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SEMANTIC ENRICHMENT OF ASSOCIATION RULES 
DISCOVERED IN OPERATIONAL BUILDING DATA 

Ekaterina Petrova1 and Pieter Pauwels2 

Abstract: The advancements in Building Information Modelling, Building 
Monitoring Systems and machine learning have made the discovery of hidden 
insights and performance patterns in operational building data possible and highly 
accurate. Semantic web technologies play a fundamental role in terms of knowledge 
representation and provide the necessary infrastructure for reuse of the discovered 
insights. Such knowledge can be of particular importance to decision-making for 
building performance improvement, however, this requires patterns discovered with 
traditional data mining techniques to be attributed with semantics, so that they can 
be machine-interpretable and reusable. Using linked data-based crowdsourcing 
techniques for interpretation of building performance patterns enables the creation 
of knowledge graphs of building data, enriched with contextualized building 
performance insights. This paper presents a crowdsourcing mechanism that allows 
the semantic enrichment of building performance patterns through semantic 
annotation and classification. We discuss the results and the potential of linked 
building data graphs enriched with building performance insights. 

Keywords: Semantics, Association Rule Mining, semantic data mining, linked data, 
building performance, crowdsourcing. 

1 INTRODUCTION 
With the emergence and establishment of Building Information Modelling (Borrmann et 
al. 2018; Sacks et al. 2018) the Architecture, Engineering and Construction (AEC) 
industry underwent a paradigm shift in the creation and use of information. The 
exponential generation of data throughout the building lifecycle and the advances in 
analytical approaches have augmented that shift even more by giving AEC practices the 
ability to make use of and reuse data in a structured way. Moreover, being able to 
discover valuable insights in the data (e.g. building data, simulation data, IoT data, etc.) 
makes it possible to cater to high-level decision making related to sustainability, energy 
efficiency, indoor environmental quality, occupant comfort, etc. (Fan et al. 2018a). 
Advanced knowledge discovery methods aid the extraction of high-level knowledge from 
low-level data (Fayyad et al. 1996). Such knowledge allows higher level analyses and has 
the potential to redefine the way buildings are designed by serving as an evidence base 
in performance-oriented design decision-making (Petrova et al. 2019).  

However, to be useful and have an impact on decision-making, the insights 
discovered in data need to be transformed into actionable knowledge, which includes 
analytical efforts that require a lot more than identifying an analytical goal and selecting 
appropriate data mining algorithms (Fayyad et al. 1996). Crucial to knowledge discovery 
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are the interpretation, contextualization, and enabling the reuse of building performance 
insights. Meaning is not explicit in insights discovered by data mining algorithms. 
Therefore, it needs to be attributed through semantic classification and annotation by 
domain experts, who can assess the value and meaning of the discovered building 
performance insights (e.g. frequent patterns, anomalies, association and sequential rules, 
etc.). Furthermore, to close the holistic information management cycle and enable reuse, 
the discovered knowledge has to be machine-readable and implementable in knowledge-
based (decision support) systems.  

In this regard, a reconciliation of statistical and symbolic Artificial Intelligence (AI) 
can provide the necessary combination of approaches to facilitate the above-mentioned 
objectives. Statistical methods have proven to be useful for discovering patterns, 
regularities or irregularities in data and symbolic representations excel at capturing the 
knowledge within a given domain explicitly, thereby allowing various forms of inference 
(Hoehndorf and Queralt-Rosinach 2017). As part of the statistical realm, machine 
learning approaches for knowledge discovery allow the extraction of valuable insights 
from the large datasets generated throughout the entire building life cycle. Semantic data 
modelling, linked data and web technologies (Berners-Lee et al. 2001; Bizer et al. 2009), 
on the other hand, have made it possible to represent the built environment formally, 
retrieve knowledge according to domain-specific requirements and reason about building 
performance (El-Diraby 2013; Pauwels et al. 2017). 

Due to their proven ability to support decision-making, both approaches have 
independently received major attention in AEC. In depth research has been performed to 
identify how to transform raw data into building performance insights and make use of 
the multiplicity of collected, but usually rarely reused data. Included here are efforts 
aiming to define the various building data types (Petrova et al. 2019), as well as 
corresponding machine learning methods for data pre-processing, mining, visualization 
and use of discovered knowledge (Fan et al. 2015; Fan et al. 2018a; Fan et al. 2018b; 
Miller et al. 2018; D'Oca et al. 2018; Fan et al. 2019). Research has also shown that 
publishing data effectively, breaking up information silos, integration of data across 
domains and making data readable and understandable by both machines and humans is 
equally important. The latter is showcased at length in state of the art research 
contributions related to implementation of semantic web and linked data technologies in 
AEC (Curry et al. 2013; Pauwels and Terkaj, 2016; Pauwels et al. 2017; Rasmussen et al. 
2017; Rasmussen et al. 2019; McGlinn et al. 2019). Finally, recent research also highlights 
a paradigm shift in the knowledge discovery and data mining community, which entails 
moving from mining raw data to mining the formalized knowledge directly (semantic 
data mining) (Lausch et al. 2015). In other words, the combination of symbolic and 
statistical approaches can enrich data mining processes with domain knowledge 
(Ristoski and Paulheim 2016) and facilitate knowledge discovery, representation and 
reuse, which cannot be achieved with any of these approaches alone. 

Therefore, the main objective of the current research effort is to enable semantic 
enrichment of building performance insights discovered in operational building data in a 
machine-readable and reusable way. We look into how semantic annotations can be 
retrieved from domain experts and how they can be classified and encoded together with 
the building data and performance insights discovered with traditional data mining 
approaches to form a knowledge base. This is demonstrated for a use case in Denmark, 
for which frequent performance patterns and association rules have been discovered in 
indoor environmental quality sensor data streams. We compare the results with an 
alternative approach employing semantic sensor stream processing and frequent graph 
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pattern recognition and we discuss the implications. Finally, indicate how the created 
knowledge base can serve as an input to providing recommendations for evidence-based 
decision-making in performance-oriented design. 

The paper starts by outlining the background and motivation of the research (Section 
1). Section 2 then outlines the methodological approaches adopted in the study. We then 
proceed by presenting the results from the knowledge discovery and semantic data 
modelling efforts that provide the input for the creation of the initial knowledge base for 
decision support in performance-oriented building design (Section 3). Section 4 details 
the linked data-based crowdsourcing effort aiming to capture the domain expert 
interpretations of the discovered building performance insights, as well as their semantic 
annotations and classifications. Section 5 presents initial semantic sensor stream 
processing and frequent graph pattern analysis results, thereby showcasing an 
alternative approach pertaining to the semantic data mining domain. Finally, Section 6 
presents concluding remarks. 

2 METHODOLOGY 
Machine learning approaches for knowledge discovery allow retrieving frequent and 
infrequent patterns (motifs and discords respectively), anomalies and association rules in 
operational building data. Included in this context is also the direct mining of formalized 
knowledge through the use of novel semantic data mining methods. In this article, we 
rely on results from a previously proposed method for combination of knowledge 
discovery (motif discovery and Association Rule Mining (ARM)) (Agrawal et al. 1993) in 
operational building data and semantic data modelling for knowledge representation of a 
performance enriched semantic building graph (Petrova et al. 2018; Petrova et al. 2019). 
Association rules indicate to what extent certain events (patterns) are related to, or are 
potentially caused by other events (patterns). Such associations can provide valuable 
insights into the buildings’ behaviour. Capturing this information semantically together 
with other meaningful building data allows applying information retrieval techniques 
and ultimately- implementation of the discovered knowledge in a decision support 
system (Petrova et al 2019).  

To prepare for motif discovery and ARM, we first apply Symbolic Aggregate 
Approximation (SAX) (Lin et al. 2007) on the raw sensor data, which aims for 
dimensionality reduction and indexing with a lower bounding distance measure, i.e. the 
method allows reducing a large dataset to a smaller one, without losing the 
characteristics of the data. Motif discovery is then performed through identification of 
the Longest Repeated Substrings (LRS) within the SAX symbol sequences with a custom 
implementation of the Suffix Tree algorithm (Ukkonen 1995). Association rules between 
the identified frequent patterns are discovered through an implementation of the FP-
growth algorithm, as both implementations are done by the help of the SPMF open-
source data mining library. The output includes both the association rules, as well as 
their corresponding measures of interestingness, support and confidence, which show 
how frequently a rule appears throughout the dataset and how often it is found to be true 
(Agrawal et al. 1993). The association rules have thereafter been visualised for a better 
understanding of the correlational dependencies between the motifs and the sensor 
observations in which they have been discovered. Those visualisations serve as the main 
input to the semantic enrichment of the association rules, which is the main objective of 
this study. 
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As previously stated, to be useful, the discovered knowledge needs to be reusable, 
retrievable, machine-readable and integrated with other building data. Therefore, linked 
data techniques are used to represent the different datasets and discovered knowledge 
together. Home2020 was therefore modelled using the Linked Building Data (LBD) 
modelling principles and ontologies. More specifically, the building has been represented 
as a Resource Description Framework (RDF) graph by the use of the Building Topology 
Ontology (BOT) (Rasmussen et al. 2017). Furthermore, geographical location of the 
building is modelled through the use of geospatial ontologies, OpenStreetmap location 
and OpenWeatherMap, while sensor nodes and observations are added to the graph with 
the SOSA, SSN and OM (Units of Measure) ontologies. Data pertaining to heat 
consumption, domestic hot water use, use of appliances, HVAC system data, and HVAC 
design strategy for the building in accordance with the design brief requirements have 
also been added to provide the necessary context for the interpretation of the discovered 
performance patterns and rules. Occupant data has been modelled with the FOAF 
ontology. Finally, the discovered motifs and association rules are added to the semantic 
building graph by a custom “pattern” ontology (:ptn) specifically built for the purpose.  

To be able to be interpreted and disambiguated, the discovered performance patterns 
have to be presented to domain experts in a way that allows contextualised knowledge to 
be continuously stored, retrieved, updated and reused. Therefore, we introduce a linked 
data-based crowdsourcing mechanism, which allows indoor environmental quality 
experts to contextualise the available building performance patterns and association 
rules by the use of semantic annotation tags and semantic classification. 

Finally, as the above-described approach relies on traditional data mining techniques 
for performance pattern discovery and semantic modelling for representation of the 
results together with the available building data, we compare it to a direct semantic data 
mining approach using a frequent RDF graph pattern analysis method (Belghaouti et al. 
2016). 

3 BUILDING PERFORMANCE AND EXPLICIT KNOWLEDGE BASES 
The way semantic graphs represent relations between buildings, locations, spaces, and 
other heterogeneous data enables the scaling and articulation of the discovered 
knowledge of how the existing building stock performs in a machine-readable form. 
Therefore, semantic graphs and ontologically demarcated data provide an infrastructure 
that allows knowledge disambiguation, contextualization and reuse through the rich, 
machine-readable semantic links between concepts. To enable building performance 
knowledge contextualization and demonstrate the value of semantics, the available 
building data needs to be treated in a way that allows capturing the evolution of the 
discovered knowledge over time. That includes the relation of the building performance 
insights to other relevant data in the AEC domain. 

3.1 Knowledge Discovery and Semantic Data Modelling of Operational 
Building Data and Performance Insights for a Nearly Zero Energy 
Building 

For this study, motifs and association rules have been discovered in indoor 
environmental quality sensor observations from a single family house located near the 
city of Aarhus, Denmark (Home2020), which was completed in 2017 and rated as nearly 
zero energy building (NZEB) according to the Danish energy labelling standard. The 
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collected data is from the period 01.12.2017 to 31.10.2018 and includes measurements of 
energy consumption for heating [MWh], ventilation system [kWh], control system 
[kWh], and kitchen appliances [kWh], as well as outdoor air temperature [◦C], return 
air temperature [◦C], return air relative humidity [%], hot water temperature [◦C], 
supply air temperature [◦C], ventilation speed [steps]. Both hot and cold water 
consumption [m3] are also monitored. This study focuses on the indoor environmental 
quality data, which includes temperature [◦C], CO2 [ppm], and relative humidity [%] 
observations for a bedroom, a living room and a kitchen. The measurement interval is 
five minutes. 

As described in Section 2, the sensor observations are transformed into symbolic 
representations with SAX. That means that the sequence of all data points are replaced 
by a symbolic representation such as 3222222322223333..., with each SAX symbol 
representing an interval of data values (e.g. 2 = [22.86950723073572, 
23.704365409749624] for the Temperature observations). As a result of the SAX 
transformation, the output dataset consists of sequences of symbolic representations per 
observed variable (Temperature, CO2, Relative Humidity) for each room per month. To 
enable motif discovery with the LRS algorithm, co-occurrence matrices are computed on 
the basis of the SAX representations to identify co-occurring SAX symbols on a monthly 
basis. The LRS algorithm then identifies the frequent repetitive patterns in the SAX 
symbol sequences (Fig. 1). 

                                 
Figure 1: A set of LRS found in the SAX sequences of sensor observations (Petrova 

2019) 

Each motif is given an unique ID, which becomes the input for discovery of the 
association rules. Several hundreds of motifs and rules were discovered for each observed 
variable, room and month. Figure 2 presents a small excerpt of rules, as well as their 
constituting motifs and measures of interestingness. Essential here is the fact that not all 
performance patterns and rules will be interesting and present unknown novel and 
useful insights. Further contextualisation and interpretation are required to discover the 
rules with the highest level of novelty and value. 
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Figure 2: An excerpt of the set of association rules obtained for the living room in 
Home2020 (Petrova 2019)  

That may include considerations related to the combined effect of the support and 
confidence. Either way, it requires a domain expert to identify the strong and interesting 
rules that indicate novel building performance insights, thereby enriching them with 
semantics and transforming them from statistical output to actionable knowledge. The 
semantic enrichment of association rules requires a semantic data infrastructure that 
would allow the storage, retrieval, interpretation and reuse of the contextualised 
knowledge.  

To allow the latter, all motifs and association rules have been modelled together with 
the available building data by the use of the PATTERN ontology, indicating their 
ptn:confidence, ptn:absoluteSupport, and ptn:relativeSupport measures. The modelled 
association rules (e.g. inst:associationRule_1) are linked to the sensor nodes they are 
related to with ptn:hasAssociationRule predicates. The constituting motifs for the 
association rules are represented as ordered lists of motifs for the left-hand side (ptn:LHS) 
and right-hand side (ptn:RHS) of each rule (Fig.3).  

Figure 4 represents the resulting semantic building graph, which includes the 
available building data, system and occupant data, actuator and sensor data including 
data points for all observed variables, contextual data (geolocation and weather data), as 
well as the motifs and association rules discovered in the sensor data. 

 
 

                        
 

Figure 3: A snippet of the RDF graph with motifs and associated rules (Petrova 
2019) 
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Figure 4: Semantic graph of Home2020 containing the building URIs and the 
related spaces, sensor nodes, occupants, sensor data and the motifs and association 

rules discovered in the data (Petrova 2019) 

3.2 Visualization of Building Performance Patterns and Association Rules  
The performance-enriched and contextualized semantic building graph allows dedicated 
information retrieval, and most importantly provides both the necessary infrastructure 
for capturing domain expertise and the input for interpretation and semantic enrichment 
of the association rules. To allow that, the knowledge embedded in the graph needs to be 
presented to the domain experts in a structured way, which requires a user interface and 
a data model that allows to store the meaning, be able to update it and embed it in the 
knowledge base for further reuse in evidence-based design processes. Therefore, to 
facilitate the process of knowledge interpretation, the association rules and 
corresponding patterns have been visualized to enable a better understanding. Figure 5 
shows the visualization of association rule 453 ==> 485 #SUP: 3 #CONF: 0.6, which 
means that every three out of five times when pattern 453 appears throughout the 
dataset, pattern 485 also appears. The figure exemplifies the motifs with their ID and 
SAX sequences, the interval that the symbols are in, the observed variables in which they 
appear, the relationship between them and highlights the support measure. Such a 
visualization enables a much easier expert interpretation than the formal output of the 
algorithm as visualized in Fig. 2.  
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Figure 5: A visualization of an association rule discovered in indoor environmental 
quality data, the motifs that it contains of and their corresponding SAX sequences 

(Petrova 2019) 

That way and for the given example, it is much easier to confirm that whenever the 
indicated interval sequence in Relative Humidity occurs, there is a 60% likelihood that 
the corresponding interval sequence in Temperature also occurs throughout the entire 
dataset. Being visualised, the association rules and motifs can then be semantically 
enriched through an appropriate data model that fits the structure of the knowledge base. 

4 CAPTURING DOMAIN EXPERTISE - THE EFFECT OF THE CROWD ON 

THE SEMANTIC ENRICHMENT OF ASSOCIATION RULES 
To achieve the semantic enrichment of association rules, this study aims to combine the 
powerful pattern recognition capability of machines with the domain expertise of 
humans. It is hereby important to distinguish between domain expertise or knowledge 
with regards to formal ontologies for semantic representation of data, and domain 
knowledge in terms of the human expertise required to interpret building performance 
patterns. 

In this study, both concepts are applied accordingly, as ontologies are used for 
knowledge representation and storing in the semantic graphs and human expertise is 
harvested for the semantic enrichment of the association rules. The provided human 
domain expertise is also mapped to a formal ontology and added to the semantic graph. 
Figure 6 presents the architecture of the intended knowledge capture system and the 
interaction between the experts and the knowledge base during the interpretation and 
semantic enrichment of the association rules.  

Fundamentally, the defined semantic enrichment approach and the corresponding 
system architecture rely on the concept of the “crown truth” and the notion that 
collecting annotations of the same objects of interpretation across a crowd reduces 
subjectivity, provides more meaningful representations and much more reasonable 
interpretations. In other words, the semantic enrichment system relies on the dominance 
of the human domain expertise, which is solicited from an expert crowd. The expert 
crowd in this case consists of indoor environmental quality experts with various levels of 
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expertise, years of experience, area of expertise (thermal, visual, acoustic, atmospheric), 
etc. All association rules are stored in the knowledge base and can be retrieved as soon 
as a domain expert logs in and activates their profile. For each association rule, each 
expert can define new meaning by annotation, perform classification with semantic tags 
or review existing interpretations by upvoting or updating. That input gets stored in the 
semantic graph together with a reference to the Uniform Resource Identifier (URI) of the 
corresponding domain expert who provided the input. Under the effect of the crowd, the 
association rules with highest level of interestingness and usefulness become visible, 
including annotations that would allow retrieval of the semantically rich building 
performance metrics. The following section will, therefore, define the technical aspects 
of the outlined expert crowd-centric semantic enrichment mechanism. 

4.1 Crowdsourcing Building Performance Patterns 
Crowdsourcing as an approach responds to the above-described notion of the crowd 
truth and provides an opportunity to capture collective intelligence and knowledge that 
are otherwise dispersed (Schenk and Guittard 2011). As a result, crowdsourcing has 
received major attention in various domains, e.g. image recognition, fabrication, design 
(Xiang et al. 2018). That also applies to the Semantic Web domain, where crowdsourcing 
techniques have been used for semantic annotation, ontology engineering, knowledge 
base curation and linked data quality assurance (Sack 2014; Sarasua et al. 2015). AEC 
research demonstrates the implementation of crowdsourcing for BIM-based construction 
material libraries through annotation of site photo logs (Han and Golparvar-Fard 2017), 
annotation of construction workers on site (Liu and Golparvar-Fard 2015), co-creation of 
infrastructure as-built BIM models and infrastructure maintenance (Consoli and 
Reforgiato 2015). 

 

 
 
Figure 6: System architecture of the proposed crowdsourcing system (Petrova 2019) 

The adopted type of crowdsourcing platform in this research effort is what is defined 
as “Information Pooling”, i.e., based on additive aggregation of distributed information 
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and aiming to integrate diverse opinions, assessments, predictions or other kinds of 
information from contributors (Blohm et al. 2018). Using that principle, the expert 
annotations are collected through the crowdsourcing platform and stored directly in the 
semantic graph. Domain experts are hereby modelled using the FOAF ontology, whereas 
their input is modelled according to the schema.org ontologies, which provide an 
opportunity to use Review and Commenting mechanisms. In this case, expert Reviews 
and Comments are linked directly to the schema:CreativeWork class. In addition, the 
schema:Person class can also be used for defining the human experts.  

Alternatively, the Review ontology can also be used, however, schema.org provides 
more flexibility and dimension to the linked data-based crowdsourcing effort, as it allows 
storing votes (e.g. schema:upvoteCount). Furthermore, Reviews, Comments, and 
CreativeWorks can be combined and further enriched by adding metadata to each of 
them (agent, about, dateCreated, text, etc.). That allows a much bigger flexibility in terms 
of semantic annotation, tagging and adding of descriptions for further clarification of the 
expert interpretations. This principle and resulting data model is depicted in Fig. 7. 

 
  

 
 

Figure 7: Data model for semantic annotation and interpretation of association 
rules (Petrova 2019) 

4.2 Semantic Annotation and Classification of Association Rules 
So far, the described approach allows the domain expertise to be input and stored in the 
semantic graph in the form of reviews and descriptions defined by the human experts. 
However, it does not provide semantically definitive tags or classifications, which are 
necessary for information retrieval. Thus, semantic tags have been further created so 
that the provided reviews and descriptions could be formally annotated and classified. 
The tags have been created on the basis of the most usual causes of any frequent 
performance patterns appearing in sensor observations from buildings. Typically, such 
patterns are related to dynamic parameters that influence building performance directly. 
The semantic tags for annotation of association rules are, therefore, identified by the 
most probable reason for the occurrence of the patterns and defined as (1) external 
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conditions, (2) occupant behaviour, (3) system performance, (4) design and (5) 
construction. Thus, expert input is classified and annotated with these tags.  

Furthermore, the crowdsourcing system allows adding previously undefined subtags, 
should such be deemed necessary by the domain experts for clarification of a rule. Figure 
8 illustrates the principle behind the semantic tagging and classification. Naturally, the 
data model has to be implemented in an application, which the expert crowd can interact 
with to complete the semantic enrichment of the association rules. However, the 
development of such an application and user interface is beyond the scope of this paper. 
Finally, even with the semantic annotation and classification in place, it is still not 
possible to assess the value of the semantically enriched association rules. In other words, 
further input is required to filter interesting association rules that point to abnormal or 
unexpected patterns and exclude the expected dependencies. To achieve that, we rely on 
the previously mentioned Upvote option as provided by the schema.org ontology 
(schema:upvoteCount), thereby allowing the domain experts to perform Input 
(Annotation)- Review- Upvote cycles and enrich association rules, but also indicate a 
level of interestingness that is based on both statistical measures and expertise. Figure 9 
depicts the proposed crowdsourcing mechanism. 

 
 

            
 

Figure 8: Semantic tags for classification of expert reviews (Petrova 2019) 

5 DIRECT SEMANTIC STREAM RDF GRAPH PATTERN DISCOVERY 
As seen so far, ARM is an effective method of discovering frequent patterns in building 
performance. The described crowdsourcing approach can also be effective in the 
semantic enrichment and interpretation of the discovered rules. However, it has to be 
acknowledged that the sole reliance on the users’ intervention can be time-consuming 
and error-prone, especially in the cases of large amounts of data. Also, the measures of 
interestingness (confidence and support) consider the knowledge at instance-level and 
any available knowledge at schema level is disregarded, which may have a negative 
impact on the actual interpretation. In this regard, several studies suggest RDF stream 
processing as an alternative, i.e. converting the raw sensor data streams into RDF 
streams and use semantic data mining approaches on the resulting graph to identify 
association rules. Therefore, we further look into the RDF stream processing and graph 
pattern recognition method and discuss to what extent it could be compared to the 
previously described approach. 
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5.1 RDF Stream Processing and RDF Graph Pattern Recognition 
Several researchers state that to enable stream processing, we should move from storing 
semantic data in batches and querying it ("one-time semantics") to using query 
languages with streaming extensions to perform continuous queries on the semantic data 
streams ("continuous semantics") (Della Valle et al. 2009; Calbimonte et al. 2012). In that 
relation, the main steps to publishing sensor data as RDF streams have also been defined 
and include conversion from sensor data streams to RDF streams, storing the resulting 
RDF streams, and linking them with other relevant datasets. That requires the selection 
of relevant ontologies, defining an appropriate mapping language for conversion, 
selection of continuous query languages and choosing relevant datasets to link to (Llanes 
et al. 2016) (Fig.10). 

 

 
  
 
Figure 9: A snippet from the semantic graph containing the expert annotations and 

reviews of discovered association rules and the crowdsourcing process (Petrova 
2019) 

User 1 User 2

User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10
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To demonstrate the principle of pattern recognition within the RDF graph structure, 
we employ a method for frequent RDF graph pattern detection in semantic data streams, 
which relies on the graph predicates (Belghaouti et al. 2016). 

                                    
 

Figure 10: Process of publishing sensor data streams as RDF streams 

 

Each graph in the stream data can be represented as a directed star graph as shown 
on the left side in Fig. 11. The proposed method relies on the fact that the streams are 
represented according to particular ontologies, which means that most streams will be 
relatively uniform and expose a very frequent RDF graph structure.  

 
 

                       
Figure 11: A directed star graph as represented in a RDF stream and the 
corresponding adjacency matrix based on the graph predicates, based on 

Belghaouti et al. (2016) 

 

According to Belghaouti et al. (2016), RDF graphs could then be represented using 
adjacency matrices, however, such an approach would not be fully efficient and is not 
suitable for RDF graphs as it will result in a very sparse matrix (right in Fig.11). 
Therefore, it is proposed  to reduce the associated adjacency matrix to a bit vector 
(Fig.12).  

Index Predicate

0 p1

1 p2

2 p3

3 p4

4 .

5 .

. .

. 0 0 1 1 1 1

. 5 4 3 2 1 0

a
b

c
d
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Figure 12: Principle of construction of the graph pattern using a bit vector based on 

the graph predicates, based on Belghaouti et al. (2016) 

 

Based on the bit vector it is then possible to construct the Predicates Hash Table 
(PHT), which contains all the detected predicates in RDF graphs of an input stream and 
holds them, as well as the Graph Hash Table (GHT), which detects all the RDF graph 
patterns and holds them. In theory, that makes it possible to observe the evolution of the 
stream and the detected frequent RDF graph patterns. However, since the predicates are 
identical, the only change will be in the numerical value of the observations, which the 
graph pattern recognition method cannot account for. To demonstrate the detection of 
the graph patterns, we consider again the building graph of Home2020 illustrated in 
Figure 4 and extracted star shaped graphs storing the Relative Humidity and 
Temperature observations from the indoor environmental quality data stream from the 
kitchen. As seen from the examples, the RDF graph structure is rather consistent, also in 
terms of ontological representation, which is consistent with the outlined in (Belghaouti 
et al. 2016). The observed differences stem from the type of the observed variables and 
their corresponding units of measure. 

 
inst:Kitchen-Humidity-Sensor-obs1132308 
 rdf:type sosa:Observation ; 
 sosa:hasFeatureOfInterest inst:Kitchen ; 
 sosa:hasResult inst:measurementKitchen-Humidity-Sensor-obsmeas1132308 ; 
 sosa:madeBySensor inst:Kitchen-Humidity-Sensor ; 
 sosa:observedProperty inst:Kitchen-Humidity ; 
 sosa:resultTime "22/01-2018 10:35:45"^^xsd:dateTime .  
 
inst:measurementKitchen-Humidity-Sensor-obsmeas1132308 
 rdf:type om:Measure ; 
    om:hasNumericalValue "43.0"^^xsd:double ; 
 om:hasUnit om:percent . 
 
 
inst:Kitchen-Temperature-Sensor-obs2913631 
 rdf:type sosa:Observation ; 
 sosa:hasFeatureOfInterest inst:Kitchen ; 
 sosa:hasResult inst:measurementKitchen-Temperature-Sensor-obsmeas2913631 ; 
 

Index Predicate

0 p1

1 p2

2 p3

3 p4

4 .

5 .

. .

. 0 0 1 1 1 1

. 5 4 3 2 1 0

a
b

c
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 sosa:madeBySensor inst:Kitchen-Temperature-Sensor ; 
 sosa:observedProperty inst:Kitchen-Temperature ; 
 sosa:resultTime "14/04-2018 22:15:45"^^xsd:dateTime .  
 
inst:measurementKitchen-Temperature-Sensor-obsmeas2913631 
 rdf:type om:Measure ; 
 om:hasNumericalValue "24.0"^^xsd:double ; 
 om:hasUnit om:degreeCelsius . 
 

Following the described methodology, we can then construct the bit vector of the 
graph and identify the repetitive graph pattern. That is hereby demonstrated with the 
Temperature observation (Fig.13). As seen in the single example below, the detected 
frequent RDF pattern is rather different in nature from the performance patterns 
identified and interpreted earlier. While the graph pattern presents a variety of 
semantically rich and highly contextual data, it does not contain any explicit semantics 
related to building performance behaviour. As it is identified based on the graph 
predicates, the presented graph pattern could provide information about the evolution of 
the stream over time if predicates change, but any behavioural insights, correlations 
between performance variables or causations need to be discovered in alternative ways.  

         
Figure 13: RDF graph pattern detection in indoor environmental quality data 

6 CONCLUSION 
The rapidly increasing amount of monitored building data allows using novel statistical 
and symbolic AI approaches for discovery of valuable knowledge in building 
performance. Such methods have come a long way in processing vast amounts of data, 
finding patterns and relationships and predicting trends, thereby enhancing human 
decision-making in the building performance improvement domain. However, regardless 
of how powerful pattern recognition, knowledge representation or information retrieval 
techniques are applied, the interpretation of the discovered building performance 
patterns is in the hands of the domain experts, who usually need to apply domain 
expertise to interpret their meaning and implications on the overall building 
performance. Data analytical output usually does not convey any explicit semantics and 
its value is dependent on the contextualization and interpretation stemming from 
domain expertise. 

This paper approaches this issue with a novel methodology for semantic enrichment 
of discovered frequent repetitive patterns and association rules in monitored indoor 
environmental quality data from a passive house in Denmark. By applying motif 
discovery and Association Rule Mining, we obtain patterns and rules that are 



Ekaterina Petrova and Pieter Pauwels 

323 | Proceedings CIB W78, August 2020 | São Paulo, Brazil 

represented and stored in a semantic building graph together with other available 
building data by the use of several domain ontologies. For semantic enrichment, 
interpretation and contextualization, we devise a linked-data based crowdsourcing 
mechanism, which captures domain expertise in the form of semantic annotation and 
classification. That results in a comprehensive knowledge base that stores not only 
building data and indoor environmental quality sensor observations, but also building 
performance patterns and their meaning. Such a knowledge base can be of high value in 
evidence-based design processes and building performance assessment and improvement. 
Furthermore, we compare the applied approach, which combines knowledge discovery 
and semantic data modelling to a direct RDF graph pattern mining approach to assess 
feasibility and potential. 

With regards to the latter, several important observations need to be addressed. First 
and foremost, while machine learning approaches for Association Rule Mining are rather 
effective for detecting frequent patterns, there are several manual steps related to data 
treatment and parameter selection. Moreover, a traditional data mining approach such as 
this one analyses the data in batches and the discovered knowledge is, therefore, only 
locally valid for the dataset in question. Second, while Semantic Web and linked data 
technologies allow representing and storing the discovered knowledge, but the value of 
the discovered performance patterns and rules lies in their meaning, which is not explicit, 
unless interpreted by a domain expert. And while the presented crowdsourcing 
mechanism provides a solution to that, it still has to be acknowledged that the 
contributions of the expert crowd used for interpretation and semantic enrichment of the 
rules may vary. That means that an additional validation layer may be necessary. It has 
to be noted, that even though the semantically enriched performance patterns are stored 
in the graph and can be retrieved, they do not provide direct solutions in terms of, for 
instance, design decision support or building performance optimization. They serve 
merely as an evidential layer to human decision-making.  

Finally, being based on the graph predicates, the demonstrated frequent RDF graph 
pattern detection method could provide an insight about the evolution of semantic sensor 
data streams based on the graph predicates, but does not provide any actual building 
performance insight, as the pattern recognition is solely based on the graph structure and 
not on the numerical values of the sensor observations. Therefore, future research in that 
direction may rely on graph alignment techniques to harvest the benefits of both 
methodologies.  

The proposed crowdsourcing mechanism can be of high value to engineering practice 
in several ways. By combining both knowledge discovery and semantic data modelling 
approaches, the crowdsourcing platform establishes the missing link between machine 
learning output and the human domain knowledge necessary for its interpretation. That 
enables the reuse of highly valuable and complex engineering knowledge and can also 
serve as an educational mechanism for understanding dynamics in building performance 
and indoor environmental quality parameters. The system also enables the creation of a 
feedback loop between building operation and design and helps practitioners learn from 
the behaviour of the existing building stock, engage with the streaming sensor data, 
understand it and bring out the value in it. 
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