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ABSTRACT

Neural audio synthesis is an actively researched topic, hav-
ing yielded a wide range of techniques that leverages ma-
chine learning architectures. Google Magenta elaborated a
novel approach called Differential Digital Signal Processing
(DDSP) that incorporates deep neural networks with pre-
conditioned digital signal processing techniques, reaching
state-of-the-art results especially in timbre transfer appli-
cations. However, most of these techniques, including the
DDSP, are generally not applicable in real-time constraints,
making them ineligible in a musical workflow. In this pa-
per, we present a real-time implementation of the DDSP
library embedded in a virtual synthesizer as a plug-in that
can be used in a Digital Audio Workstation. We focused
on timbre transfer from learned representations of real in-
struments to arbitrary sound inputs as well as controlling
these models by MIDI. Furthermore, we developed a GUI
for intuitive high-level controls which can be used for post-
processing and manipulating the parameters estimated by
the neural network. We have conducted a user experience
test with seven participants online. The results indicated
that our users found the interface appealing, easy to under-
stand, and worth exploring further. At the same time, we
have identified issues in the timbre transfer quality, in some
components we did not implement, and in installation and
distribution of our plugin. The next iteration of our design
will address these issues.

1. INTRODUCTION

Sound synthesizers have been widely used in music pro-
duction since the late 50s. Because of their inner complex-
ity, many musicians and producers polish presets’ parame-
ters until they reach the desired sound. This procedure is
time-consuming and sometimes results in failed attempts to
achieve a desired sound.

Much research has been done in the area of automating the
generation of these sounds through the aid of machine learn-
ing and neural networks. Common approaches included
directly generating the waveform in the time domain [1]
or predicting synthesis parameters based on hand-picked
analysis features [2]. In their 2020 paper on Differentiable
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Digital Signal Processing (DDSP) [3], Engel et al. pro-
posed a novel approach to neural audio synthesis. Rather
than generating signals directly in the time or frequency do-
main, DDSP offers a complete end-to-end toolbox consist-
ing of a synthesizer based on Spectral Modeling Synthesis
(SMS) [4], and an autoencoder neural network architec-
ture that takes care of both extracting analysis features and
predicting synthesis parameters.

The authors of the DDSP paper released a public demon-
stration of ”tone transfer” 1 , allowing the user to upload
their own recordings, select from a list of models trained on
various instruments and ”transfer” their recorded melodies
to the sound of a trumpet, a violin etc. Based on these,
we implemented the DDSP back-end as a virtual instru-
ment playable in real-time. Figure 1 shows the GUI of our
synthesizer.

This paper documents the background, our requirement-
driven design and implementation approach, including
model components and training, the GUI design, and user
experience evaluation. The structure of this paper follows
these main topics in order.

Besides our contribution to the real-time neural audio syn-
thesis and its user experience evaluation, we release our real-
time MATLAB and JUCE implementations at https://
github.com/SMC704/juce-ddsp and https://
github.com/SMC704/matlab-ddsp, respectively.
We also provide a demonstration video at https://
share.descript.com/view/hXAZLCPJNqm.

Figure 1. Our real-time DDSP Synthesizer GUI.

1 https://sites.research.google/tonetransfer, last
accessed on 2020-11-30
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2. BACKGROUND

In addition to the DDSP paper [3], our work is inspired
by the commercially produced additive synthesizer called
Razor by Native Instruments [5]. Razor’s core consists of
a powerful additive synthesizer and features various modu-
lation options for manipulating the sound output. What is
especially interesting about Razor is that every modulation
option (e.g. filters, stereo imaging, reverbs and delays) is ac-
tually modulating individual partial harmonics (non-integer
multiples of the fundamental frequency) in the additive
synthesis engine. Furthermore, Razor enables musicians
and producers to intuitively control partials via different pa-
rameters while relying on a visual representation of partial
manipulation. We therefore focused on the harmonic and
the stochastic components of the DDSP.

2.1 Harmonic Oscillator / Additive Synthesizer

The additive synthesizer is the main core of the whole syn-
thesis and is responsible for generating all the harmonic
components of the reconstructed sound. The output is char-
acterized by the sum of several harmonic integer multiples
of the fundamental frequency 𝑓0:

𝑓𝑘(𝑛) = 𝑘 · 𝑓0(𝑛). (1)

In order to generate the harmonics, we can implement 𝑘
oscillators in the discrete time:

𝑥(𝑛) =

𝐾∑︁
𝑘=1

𝐴𝑘(𝑛) · sin(𝜑𝑘(𝑛)), (2)

where 𝐴𝑘(𝑛) is the time-varying amplitude of the 𝑘𝑡ℎ si-
nusoidal component and 𝜑𝑘(𝑛) is its instantaneous phase.
𝜑𝑘(𝑛) is obtained by integrating the instantaneous fre-
quency 𝑓𝑘(𝑛) [3]:

𝜑𝑘(𝑛) = 2𝜋

𝑛∑︁
𝑚=0

𝑓𝑘(𝑚) + 𝜑0,𝑘. (3)

The only two parameters necessary to control the synthe-
sizer are the frequency 𝑓0(𝑛) and the harmonic amplitudes
𝐴𝑘(𝑛). These are retrieved directly from the input sound
using the encoder contained in the autoencoder network.
As reported in [3], the network outputs are scaled and nor-
malized to fall within an interpretable value range for the
synthesizer.

2.2 Filtered Noise, Subtractive Synthesizer, and Reverb

The subtractive synthesis is used to recreate the non-
harmonic part of natural sounds. The parameters necessary
to obtain a frequency-domain transfer function of a linear
time-variant finite impulse response (LTV-FIR) filter are
retrieved from the neural network in frames that are subsets
of the input signal. The corresponding impulse responses
(IRs) are calculated and a windowing function is applied.
The windowed IRs are then convolved with white noise
via transformation to and multiplication in the frequency
domain. Another LTV-FIR filter acts as a reverberator, per-
forming esentially a convolution reverb in the frequency
domain.

2.3 Research question & design requirements

Based on this background we have formulated the follow-
ing research question: How can we develop a playable
software instrument, based on the DDSP library, that would:
a) allow customization of model-estimated synth param-
eters through top-level macro controls, b) enable exist-
ing workflow-integration in Digital Audio Workstations
(DAWs), and c) facilitate a simple approach for beginners
without limiting usability for expert music producers?

Based on this research question, we have identified five
user-objectives [6], matched them with a solution, and refor-
mulated them as design requirements that address the fol-
lowing functionality: building a playable real-time software-
instrument plugin that supports different composition tech-
niques by having audio and MIDI input modes. The in-
strument must include at least four models which serve the
purpose of estimating synthesizer parameters to output a
desired sound. Finally, the instrument must include graphi-
cal user interface components providing intuitive controls
for the manipulation of synthesizer and effect parameters.
The design requirements are documented on Table 1.

3. DESIGN & IMPLEMENTATION

3.1 Architecture overview

To meet our criteria of creating a real-time software in-
strument, we decided to build the plugin in C++ using
the JUCE application framework 2 . With JUCE, we had a
multi-platform supported audio plugin template that was
handling MIDI and audio inputs and outputs. This allowed
us to mainly focus on the audio processing and GUI.

Creating a real-time implementation of the non-real-time
DDSP library posed some immediate challenges. To ana-
lyze and understand these challenges we decided to start
by doing a direct translation of the additive and subtrac-
tive synthesizers from the DDSP library into MATLAB.
The synthesizers could then be changed into real-time im-
plementations and tested. In order to use our MATLAB
implementation in the JUCE framework, we used inbuilt
MATLAB tools to generate C++ code.

We transformed the autoencoder models pretrained by
Google into models that could be used to estimate synthe-
sizer parameters directly from our plugin’s user input.

A general overview of this architecture can be seen in fig-
ure 2. The following sections will discuss each component
in more detail.

3.1.1 Synth in MATLAB

MATLAB’s environment and visualization tools gave us
access to quick prototyping and testing. This allowed us to
do the implementation over multiple iterations. We tested
our synthesizers’ compatibility with the predicted parame-
ters from the DDSP models by invoking the encoders and
decoders in isolation through MATLAB’s Python interface.

At first we implemented the non-real-time synthesis al-
gorithms of the DDSP library. Then the synthesizers were
changed to real-time, i.e., synthesizing a single frame at

2 https://juce.com/, last accessed on 2020-12-15
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# User Obj. Solution Design Requirement
1 Provide a new playable instrument for

unique sound generation and inspiration
Real-time implementation Must work in real-time as a playable soft-

ware instrument.
2 Conveniently integrate into existing work-

flows
Plugin format application Must be implemented as a software plu-

gin.
3 Adapt to different composition methods Allow line and MIDI input Must allow switching between Line and

MIDI input.
4 Easy fast unique sound generation Choose models for sound generation Must implement at least four pre-trained

models.
5 Convenient customizability of sounds Tweakable parameters that effects the au-

dio output
Must include GUI components for intu-
itive manipulation of synth and effects
parameters.

Table 1. Documentation of Design Requirements

Figure 2. Schematic overview of the project architecture.

a time. Using the MATLAB Audio Test Bench, we could
then test the functionality of the synthesizer components
and parameters with real-time audio and varying sample
rate and buffer size. The last iterations consisted of op-
timizing the code with the constraints of real-time audio
processing on CPUs.

3.1.2 MATLAB to C++

Using the MATLAB coder tool 3 we were able to generate
C++ functions from the MATLAB code. For the simplest
integration between the generated C++ functions and the
JUCE plugin we chose to limit the function inputs and
outputs to built-in and derived C++ data types. This re-
quired our MATLAB functions to have fixed-sized inputs
and outputs. We decided on a maximum input/output size
of 4096 double-precision floating point numbers, this being
the maximum buffer size the plugin could handle.

A helper file was created to ensure code consistency, al-
lowing the user and MATLAB coder to verify the functions
with different inputs. Having this setup made it easy to
go back to the MATLAB code and generate updated C++
functions without breaking the JUCE plugin.

3.1.3 TensorFlow in C++

Running the DDSP TensorFlow implementation in a real-
time audio application is a heavy computational challenge.
Moving from TensorFlow in Python to the TensorFlow C

3 https://se.mathworks.com/products/
matlab-coder.html, last accessed on 2020-12-15

API 4 allowed us to integrate the models into the C++ code-
base. By moving the TensorFlow computations to a separate
thread, we load the models, set the inputs, run the parame-
ter estimation and save the outputs, without experiencing
buffer underruns in the main audio processing thread.

3.1.4 Input signals

The DDSP autoencoder needs the input values fundamental
frequency (𝑓0) and loudness. Since we allow both MIDI and
line-in audio, two separate implementations are needed to
calculate these values, which were first created in MATLAB.
In the C++ implementation we chose the YIN pitch tracking
algorithm [7] from the C library Aubio [8], since it yielded
more precise results.

3.2 Training models

DDSP autoencoders are trained to reconstruct waveforms
with minimal perceptual loss. Similarity of the raw wave-
form however is not a good indicator for perceptual similar-
ity, which is why the DDSP library makes use of multi-scale
spectral loss [3]. The total reconstruction loss is the sum of
multiple spectral losses, i.e., the difference of the magnitude
spectrograms, over various time scales. Moreover, the linear
magnitude losses are sensitive to the peaks, whereas loga-
rithmic magnitude losses are sensitive to the quiet regions
of the signals. Therefore, the sum of losses 𝐿 =

∑︀
𝑖 𝐿𝑖 in

DDSP are calucated in six different frame sizes by

𝐿𝑖 = ||𝑆𝑖 − 𝑆𝑖||1 + ||𝑙𝑜𝑔(𝑆𝑖)− 𝑙𝑜𝑔(𝑆𝑖)||1. (4)
4 https://www.tensorflow.org/install/lang_c, last

accessed on 2020-12-15
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3.2.1 Pre-trained models

Next to the tone transfer website mentioned in the intro-
duction, the authors of the DDSP paper also published a
Jupyter Notebook Demo on Google Colab called timbre
transfer. 5 We accessed the available checkpoint files for
violin, flute, tenor saxophone and trumpet from this note-
book for our real-time implementation of the timbre transfer.
However, we were not immediately able to use them in the
JUCE plugin. The DDSP models are trained using Ten-
sorFlow’s eager execution mode, while the TensorFlow C
API is constructed around graph mode. Additionally, since
we required the models to be controllable by MIDI input,
we needed direct access to the decoder part of the model
instead of supplying audio to the encoder.

The convert models.py script from the Python
folder of the plugin code repository deals with these require-
ments by loading the eager model from the downloaded
checkpoint file, constructing a graph-based model only con-
taining the decoder and then copying all weights from the
old model to the new one. The resulting checkpoint now
contains a graph that can be loaded by the TensorFlow C
API.

3.2.2 Custom models

In order to make use of the DDSP training library and
extend the synthesizer with additional models, we created
four custom models trained on:

• Bass sounds of the Moog One, Moog Minimoog and
Moog Minitaur synthesizers

• Studio recordings of Middle Eastern instruments, the
Hammered Dulcimer and Santoor

• Studio recordings of a Handpan (also known as Hang
Drum)

• Nature field recordings of birds chirping

For training we used the official DDSP (version 0.14.0)
Jupyter notebook on Google Colab called train autoen-
coder 6 which allows training on a Google Cloud GPU
using own data. According to the recommendations of the
DDSP authors given in the notebook, trained models per-
form best using recordings of a single, monophonic sound
source, in one acoustic environment, in .wav or .mp3 format
with a total duration of 10 to 20 minutes. Since the DDSP
Autoencoder is conditioned on the loudness 𝐴 and the fun-
damental frequency 𝑓0, i.e., the model learns to associate
different synthesizer configurations to specific value pairs
of (𝐴, 𝑓0), training on multiple instruments, acoustic envi-
ronments or polyphonic sounds prevents the autoencoder
to learn a unified representation. Although the recordings
listed above are less conform with these training guidelines,
we chose them to challenge the DDSP autoencoder, explor-
ing limitations and opportunities in a musical context by
deliberately bending the recommended usage.

5 https://colab.research.google.com/github/
magenta/ddsp/blob/master/ddsp/colab/demos/
timbre_transfer.ipynb, last accessed on 2020-12-15

6 https://colab.research.google.com/github/
magenta/ddsp/blob/master/ddsp/colab/demos/train_
autoencoder.ipynb, last accessed on 2020-12-15

The training process is performed as follows. The first
step is comprised of data generation and pre-processing of
the training data. The raw audio is split into short parts of a
few seconds, each analyzed on the specified features, i.e.,
the fundamental frequency and loudness, and finally saved
in the TensorFlow TFRecord format. The fundamental
frequency is thereby estimated by using the state-of-the-art
pitch tracking technique, called CREPE by Kim et al. [9]
that applies a deep convolutional neural network on time-
domain audio.

The second step is the actual training, using a Python
based configuration framework for dependency injection
by Google, called Gin 7 . In this way, all available training
hyperparameters can be defined in a gin config file that
is passed to the training function. The training process
does not include any optimization techniques, such as a
hyperparameter search or early stopping, the authors just
recommend in the code documentation to train for 5,000 to
30,000 steps until a spectral loss of about 4.5-5 is reached
for an optimal learning representation without overfitting.

The third and last step was a short evaluation based on
resynthesis. Here, a training sample was randomly picked,
passed through the autoencoder, and checked if it was per-
fectly reconstructed based on the learned features.

We successfully conducted training of all four models and
validated their performance in the previously mentioned
timbre transfer demo. While validation using the DDSP
library went smoothly and showed musically interesting
results, we ran into issues during inference using the Ten-
sorFlow C API within our plugin. We monitored a much
higher loudness of the custom models compared to the
pre-trained models, resulting in a distorted, clipping sound.
Furthermore, we detected a constant harmonic distribution
independent of the incoming pitch and loudness while the
pre-trained models adapt harmonics and frequency response
according to these inputs. The overall experience with the
training script provided by the DDSP authors is that it works
without problems for standard parameters, but as soon as
own hyperparameters within the gin framework are chosen,
a lot of side-effects appear. For the mentioned reasons, inte-
grating and possibly adapting the custom-trained models to
make them work in the DDSP synthesizer will be a part of
future work.

3.2.3 Real-time implementation of the models

The original DDSP implementation synthesizes several
frames before processing them into one output. Reading
through the DDSP code base, we experienced the number
of frames (time steps) to be defined by the size of the input
audio and a hop size defined by constants in the gin config
file of the selected pre-trained model.

For our real-time implementation we wanted to calculate
one frame with a size of the input buffer each time the buffer
is ready. Given the static nature of our TensorFlow model
implementation we were not able to change the number of
time steps on the run. Therefore, we set the number of time
steps to one. Each run of the TensorFlow model would then

7 https://github.com/google/gin-config, last accessed
on 2020-12-15
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return a set of values for one time step, independent of the
buffer size.

3.3 Additive synthesizer

The implementation of the additive synthesizer can be found
in the additive.m MATLAB code file. During the de-
velopment of the DDSP synthesizer we went from a re-
implementation of the DDSP equivalent to an adapted real-
time optimized version with additional parameters for high-
level control. While the original DDSP library provides
two different implementations of the additive synthesis, the
harmonic and sinusoidal approach, this work focuses on
the harmonic synthesis that models a signal by adding only
integer multiples of the fundamental frequency.

In the following, the initial implementation as well as the
main modifications in its final state are clarified. As already
explained in 2.1, the additive synthesizer models audio us-
ing a bank of harmonic sinusoidal oscillators. The synthesis
algorithm takes amplitudes, harmonic distribution and fun-
damental frequencies for a specified number of frames as
input and computes the sample-wise audio signal as output.
The harmonic distribution provides frame-wise amplitudes
of the harmonics. The additive synthesis as implemented in
the DDSP library is performed in two main steps: 1) Trans-
lation of neural network outputs to the parameter space
of the synthesizer controls, and 2) Computing the output
signal from synthesizer controls.

For 1), the amplitudes were scaled and the harmonic distri-
bution was scaled, bandlimited (i.e., removing the harmon-
ics that exceed Nyquist frequency) and normalized, while
the fundamental frequencies remained unchanged. After
retrieving valid synthesizer controls in step 1), the harmonic
synthesis is performed. Since the DDSP approach works
frame-based while the output needs to be delivered sample-
based, the synthesizer controls need to be upsampled. This
is done by linearly interpolating the frequency envelopes
and windowing the amplitude envelopes by using 50% over-
lapping Hann windows. Having calculated all controls on a
sample basis, the signal can be synthesized by accumulative
summation of the corresponding phases, i.e., adding the
calculated sinusoids together, sample by sample.

The following changes were made to optimize the algo-
rithm for a real-time application and to add additional high-
level control for the synthesis.

• Since the frame-based calculation was computation-
ally too heavy, we adapted the code so that the input
is always one frame (equivalent to the buffer size)
and all computations are sample-based. Therefore,
no resampling or windowing is needed.

• Each time the function is called, the phases of all har-
monics are saved and returned along with the signal
and added as offset in the next call to avoid artifacts
caused by phase jumps.

• In order to be able to optionally introduce non-
harmonic partials to the signal, a stretch parameter
was added that transforms the distance between the
integer multiples while maintaining the fundamental

frequency. An additional shift parameter adds the
functionality to modify the fundamental frequency
from one octave below to one octave above the cur-
rent pitch in a continuous scale.

3.4 Subtractive synthesizer

This component is responsible for the non-harmonic parts
of instrument sounds, such as the audible non-pitched
flow of air that accompanies the harmonic part of a flute
sound. Our implementation, which can be found in the
subtractive.m MATLAB code file, generates a frame
of random noise and then filters it according to a given
frequency response.

The function’s parameters are the frame length (number
of samples), noise color (see below) and the frequency
response, which is given as a vector of 𝑁 magnitudes
𝑚0, . . . ,𝑚𝑁−1, where 𝑚0 corresponds to the DC com-
ponent and 𝑚𝑖 to frequency 𝑓nyquist/(𝑁 − 𝑖) with 𝑓nyquist =
𝑓𝑠/2 and samplerate 𝑓𝑠.

While we started with a direct re-implementation of the
DDSP FilteredNoise approach described in 2.2, we made
the following adaptations over the course of the project:

• Simplified filtering: The DDSP synthesizer pro-
cesses multiple frames at once. For real-time im-
plementation, we removed the step of calculating
the impulse response for each frame and applying a
windowing function. Instead, we simply perform a
Fourier transform on the generated noise and multi-
ply the result with the filter magnitude response that
the model predicted for the single current frame.

• Noise color: We provide functionality to shape the
frequency distribution of the generated noise. Noise
color generally refers to the frequency 𝑓 being em-
phasized proportionally to 1/𝑓𝛼 for some exponent
𝛼 [10]. 𝛼 < 1 results in higher frequencies becoming
more prominent, while 𝛼 > 1 increases the energy
of the lower frequencies. Uniform white noise is
achieved by setting 𝛼 = 1.

3.5 Graphical User Interface

After the development of all the features of our synthe-
sizer, we focused our attention on designing an interface
with high-level controls for the additive and the subtractive
synthesis, the reverb, the modulation and the models. Our
process started from a list of all the parameters we wanted
to manipulate. We also looked for some inspiration from
well-known VST synthesizers, comparing them in terms of
usability and trying to understand what their best interac-
tion features were. Later we organized the controls of our
synthesizer in different modules and displayed them in a
rectangular interface, trying to find a layout that was pleas-
ant but also respectful of the instrument’s architecture logic.
In table 2, we list all the controls for each module of our
synthesizer. Because of the particular choice of a graphic
control for the harmonics’ amplitude, the team opted for a
spectrogram representing the output of our plugin. In this
way, the user is able to clearly see which harmonics are
being played.
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Module Feature controls
Input selector MIDI/line selector

Models
selector

Violin
Flute
Saxophone
Trumpet
Moog Bass (not included)
Dulcimer (not included)
Handpan (not included)
Chirps (not included)

Additive
synthesis

Graphic harmonics editor
𝑓0 shift
Harmonics stretching
Global amplitude

Subtractive
synthesis

Noise color
Global amplitude

Modulation
Modulation rate
Delay control
Amount

Reverb
Dry/wet mix
Size
Glow

Output Master gain
Spectrogram Clear visualization of the output

Table 2. List of GUI’s features

Once we defined the layout and the parameters that we
wanted to control, we moved to the software development
in JUCE. In order to customize the appearance of knobs, we
used the ”Custom LookandFeel” objects while we designed
ad hoc images for the buttons and background texture using
a vector graphics software. Figure 1 previously presented
the GUI of our synthesizer.

3.6 Plugin setup

The synthesizer ended up being built as a standalone exe-
cutable and a DAW plugin using Steinberg’s VST3 format.

Using JUCE’s AudioProcessorValueTreeState
class we are exposing the different controllable parameters
to the DAW, allowing control and automation of the plugin.
Using this class we will also be able to easily store and read
plugin states, enabling generation of presets, though this
has not been implemented yet.

The synthesizer is configured to load the models from a
given path with subfolders containing the individual models,
as well as configuration files containing key-value pairs
such as number of harmonics and scaling values.

4. EVALUATION

In order to understand the strengths and weaknesses of our
product to improve it, we designed an evaluation strategy
for both User Experience (UX) and sound output. Our tar-
get users are musicians and music producers. Accordingly,
we shared a release of our VST plugin with selected sound
engineers, musicians and producers to collect opinions and

user insights. Moreover, we designed two different ques-
tionnaires and asked participants to evaluate the UX and
the sound accuracy of our software. The DDSP Synthe-
sizer as well as the two questionnaires have been distributed
online and the participants received an email with all the
indications to properly conduct the test.

In the following, we mainly describe the UX evaluation,
including our approach, desired outcome, survey design
and results.

4.1 User Experience Evaluation

4.1.1 Approach

The aim of this evaluation was to collect feedback about the
user interface from people with experience on synthesizers
and music production. One of the goals of our project was
to design a simple and efficient interface able to control
several parameters with a single gesture without giving
up functionality in the pursuit of simplicity. After a trial
period where the participants had the chance to familiarize
themselves with the software, we asked them to complete a
survey.

4.1.2 Survey structure

We designed the survey with different sections to group the
questions by theme. We included an experiment in order
to ask each participant to load and perform some changes
to a model and export the result in an audio file. In this
way, we ensured that every participant had at least used and
interacted with the plugin for a while. Moreover we are
able to compare each audio export to understand if some of
the instructions were not clear or if the UX itself was not
effective.

Four usage questions have been asked to collect informa-
tion about the user’s DAW and for how much time they
used the plugin. In the next sections we asked the par-
ticipants to report their experience during the experiment
and evaluate the user interface rating 9 different statements
with a Likert-scale, a widely used bipolar symmetric scal-
ing method in questionnaires. In this way, users were able
to express their agreement/disagreement related to each
sentence. Furthermore, we asked 4 open questions to let
the participants express their opinion about the overall UX.
Finally we added 8 questions to locate demographics and
musical-related personal experiences. Table 3 summarizes
the content of each section.

# Section Content
1 Introduction Aim of the question-

naire
2 Experiment Task instructions
3 Usage 4 mixed questions
4 UX evaluation 9 Likert scale evalua-

tions
5 UX experience 4 open questions
5 Demographics 8 mixed questions

Table 3. Content of the UX survey
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4.1.3 Expected results

Considering that the software was still under development,
we were expecting reports about compatibility issues with
different DAWs as well as some stability problems. More-
over, because of the VST’s instability in the first release, it
is possible that some users will not be able to conduct the
small experiment that requires the plugin to be embedded in
a DAW track. Considering the whole interface, one of the
main points of our design requirements was the simplicity
and thus our hope is to facilitate the user’s interaction. Even
if the number of participants is limited, we expect that the
users will approximately identify 75% of the UX issues
accordingly to Nielsen’s model [11].

4.1.4 Results

We received seven answers. Five participants identified as
males, one female and one preferred not to say. The age
average is 28.57 years (STD 8.42). Six of them declared
that sound production is their hobby while one said music
production is related to their job. The mean experience in
the music production field is 7.43 years (STD 4.87). Six
users do not have experience with machine learning VST
plugins and only one of them does not know if she/he ever
used one. Each user spent an average of 23.57 minutes
using our synthesizer (STD 17.74). We suppose that some
mistake has been made reporting the usage time for at least
one user. In table 4 we report the number of user tests per
different software environment.

# users Environment
3 Reaper
2 Ableton Live
1 Cubase
1 Standalone version

Table 4. List of used DAWs in the evaluation.

In general, the experiment has been rated a medium diffi-
cult task with a mean rating of 3.43 in a scale from 1 to 5
being 1 ”easy to accomplish” and 5 ”hard to accomplish”.
In figure 3 we summarize the answers obtained from the
questions with an associated Likert scale. The users were
asked to rate each sentence from 1 to 5 with 1 correspond-
ing to ”strongly disagree” and 5 to ”strongly agree”. We
can observe that the graphical user interface has been really
appreciated with a 4.43 mean value while the interface’s
controls seem not to let the participants easily reach the
wanted results. The other statements reported in the Likert
section obtained a medium rating between 3 and 3.86 which
might mean that the GUI is in general appreciated.

As expected, some of the participants encountered difficul-
ties in the installation procedure of the VST3 plugin in both
Windows and macOS environments while the standalone
version seems to be more stable. Furthermore, three users
reported an unsatisfactory audio result related to the presets
obtained from models. Here we report part of one of the
feedback: ”[...] It’s possible to get some cool sounds but the
default sound when you just start it is not so nice.”. On the
other hand, the audio input feature was appreciated: ”[...]

I think the audio input feature has a lot of potential and
I caught myself experimenting with this a lot and loosing
track of time.”. Two participants reported that the possible
interaction with the interface for the additive synthesizer
was not immediate to spot and they realized its features after
a while. For this reason they suggest a graphical indication
to guide the user to the interaction with the harmonic sliders.
A significant outcome is the unexpected audio results that
participants reported. Even though they described output
sounds as ”awkward”, they highlighted the new creative
way of producing unexpected sounds, finding the whole
synthesizer experience engaging.

4.2 Real-time timbre transfer

Running DDSP decoder models in a real-time plugin is
computationally feasible. As the demonstration 8 shows,
the plugin does not exceed 20% CPU load on an AMD
Ryzen 7 with a clock speed of 2.9 GHz. Similar results
were measured on a MacBook Pro 2013, with a 2GHz Core
i7 processor.

We found the quality of the timbre transfer in our real-time
implementation below that of the demonstrations published
by the Magenta team. Our converted models preserve some
characteristics of the original ones, such as wind noises
in the flute model, but do not accurately reproduce the
timbre overall. We confirmed that on the level of a single
frame, our models produce the same output as their original
counterparts; will investigate and improve the quality in the
future. Additionally, we would like to further investigate
why we were unable to perform the timbre transfer with
models that we trained both within the framework provided
by Magenta, and within custom environments.

4.3 Distribution as a VST3 plugin

When it came to distributing our project to users, we encoun-
tered some difficulties in packaging the required libraries
and model files together with the generated VST3 plugin.
Some of the DAWs that users tested on, like Ableton or
Reaper, did not recognize the plugin or experienced stabil-
ity issues during its usage. Although the core functionality
could still be accessed via the standalone application gener-
ated by JUCE, the project was designed first and foremost
as a plugin. Functionality like handling of external audio
sources and wet/dry mixing was expected to be handled by
the host DAW. Users who had to resort to the standalone
when their DAW did not recognize or stably run the plugin
reported those features as missing.

Thus, we would like to improve the distribution process
in the future, ensuring that the project can be seamlessly
installed as a plugin in multiple DAWs on Windows and
macOS.

5. CONCLUSION

In this paper, we presented an approach to integrate the
DDSP library into a real-time plugin and standalone ap-
plication using the JUCE framework. We succeeded in

8 https://share.descript.com/view/hXAZLCPJNqm
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Figure 3. User experience evaluation - Likert scale

implementing a synthesizer playable based on pure user
input. While we were generally able to use the output from
pre-trained models to control the DDSP backend, further
research is needed to match the sound quality of these real-
time models to that of the offline timbre transfer examples
provided by the DDSP authors.

A recently released realtime reimplementation of DDSP
in PyTorch 9 provides a possibly more seamless way of
interfacing with DDSP models in C++ that proved com-
patible with our plugin and JUCE. Extending that API to
allow the user some control over the synthesis parameters
seems a promising avenue to improve the sound quality of
our timbre transfer.
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[7] A. Cheveigné and H. Kawahara, “YIN, A fundamental
frequency estimator for speech and music,” The Journal
of the Acoustical Society of America, vol. 111, pp. 1917–
30, 2002.

[8] P. Brossier, “Automatic annotation of musical audio
for interactive applications,” Ph.D. dissertation, Queen
Mary University of London, 2006.

[9] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE:
A convolutional representation for pitch estimation,”
in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018,
pp. 161–165.

[10] N. J. Kasdin, “Discrete simulation of colored noise
and stochastic processes and 1/𝑓𝛼 power law noise
generation,” Proceedings of the IEEE, vol. 83, no. 5, pp.
802–827, 1995.

[11] J. Nielsen and R. Molich, “Heuristic evaluation of user
interfaces,” in Proceedings of the SIGCHI conference
on Human factors in computing systems, 1990, pp. 249–
256.


