

comprising ∗ ∈ {A, B, C, D}
f Probability density function
GLgg′ Pipeline capacity of the natural gas network (kW)
Ll Non-flexible demand for energy carrier l ∈ {e, h} (kW)
Mgg′ Coefficient of pipelines in gas network
Mbig A sufficient large number
N Total number
PLjj′ Power line capacity (kW)
R Solar irradiation (W/m2)
Rce/sta Solar radiation in a certain radiation point and standard conditions

(150–1000 W/m2)
Sign Sign function {−1, 1}
(·), (·) Maximum and minimum capacity of units (kW/h)
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Variables
δn Voltage phase angle (degree)
Υ Gas pressure at nodes (PSI)
ρ f inal,l Energy price for responsive load after DRP for energy carrier l ∈ {e, h}

(USD/kWh)
τ Heat to power ratio of CHP units
Bchar/disch Charging/discharging power of storage units (kW)
DDRP,l Demand after implementing DRP for energy carrier l ∈ {e, h} (kW)
E, H Power and heat generated by dispatchable and nondispatchable units (kW)
EC CO2e emission cost (USD)
ELloss Energy loss of storage system (kWh)
EX Purchased/sold power from/to electric utility (kW)
F Natural gas consumption by gas-fired units (kW)
GE Purchased gas from the gas utility (kW)
HEmn Heat exchange between adjacent MCMGs (kW)
I Commitment state of units {0/1}
IC Incentive payment for participating in IBDRP (USD)
LC Reliability cost (USD)
LSl Curtailed power for energy carrier l ∈ {e, h} (kW)
MC Maintenance cost (USD)
OC The operation cost of the NMCMG (USD)
OF The objective function of the NMCMG (USD)
Pinj

tsj Gas injection at node j (kW)
PC Penalty cost of IBDRP (USD)
Qinj

g Gas injection at node g (kW)
RIl Resiliency index for energy carrier l ∈ {e, h}
SC Startup and shutdown cost of CHP units (USD)
SOC State of charge for storage units (kWh)
SU/SD Startup/shutdown indicator for CHP units
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