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Abstract

A likelihood-based estimation procedure for state-space models with multivariate
stochastic volatility is developed. The methodology tackles the dimensionality prob-
lem by approximating the system as a sequence of conditionally independent univariate
stochastic volatility models. A maximum likelihood approach for this sequence is pro-
posed based on the Efficient Importance Sampling technique together with the Kalman
Filter, yielding a computationally fast and accurate estimator. A Monte Carlo study for
a time-varying vector autoregression with multivariate stochastic volatility suggests that
the procedure has good finite-sample and asymptotic properties and results are compa-
rable to the one-step estimation of the model parameters.

Keywords: Multivariate stochastic volatility, State-space models, Efficient importance
sampling, Rao-Blackwellization, Time-varying vector autoregressions
JEL Classification: C15, C32

Email address: det@business.aau.dk (Douglas Eduardo Turatti)

August 16, 2019



1. Introduction

Time-varying volatility matrices are fundamental to asset allocation, risk manage-
ment, and derivative pricing. Recently, macroeconomists have also been interested in
time-varying covariance matrices to analyze possible changes to the transmission mech-
anism of monetary policy. In particular, the model of Cogley and Sargent (2005) has
been popular in analyzing changes in idiosyncratic shocks and propagation mechanisms.
Their specification allows for time-varying variances and covariances, and is especially
interesting when combined in a state-space model.

The need to model time-varying volatilities of financial and macroeconomic data has
created significant interest in estimating multivariate stochastic volatility (MSV) models.
However, statistical inference for this class of models is challenging and prone to numer-
ical shortcomings. The problem is due to the presence of multiple non-linear volatility
states precluding the evaluation of the likelihood function. Thus, the usual estimation
procedure requires highly intensive computational methods. A further hindrance is re-
lated to the dimensionality of the model, usually suffering from a flat likelihood function,
multimodality and other matters related to its numerical optimization (or integration, in
a Bayesian context). In general, statistical inference for MSV models is heavily affected
by the so-called ”curse of dimensionality”.

This paper introduces an estimation procedure for models with MSV which tackles
most of the dimensionality issue. We base our analysis on a Cholesky decomposition which
allows an univariate approximated model using state-space and importance sampling
methods. The model parameters are then obtained by a sequence of maximum likelihood
estimations. The aim of this paper is twofold. The first one is to introduce our estimation
procedure for state-space models with multivariate stochastic volatility. The second is to
present a Monte Carlo (MC) study using the method.

2. State-Space models with multivariate stochastic volatility

The class of MSV models considered is given by:

yt = Xt(γ)Bt +ϒ(Ht)εt , εt ∼ N(0N , IN), (1)

Bt+1 = Ft(γ)Bt +ϒ(Q)ηt , ηt ∼ N(0, I), (2)

where t = 1, . . . ,T and γ contain parameters. Xt(.) and Ft(.) are matrices of exogenous
regressors or static parameters. yt is the N×1 vector of observable variables at time t. Bt
represents potential linear latent states following a Gaussian vector autoregression. ϒ(.)
represents the lower Cholesky factor, and Q is assumed to be a diagonal matrix. The
stochastic volatility is introduced in the matrix Ht . Consider the LDL decomposition of
the matrix Ht ,

Ht = A−1
ΣtA−1′, (3)
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where A is a lower triangular unit matrix, and Σt is a diagonal matrix consisting of
time-varying variance states,

Σt =


σ2

1,t 0 · · · 0
0 σ2

2,t · · · 0
...

...
. . .

...
0 0 · · · σ2

N,t

 . (4)

It follows that the Cholesky factor of Ht is given by,

ϒ(Ht) = A−1
Σ

0.5
t . (5)

The time-varying variance states are determined by log-normal stochastic volatility mod-
els,

σ
2
i,t = exp(hi,t), hi,t = µi +λihi,t−1 +ωiυi,t , υi,t ∼ N(0,1). (6)

Given the structure of (5) the model implies time-varying variances and covariances, al-
though the latter varies according to changes in the volatility’s innovations. Nevertheless,
this model is popular in the macroeconomics and finance literature, and it has been used
by Cogley and Sargent (2005) for the analysis of monetary policy. Finally, time-varying
parameter VAR models with stochastic volatilities, e.g. Cogley and Sargent (2005); het-
eroskedastic factor models, e.g. Han (2006); ARMA models with multivariate stochastic
volatility, e.g. Stock and Watson (2007); and zero-mean MSV models can all be cast in
the format (1)-(2).

3. An approximated procedure for multivariate stochastic volatility models

Statistical inference for MSV models is challenging. The presence of multiple non-
linear latent states prevents the instant computation of the likelihood function. Addition-
ally, multiple static parameters implies a complicated model whose likelihood function
may have multiple peaks, some of which are in uninteresting or implausible regions of the
parameter space. Finally, from a numerical perspective it is easier to optimize several
small-dimensional objective functions than a very large one. Our algorithm tackles these
problems and delivers an equation-by-equation univariate approximation.

In the first step the state-space model (1)-(2) is written in a triangular form, i.e.
according to the contemporaneous dependence in the system’s equations. In a further
step the equations are shown to be estimated as univariate stochastic volatility models.
Finally, to estimate this N one-dimensional stochastic volatility models, we propose an
estimator based on a simulated maximum likelihood via importance sampling. Recall
that the measurement equation (1) is given by,

yt = Xt(γ)Bt +A−1
Σ

0.5
t εt , εt ∼ N(0N , IN). (7)

Let ai, j be a generic term of the matrix A−1. Given the triangular form of the matrix A

3



the system can be written as,

y1,t = Xt(γ)Bt +σ1,tε1,t , (8)

y2,t = Xt(γ)Bt +a2,1σ1,tε1,t +σ2,tε2,t , (9)
...

yN,t = Xt(γ)Bt +aN,1σ1,tε1,t + · · ·+aN,N−1σN−1,tεN−1,t +σN,tεN,t . (10)

For the sake of simplicity we have omitted partitions in Xt(γ) and Bt . A generic equation
for yi,t is thus given by,

yi,t = Xt(γ)Bt +ai,1ε1,t + · · ·+ai,i−1εi−1,t +σi,tεi,t , ∀i = 1, . . .N, (11)

where εi−1,t =σi−1,tεi−1,t for all i= 1, . . .N. Our estimation strategy is based on developing
an approximation for equation (11).

However, equation (11) cannot be easily estimated because the error terms in ai,1ε1,t +
· · ·+ai,i−1εi−1,t are unknown and cannot be estimated.1 If the values of the disturbances
ε1,t , . . . ,εi−1,t were directly observable, the model would collapse in a conditionally linear
and Gaussian state-space model with stochastic volatility, which can be efficiently esti-
mated by the Rao-Blackwellized Efficient Importance Sampling (RB-EIS) of Moura and
Turatti (2014). We propose to replace these unknown disturbances by their conditional
expectations. This approach has the advantage that conditional expectations can be com-
puted, and it has been called a quasi-optimal procedure.2 We propose to approximate
(11) as,

yi,t = Xt(γ)Bt +ai,1E[ε1,t |ψt−1]+ · · ·+ai,i−1E[εi−1,t |ψt−1]+σi,tεi,t , (12)

where ψt−1 represents the information set up to time t−1. Assuming the conditional ex-
pectations are available, equation (12) becomes dependent on a single stochastic volatility
process. However, to estimate equation (12) it is still necessary to evaluate the likelihood
function of a conditionally linear and Gaussian state-space model with univariate stochas-
tic volatility. A likelihood estimator is provided based on the RB-EIS method.

3.1. Rao-Blackwellized efficient importance sampling

The likelihood function for (12) is given by,

L(γ|yi) =
∫
· · ·

∫ T

∏
t=1

g(yi,t |Bt ,hi,t ;γ)p(Bt |Bt−1;γ)p(hi,t |hi,t−1;γ)dB1 . . .dBT dhi,1 . . .dhi,T , (13)

where g(.) and p(.) are the measurement and transition densities respectively. Note that
for a given log-volatility path, equation (12) becomes a linear and Gaussian state-space
model. Thus, it is possible to analytically integrate out the conditionally linear states Bt

1States and disturbances cannot be estimated. It is only possible to consistently estimate aspects of
their conditional (unconditional) distribution.

2This form of approximation replacing disturbances by conditional expectations has been employed in
the econometrics literature before. See for example Harvey et al. (1992), where conditional expectations
are used to estimate unobserved component models with ARCH disturbances.
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using the Kalman Filter,

L(γ|yi) =
∫
· · ·

∫ T

∏
t=1

g∗(yi,t |hi,t ;γ) p(hi,t |hi,t−1;γ)dhi,1 . . .dhi,T , (14)

where g∗(yi,t |hi,t ;γ) is the likelihood contribution delivered by the Kalman filter. However,
it is still necessary to evaluate the integral (14), and this will be done using the Efficient
Importance Sampling (EIS) criteria proposed by Richard and Zhang (2007).

It is possible to rewrite (14) using the importance sampler mt(hi,t |hi,t−1;αt),

L(γ|yi) =
∫
· · ·

∫ T

∏
t=1

ϕt(yi,t ,hi,t ;γ)

mt(hi,t |hi,t−1;αt)
mt(hi,t |hi,t−1;αt)dhi,1 · · ·dhi,T , (15)

where ϕt(·)=g∗(yi,t |hi,t ;γ)p(hi,t |hi,t−1;γ) is the integrand in (14), and αt are auxiliary pa-
rameters determining the moments of the importance sampler mt . The importance sam-
pler can be decomposed as mt(hi,t |hi,t−1;αt)= kt(hi,t |hi,t−1;αt)/χt(hi,t−1;αt), with χt(hi,t−1;αt)=∫

kt(hi,t |hi,t−1;αt)dhi,t as its integrating constant. It is possible to transfer χt+1(hi,t ;αt+1)
back to period-t to exploit the fact that it carries information on hi,t :

L(γ|yi)=
∫
· · ·

∫
χ1(α1)

T

∏
t=1

[
ϕt(yi,t ,hi,t ;γ)χt+1(hi,t ;αt+1)

kt(hi,t |hi,t−1;αt)

]
mt(hi,t |hi,t−1;αt)dhi,1 · · ·dhi,T , (16)

where χT+1 ≡ 1. Equation (16) can be estimated as:

L̂(γ|yi) = χ1(α1)
1
S

S

∑
j=1

T

∏
t=1

w j(γ,yi,t)ϕt(yi,t ,h
( j)
i,t ;γ), (17)

where {{h( j)
i,t }T

t=1}S
j=1 denotes S i.i.d. paths drawn from the importance samplers {mt(hi,t |hi,t−1;αt)}T

t=1,

and w j(.) are importance weights defined as w j(γ,yi,t) = χt+1(h
( j)
i,t ;αt+1)/kt(h

( j)
i,t |h

( j)
i,t−1;αt).

Richard and Zhang (2007) show that the MC variance of L̂(γ|yi) is minimized when
kt mimics ϕtχt+1. Thus, the EIS’ strategy is to construct a sequence of density kernels kt
by selecting auxiliary parameters αt that closely approximates ϕtχt+1. EIS tackles this
problem by iterating on the following backward sequence of low dimensional least-squares
going from T to 1:

α̂t = min
αt

S

∑
j=1

[
ln
(

ϕt(yi,t ,h
( j)
i,t ;γ) ·χt+1(h

( j)
i,t ; α̂t+1)

)
−ct− lnk(h( j)

i,t |h
( j)
i,t−1; α̂t)

]2
, (18)

where draws {h( j)
i,t }S

j=1 come from a chosen initial sampler m(hi,t |hi,t−1;α0
t ), and the con-

stant ct accounts for possible missing terms. As the log-volatilities are driven by Gaussian

processes, the kernel lnk(h( j)
i,t |h

( j)
i,t−1; α̂t) is linear on natural parameters and (18) can be

easily computed by OLS estimates.
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Lastly, an EIS estimator for E[ε1,t |ψt−1], . . . ,E[εi−1,t |ψt−1] can be given by,

̂E[εi,t |ψt−1] =
∑

S
j=1 w j(γ,yi,t)

̂E[ε ( j)
i,t |ψt−1]

∑
S
j=1 w j(γ,yi,t)

, (19)

where each conditional expectation E[ε ( j)
i,t |ψt−1] can be computed by the Kalman Filter

with disturbances included in the state-vector once the volatility processes are sampled.3

3.2. Equationwise RB-EIS

Finally, with the estimator (19) the equationwise procedure for MSV models is com-
pleted:

1. Write the model in a triangular form.

2. Estimate the parameters of the first equation by the RB-EIS method. Obtain an
estimator for the conditional expectation E[ε1,t |ψt−1] using formula (19).

3. Plug this estimator in the second equation. Estimate the parameters by the RB-EIS
method and obtain an estimate for E[ε2,t |ψt−1].

4. Proceed to the next equation. Repeat this process until all parameters are esti-
mated.

This algorithm allows for an equation-by-equation univariate approximation while incor-
porating information from the whole system sequentially. In addition, given the structure
of the dependence in the error terms, the procedure is asymptotically subject to only an
approximation error. In the next section, we perform a Monte Carlo experiment to in-
vestigate its finite-sample properties.

4. Monte Carlo study

A Monte Carlo study is performed on the basis of a TVP-VAR(1)-MSV with 2 and 3
variables. The model is given by,

y1,t = β1,t +β11,ty1,t−1 +β12,ty2,t−1 +β13,ty3,t−1 + ε1,t , (20)

y2,t = β2,t +β21,ty1,t−1 +β22,ty2,t−1 +β23,ty3,t−1 + ε2,t , (21)

y3,t = β3,t +β31,ty1,t−1 +β32,ty2,t−1 +β33,ty3,t−1 + ε3,t , (22)

where the vector of random innovations is εt ∼ N(03,Ht), and Ht = A−1ΣtA−1′ . The state-
variables Bt and Σt follow random walk processes,

βii,t = βii,t−1 +qiiηii,t , ηii,t ∼ N(0,1), ∀i = 1,2,3, (23)

βi j,t = βi j,t−1 +qi jηi j,t , ηi j,t ∼ N(0,1), ∀i, j = 1,2,3 & i 6= j, (24)

βi,t = βi,t−1 +qiηi,t , ηi,t ∼ N(0,1), ∀i = 1,2,3, (25)

hi,t = hi,t−1 +ωiυi,t , υi,t ∼ N(0,1), ∀i = 1,2,3. (26)

3There are other possible estimators for these conditional expectations. For example, by estimating
the model without MSV using the Kalman Filter.
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We examine the properties of our procedure in 2 cases: (I) high parameter variation
intensity of time-varying parameters and stochastic volatility; (II) moderate parameter
variation intensity of time-varying parameters and stochastic volatility.4 The data gen-
erating processes (DGP) are summarized in table (1).

Table 1: Data Generating Processes

DGP qii qi j qi ωi a2,1 a3,1 a3,2
I 0.04 0.03 0.04 0.04 0.3 0.3 0.3
II 0.03 0.02 0.03 0.03 0.3 0.3 0.3
III 0.03 0.02 0.03 0.03 0.6 - -
IV 0.03 0.02 0.03 0.03 1 - -

The samples sizes are T = 250,500,1000. The number of replications is set to 250, and
100 draws are used to evaluate the likelihood function.

Table (2) presents averages and standard deviations of the parameter estimates for
DGP I and II. We note that for small sample sizes (n= 250), all the parameters have large
standard deviations, but for n = 500 and n = 1000 they become much smaller. However,
the sample average is close to the DGP even for a small size as 250. Most importantly
all parameters seem to exhibit convergence to the DGP as the sample size increases, and
at n = 1000 the parameter estimates are very close to the real ones with small standard
deviations.

A second MC study aims to compare the estimates of our equationwise procedure
and the one-step estimation of the full model for DGP III and IV from a finite-sample
perspective. For this experiment we work with a small TVP-VAR(1) with 2 variables to
minimize the curse of dimensionality when estimating the full model. The samples sizes
are T = 250,500. For a fair comparison, in the joint estimation the number of draws was
increased to 200. The one-step estimation will be carried out by the Rao-Blackwellized
Efficient Importance Sampling.

Table (3) shows the results of the second MC study. Results indicate that the average
of the estimates are very similar, especially for T = 500. This provides strong support
for the equationwise procedure as a sound estimator and comparable to the one-step
procedure in small and large sample sizes.

5. Conclusions

This paper proposes an estimation procedure for MSV models, which takles most of
its dimensionality problem. The method is based on an equation-by-equation univariate
approximation combined with the RB-EIS technique. The resulting algorithm can be
applied to a range of models commonly used in finance and macroeconomics.

A Monte Carlo study shows that the equation-by-equation procedure has good finite-
sample and asymptotic properties: most parameter estimates are very close to the DGP
in large sample sizes, and their sample standard deviations become smaller. Another
MC study compares the equation-by-equation procedure with the one-step estimation of

4Stability checks were performed at every point in time, and explosive paths for yt were discarded.
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Table 2: Properties of the equationwise procedure

Parameters DGP T = 250 T = 500 T = 1000
DGP I

q1 0.04 0.042 (0.044) 0.039 (0.031) 0.039 (0.018)
q11 0.04 0.034 (0.015) 0.035 (0.010) 0.036 (0.005)
q12 0.03 0.028 (0.015) 0.028 (0.009) 0.028 (0.005)
q13 0.03 0.026 (0.013) 0.028 (0.008) 0.028 (0.005)
ω1 0.04 0.076 (0.050) 0.061 (0.033) 0.049 (0.020)
q2 0.04 0.043 (0.043) 0.041 (0.029) 0.038 (0.019)
q21 0.03 0.027 (0.017) 0.028 (0.009) 0.029 (0.006)
q22 0.04 0.034 (0.015) 0.036 (0.010) 0.036 (0.006)
q23 0.03 0.028 (0.016) 0.028 (0.009) 0.028 (0.006)
ω2 0.04 0.074 (0.050) 0.061 (0.034) 0.050 (0.020)
a2,1 0.30 0.306 (0.102) 0.312 (0.070) 0.295 (0.053)
q3 0.04 0.041 (0.042) 0.041 (0.027) 0.040 (0.018)
q31 0.03 0.027 (0.015) 0.028 (0.009) 0.028 (0.006)
q32 0.03 0.028 (0.016) 0.028 (0.009) 0.028 (0.006)
q33 0.04 0.034 (0.015) 0.036 (0.009) 0.039 (0.006)
ω3 0.04 0.073 (0.051) 0.059 (0.032) 0.050 (0.021)
a3,1 0.30 0.300 (0.104) 0.296 (0.067) 0.304 (0.060)
a3,2 0.30 0.307 (0.102) 0.302 (0.071) 0.302 (0.048)

DGP II
q1 0.03 0.033 (0.034) 0.028 (0.022) 0.030 (0.015)
q11 0.03 0.025 (0.013) 0.025 (0.009) 0.027 (0.005)
q12 0.02 0.018 (0.012) 0.018 (0.009) 0.019 (0.005)
q13 0.02 0.014 (0.010) 0.018 (0.008) 0.018 (0.005)
ω1 0.03 0.059 (0.043) 0.047 (0.029) 0.038 (0.017)
q2 0.03 0.034 (0.042) 0.029 (0.021) 0.029 (0.014)
q21 0.02 0.017 (0.013) 0.019 (0.008) 0.019 (0.005)
q22 0.03 0.024 (0.013) 0.026 (0.008) 0.027 (0.005)
q23 0.02 0.017 (0.012) 0.018 (0.007) 0.019 (0.005)
ω2 0.03 0.058 (0.041) 0.047 (0.026) 0.038 (0.016)
a2,1 0.30 0.299 (0.090) 0.302 (0.060) 0.294 (0.043)
q3 0.03 0.033 (0.034) 0.030 (0.020) 0.030 (0.014)
q31 0.02 0.016 (0.014) 0.019 (0.009) 0.019 (0.005)
q32 0.02 0.018 (0.014) 0.018 (0.008) 0.019 (0.005)
q33 0.03 0.025 (0.014) 0.027 (0.009) 0.028 (0.006)
ω3 0.03 0.057 (0.039) 0.044 (0.024) 0.037 (0.014)
a3,1 0.30 0.300 (0.089) 0.295 (0.062) 0.299 (0.046)
a3,2 0.30 0.307 (0.085) 0.304 (0.064) 0.302 (0.043)

The table presents the DGP parameters followed by sample averages of estimated parameters from 250
series. Values in parentheses are sample standard deviations of the estimates.

the model parameters, and it shows that the difference between them is small in finite
samples, and in large samples they yield similar results. For future research it would be
interesting to incorporate the procedure in a Gibbs Sampling algorithm.
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Table 3: Finite-Sample properties of the equationwise procedure

Parameters DGP T = 250 T = 500 T = 250 T = 500
DGP III

Equationwise procedure One-Step procedure
q1 0.03 0.035 (0.037) 0.036 (0.026) 0.033 (0.037) 0.031 (0.026)
q11 0.03 0.025 (0.015) 0.025 (0.009) 0.025 (0.014) 0.025 (0.009)
q12 0.02 0.017 (0.014) 0.018 (0.008) 0.017 (0.013) 0.018 (0.008)
ω1 0.03 0.054 (0.038) 0.046 (0.026) 0.054 (0.039) 0.045 (0.026)
q2 0.03 0.038 (0.046) 0.032 (0.030) 0.033 (0.046) 0.029 (0.033)
q21 0.02 0.019 (0.016) 0.019 (0.009) 0.018 (0.015) 0.018 (0.009)
q22 0.03 0.024 (0.014) 0.026 (0.010) 0.022 (0.014) 0.025 (0.010)
ω2 0.03 0.059 (0.042) 0.045 (0.028) 0.059 (0.043) 0.045 (0.028)
a2,1 0.60 0.587 (0.082) 0.589 (0.058) 0.590 (0.080) 0.591 (0.059)

DGP IV
Equationwise procedure One-Step procedure

q1 0.03 0.039 (0.047) 0.031 (0.021) 0.032 (0.039) 0.030 (0.023)
q11 0.03 0.025 (0.015) 0.026 (0.009) 0.025 (0.013) 0.026 (0.008)
q12 0.02 0.017 (0.012) 0.017 (0.007) 0.017 (0.011) 0.017 (0.010)
ω1 0.03 0.055 (0.040) 0.044 (0.023) 0.056 (0.042) 0.043 (0.023)
q2 0.03 0.044 (0.050) 0.036 (0.032) 0.031 (0.043) 0.029 (0.034)
q21 0.02 0.022 (0.019) 0.022 (0.011) 0.017 (0.018) 0.017 (0.007)
q22 0.03 0.026 (0.014) 0.028 (0.010) 0.022 (0.014) 0.025 (0.010)
ω2 0.03 0.059 (0.043) 0.044 (0.028) 0.059 (0.044) 0.044 (0.027)
a2,1 1.00 0.990 (0.084) 0.989 (0.060) 0.993 (0.082) 0.992 (0.061)

The table presents the DGP parameters followed by sample averages of estimated parameters from 250
series. Values in parentheses are sample standard deviations of the estimates.
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