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Simple Summary: Two species of chamois (Rupicapra rupicapra and R. pyrenaica) are currently
recognized by taxonomy and further subdivided into seven and three subspecies, respectively.
However, recent research based on molecular markers finds this classification questionable. We aim
to increase the resolution of published research on chamois phylogeny by including mitogenomes
of all available subspecies, including the previously unpublished mitogenomes of R. r. balcanica
and R. r. tatrica subspecies. The inferred phylogeny based on the full mitogenomes confirms the
previously reported genus subdivision in three clades and its monophyletic positioning within the
Caprinae. Phylogeny and taxonomy of Rupicapra species thus remain controversial prompting for the
inclusion of archeological remains to solve the controversy.

Abstract: Although the two species of chamois (Rupicapra rupicapra and R. pyrenaica) are currently
classified as least-concern by the IUCN (International Union for Conservation of Nature), incon-
sistencies on the subspecies classification reported in literature make it challenging to assess the
conservation status of the single subspecies. Previous studies relying on mitochondrial genes, some-
times in combination with nuclear or Y-chromosome markers, reported the presence of clusters
corresponding to the geographic distribution but highlighting ambiguities in the genus phylogeny.
Here we report novel de novo assembled sequences of the mitochondrial genome from nine individ-
uals, including previously unpublished R. r. balcanica and R. r. tatrica subspecies, and use them to
untangle the genus phylogeny. Our results based on the full mitogenome inferred phylogeny confirm
the previously reported genus subdivision in three clades and its monophyletic positioning within
the Caprinae. Phylogeny and taxonomy of Rupicapra species thus remain controversial prompting for
the inclusion of archeological remains to solve the controversy.
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1. Introduction

The chamois, genus Rupicapra, is the most abundant mountain-dwelling ungulate
in Europe and the Near East, and is currently recognized to be divided into two species:
Rupicapra rupicapra (Northern chamois) and Rupicapra pyrenaica (Southern chamois), further
subdivided into seven (cartusiana, rupicapra, balcanica, tatrica, carpatica, caucasica, and asiatica)
and three (parva, pyrenaica, and ornata) subspecies, respectively [1,2]. The conservation
status of the species requires consideration. Neither of the species is threatened and
both species are currently classified as least-concern in the IUCN Red List of Threatened
Species [3,4]. Although some subspecies are protected at the national level in (part of) their
distribution, detailed information on the conservation status of the different subspecies
is patchy, if any, and chamois may be one of the most threatened European ungulates if
considered at the subspecies level [2]. This picture is further complicated by molecular
controversy concerning the subspecies subdivision based on morphological and behavioral
characters. While some markers provided some support for this classification mitochondrial
DNA (mtDNA) identified nominal species as paraphyletic [2,5] and references therein.

Previous studies relying on cytochrome b (cytb) identified three lineages geograph-
ically separated, a western clade in the Western Alps and Iberia, a central clade in the
Apennines and the Chartreuse Massif, and an eastern clade covering all regions east of the
Alps [6]. This subdivision, later confirmed by a combination of mitochondrial regions [7],
differs from the pattern observed with microsatellites, mitochondrial pseudogenes, and in-
trons [7–9]. The analyses using nuclear markers, although recognizing geographically struc-
tured clades, more closely resemble the subspecies subdivision based on morphological
characteristics and highlight a complex population history strongly shaped by male-biased
dispersal [7–9], as confirmed by Y-chromosome lineages [5]. However, mitochondrial genes
evolution rates differ [10–12], with mutations accumulating faster in non-coding than in
coding regions, and are strongly influenced by energetic demands [12–14], thus using the
whole mitochondrial genome (mitogenome) could help to address different phylogenetic
aspects [15,16]. So far, very few Rupicapra mitogenomes are available. Hassanin et al. [17]
were the first to use the potential of mitogenomes to investigate phylogenetic relationships
within the Caprini tribe but were unable to resolve the relationships of Rupicapra and a few
other genera. In their study, the two Rupicapra species formed a separate branch in the
tree [17] but represented only two of the three mitochondrial clades. The later addition of
two mitogenomes of subspecies previously attributed to the central clade [18] confirmed
the subdivision in three clades and the non-concordance with taxonomic classification.

To further complicate the picture, reintroductions and translocations—if performed
without previous knowledge on the involved individuals’ taxonomic status [19,20]—might
introduce an additional confounding effect. One of these examples is in the Northern
Dinaric mountains, Mt. Velebit (Croatia), where R. r. rupicapra and R. r. balcanica were
introduced for hunting purposes and led to a molecularly identified hybrid population [21].
However, such events might be difficult to trace due to a lack of historic records or illegal
practices, thus leading to incorrect assumptions on the (sub)species being sampled and
hampering phylogenetic and taxonomic reconstructions.

In this study, we aimed to contribute to the unraveling of the complex genus phylogeny
by increasing the number of individuals and subspecies investigated using the whole
mitochondrial genome. Our results confirmed the grouping of individuals from Mt. Velebit
with the Balkan subspecies, the subdivision of the genus into three mitochondrial clades
and its monophyletic positioning within the Caprini, in a sister-group relationship with
Ammotragus and Arabitragus, while prompting for additional multi-marker studies also
involving historical samples to disentangle the genus phylogeny and taxonomy.

2. Materials and Methods
2.1. Sampling and DNA Sequencing

We collected samples from Rupicapra subspecies (rupicapra n = 4, balcanica n = 2, tatrica
n = 2, balcanica x rupicapra putative hybrids n = 2, and pyrenaica n = 2). All samples were
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collected from dead animals during regular hunting seasons. Genomic DNA was extracted
from tissue samples using a standard phenol-chloroform method. DNA fragments were
then treated according to the Illumina DNA sample preparation protocol. Genome se-
quencing was performed on the Illumina HiSeq 2500 platform with paired-end adaptors
and 100 bp reads length for libraries of 350 bp inserts. To investigate the phylogenetic
relationships, we downloaded one mitogenome sequence for each of the 34 (sub)species
from the subfamily Caprinae available in GenBank and five outgroups: Damaliscus pygarus,
Damaliscus lunatus, Bos taurus, Bubalus bubalis, and Muntiacus reevesi (Table S1).

2.2. Genome Assembly and Validation

Raw sequences were corrected using the Pollux program [22] with default settings.
Mitochondrial DNA, due to the presence of multiple copies per cell, had higher coverage
and depth in whole-genome sequences which, if results are of sufficient quality, allows
for de novo assembly. After screening with Pollux, we excluded two samples that did
not pass the quality filtering. To avoid ambiguity of the assembled sequences, we used
two approaches: a de novo assembly followed by an assembly relying on a reference
genome. MitoZ [23] was used for the de novo approach with default settings. We then used
NOVOPlasty [24] “seed-and-extend” method using the GenBank R. rupicapra sequence
(FY207539) as seed. The resulting circular genomes were verified as belonging to the Genus
in BLAST [25]. Obtained mitochondrial sequences were further validated by aligning them
against GenBank R. rupicapra sequence using MEGA X [26], Bioedit [27], and BWA [28]
software. Visualization of results was done using GenomeVx software [29].

2.3. Alignment, Post Processing, and Annotation of Protein Coding Genes

Newly assembled mitogenomes that passed the quality controls (Table 1) were aligned
in Mega X [26] using Clustal W [30] considering the algorithm computational demand and
the size of our file [31] and checked by eye. Downloaded sequences were also visually
inspected for consistency and exclude the possible presence of erroneous rearrangements
and nuclear pseudogenes [8,17,31]. To avoid erroneous hypothesis on homology, all indels,
positions with ambiguity in the position of the gaps, and the portion of the control region
presenting tandem repeats in the Caprini [17] were excluded. The final alignment consisted
of 15,383 bp and 40 sequences. GeSeq [32] was used to identify both protein-coding
and tRNA, with the embedded tRNAscan-SE v2.0.5 [33], regions setting the sequence
source to linear mtDNA. DNAsp v6.12.03 [34] was used to infer the number of haplotypes,
haplotype (h) and nucleotide (π) diversity, number of polymorphic sites (S), GC content,
and Fu’s (Fs) statistic, for both the whole mitogenome and each individual protein-coding
region for each Rupicapra subspecies. The ND6 region was reverse complemented to
present the same reading direction as the other protein-coding sequences [35]. DNAsp was
additionally used to identify the number of synonymous (SS) and non-synonymous (NSS)
sites and to compute the ratio between synonymous and non-synonymous substitutions.
The overall mean distance for synonymous substitutions per synonymous site (pS) and
non-synonymous substitutions per non-synonymous site (pN) were calculated using Mega
X according to the Nei-Gojobori method [36] with 1000 bootstraps.
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Table 1. Variability across the Rupicapra subspecies. N = number of individuals, N haplotypes = number of haplotypes,
S = number of polymorphic sites, π = nucleotide diversity, h = haplotype diversity, SD = standard deviation, Fs = Fu’s Fs,
TOT = total.

Subspecies N N Haplotypes S π (SD) h (SD) Fs Accession Number

R. rupicapra 1 1 FJ207539 1

R. r. rupicapra 3 2 52 0.002 (0.001) 0.667 (0.314) 6.481
MW588898 2

MW588900 2

MW588903 2

R. r. balcanica 1 1 MW588899 2

R. r. rupicapra x R. r.
balcanica putative hybrid 2 2 1 0.000 (0.000) 1.000 (0.500) 0.000 MW588896 2

MW588897 2

R. r. tatrica 2 1 MW588901 2

MW588902 2

R. r. cartusiana 1 1 KJ184175 3

R. rupicapra TOT 10 6 573 0.009 (0.004) 0.889 (0.075) 12.454

R. pyrenaica 1 1 FJ207538 1

R. p. ornata 1 1 KJ184173 3

R. p. pyrenaica 2 2 14 0.001 (0.000) 1.000 (0.500) 2.639 KJ184174 3

MW588895 2

R. pyrenaica TOT 4 4 371 0.012 (0.006) 1.000 (0.177) 3.426

TOT 14 10 771 0.019 (0.003) 0.945 (0.045) 11.944
1 Hassanin et al. (2009); 2 present study; 3 Pérez et al. (2014).

2.4. Phylogenetic Analyses

Phylogenetic relationships among Caprinae species were reconstructed using a reduced
alignment containing a single sequence per Rupicapra subspecies, mitogenome sequences
of Caprinae species available in GenBank, and five Bovidae as outgroups. The complete
dataset used for this analysis consisted of 45 mitogenome sequences. Relationships within
Rupicapra were investigated using all Rupicapra sequences available in GenBank (n = 5) and
the nine new sequences obtained within this research. Mitogenome sequences of Ammo-
tragus lervia and Arabitragus jakari were included as outgroups. PartitionFinder2 [37] was
used to infer partitioning and corresponding evolutionary models, whereas ModelFinder
in IQ-TREE [38] was used to select the most accurate evolutionary model for the complete
mitogenome. Since partitioning the sequence did not lead to differences in tree topology
(data not shown) we herewith specify evolutionary models only for the whole sequence.
Two phylogenetic approaches were applied for tree inference: the maximum likelihood
method in IQ-TREE [39] and Bayesian inference in MrBayes 3.2.7 [40]. Stochastic inference
on both Caprinae and Rupicapra datasets was computed with IQ-TREE default parameters,
genetic code set to vertebrate mitochondrial, substitution model TIM2+I+G4, and ultrafast
bootstrap analysis UFBoot2 [41].

Bayesian inference on the Caprinae was performed with GTR+I+G4 model and Markov
chain Monte Carlo simulation for 1.2 million generations. The trees were sampled every
500 generations until reaching an average standard deviation of split frequencies of 0.011.
MrBayes parameters for Rupicapra were GTR+G4 and 1.7 million generations, sampled
every 200 generations until reaching an average standard deviation of split frequencies of
0.006. For both analyses, the convergence of chains was additionally checked by verifying
the stationarity of the log probability graphs [42]. For each run, 25% of the initial trees were
discarded as burn-in.

Tree editing and visualization were performed using the R package ggtree [43]. Within
and between group genetic distances of Rupicapra subspecies were calculated in Mega X
using the Maximum Composite Likelihood model [44], rate variation among sites mod-
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eled with an uneven gamma distribution (shape parameter = 1) [45] and including all
codon positions.

3. Results
3.1. Diversity of Rupicapra Mitogenome

After quality control screening, we obtained nine newly sequenced complete mi-
togenomes of Rupicapra, which showed the typical organization (Figure S1) of mammalian
mitochondrial genomes, incomplete stop codons, overlapping coding regions, and dif-
ferent start codons [46,47]. Results of all methods used for validation of the alignment
were concordant. The alignment with the five already available conspecific sequences and
39 from other species had an initial length of 16,850 bp and, after removal of sites with
ambiguities, gaps, and the tandem repeat of the control region, the final alignment was
15,383 bp and presented 6075 variable sites (39.49%), out of which 4914 (31.94%) were
parsimony informative and 1161 (7.55%) were singletons.

The 14 Rupicapra sequences included in the full dataset showed an overall high hap-
lotype (h = 0.945; SD = 0.045) and nucleotide (π = 0.019; sd = 0.003) diversity, with high
variability between the two species and among subspecies (Table 1). A similarly high vari-
ability between R. rupicapra and R. pyrenaica was observed in the variability of the coding
regions, with R. rupicapra showing in general lower nucleotide and haplotype diversity,
despite the larger sample size, with some exceptions (Figure 1a and Table S2). However,
the GC content and the ratio between synonymous and non-synonymous substitutions
were overall concordant between the two species (Figure 1b and Table S2). Although the
number of NSS was higher than the SS (Table S2), the pS-pN difference showed an overall
higher proportion of pS (R. pyrenaica 0.009, standard error –SE–0.000; R. rupicapra 0.008,
SE 0.000).
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diversity and (b) GC content.

3.2. Phylogenetic Relationships

The Bayesian phylogenetic tree of the Caprinae dataset identified the same topology as
reported by Hassanin et al. [17], with tribes Bovini and Caprini being monophyletic, sister
group relationship of Damaliscus and the Ovicaprini, the basal divergence of Pantholops
within the Ovicaprini, and a well-supported separation of the Ovibovini. Within the
Caprini tribe, Capra and Hemitragus form a goat-like clade and the more distant Pseudois
and Budorcas as sister groups; Ovis and Oreamnos group together in a sheep-like clade;
Ammotragus and Arabitragus showed a sister group relationship and finally, Rupicapra was
monophyletic (Figure 2). The maximum likelihood analysis (tree not shown) was consistent
with Bayesian results, showing both the same topology and the same high support for the
nodes (bootstrap values provided in Figure 2).
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The maximum likelihood and Bayesian analyses focusing on Rupicapra (Figure 3)
showed the same highly supported subdivision in eastern, central, and western clades,
with the western and central clade being closer (between group distance = 0.024 SE 0.002)
to each other than to the eastern one (between group distance = 0.032 SE 0.003 and 0.030 SE
0.003, respectively). Within the eastern clade, R. r. balcanica was the most differentiated and
included both sequences from the contact population from Mt. Velebit, whereas R. r. tatrica
and R. r. rupicapra showed a sister group relationship (Figure 3).
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4. Discussion

The phylogeny and taxonomy of Rupicapra species remain controversial despite the
improvements in molecular methods over the decades and are still an intriguing question,
with important implications on both the evolution and conservation of this species com-
plex [2,9]. Initial molecular investigations using electrophoresis in the 1980s supported the
subdivision into an Alpine lineage separated from the Apennine and Pyrenean one [48].
Later studies, however, revealed a much more complex phylogenetic history with con-
trasting nuclear, Y-chromosome, and mitochondrial patterns [5–7,18], whereas more recent
findings provide support to the hypothesis of ancient hybridization among lineages [8,9].
Although differences among markers in phylogenetic reconstructions are not unusual, due
to the evolutionary mode of each marker and the fact that they represent either matrilineal
(mitochondrial), patrilineal (Y-chromosome), or biparental (nuclear) evolutionary histories,
what is intriguing with Rupicapra is that the same marker, in this case, mitochondrial DNA,
led to contrasting conclusions on the number and composition of lineages at different times,
depending on the methodological approach (restriction fragment length polymorphisms
or sequencing) and the region analyzed (coding, non-coding, a combination or the whole
mitogenome) [2,18]. Currently, the most accepted taxonomy recognizes two species (R. rup-
icapra and R. pyrenaica) and three mitochondrial clades corresponding to the geographic
distribution of the populations (eastern, central, and western).

To disentangle these controversies, we integrated previous knowledge on the topic
with newly sequenced mitogenomes. So far only two studies used whole mitogenomes
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of the genus [17,18], and our results, based on a larger dataset, identified the same sub-
division of the Caprinae tree (Figure 2) into Pantholopini, Caprini, and Ovibovini as pre-
viously reported [17,18], and the same eastern, central and western clades described
elsewhere [5–7,18] for the Rupicapra tree (Figure 3), with the central clade being more
closely related to the western than to the eastern one [18]. This observation agrees with
the intermediate morphological phenotype of R. r. cartusiana compared to R. pyrenaica and
R. rupicapra [18,49]. Additionally, concordantly with what was reported in mitogenome pub-
lications [17,50], but contrary to previous studies based on cytb [51,52], Budorcas sequences
did not group with Ovis but were closer to Capra and Pseudois, highlighting the increased
resolution provided by whole mitogenomes compared to single mitochondrial genes.

The other point worth mentioning is the presence of a sequence attributed to R. r. rup-
icapra within the R. r. balcanica clade. This result is particularly intriguing as it taps
into an interesting management issue. The sample comes from the Northern Dinaric
Mountains. The southern part of this mountain chain was identified as inhabited by a
human-induced hybrid population based on the comparison between nuclear and mi-
tochondrial markers [21]. The same study reported no shared haplotypes between the
Northern and Southern Velebit populations. Although based on a single individual, our
result prompts further investigation of this area to validate the extension of the contact
area between the two subspecies and the potential implications for management.

The clustering of R. r. cartusiana sequence with R. p. ornata (Figures 2 and 3) and its
grouping in the same clade as other subspecies of R. pyrenaica confirms previous findings
based on morphological [25] and genetic data [6,7,18], and further increases disconcordance
between current chamois systematics and the results of genetic analyses.

Quite interestingly, Pérez and colleagues [18] reported that in the central clade COX
genes were quite conserved while ATP genes were more variable. Our analyses at the
species level observed a similar pattern but with some important differences between
species. Nucleotide diversity was generally lower in R. rupicapra but with a trend similar
to R. pyrenaica, with the exception of ND4L, where a slight decrease (0.007) was observed
compared to the Iberian chamois (0.012), and unexpectedly high variation at the ND6
gene (0.019 and 0.013, respectively). GC content was more homogeneous between the two
species, with a single noticeable difference at the ATP8 gene, with the Alpine chamois
showing lower variability (0.335 and 0.372, respectively). While estimates of nucleotide
diversity on small samples are found to be underestimated [53], it is interesting to notice
that greater variability was observed in the species with a lower sample size, opening
questions on the population history of both species. All mitochondrial genes are involved
in cellular respiration and are thus extremely important for efficient energy production
and aging [12,13]. However, variation in mitochondrial genes can lead to a number of
pathological disorders [54–56]. In particular, in humans, mutations at ND genes have
been associated with progressive loss of central vision [57], epilepsy [58], and muscular
dystonia [59], whereas ATP8 has been associated with autoimmune skin diseases [60],
epilepsy [58] and cancer [61], making the differences of variability between species worth
further investigation, considering the potential implications for conservation.

5. Conclusions

Overall, our results provide increased resolution compared to the available literature,
confirm the phylogeny previously reported for both whole and partial mitochondrial
sequences and the discrepancy among markers in phylogenetic reconstruction of the
genus. Pérez and colleagues [9] explained the differences among nuclear, mitochondrial,
and Y-chromosome phylogenies with male-mediated introgression and female philopatry.
Hybridization is a particularly controversial aspect for this genus, since both natural and
human-mediated hybridization have been repeatedly hypothesized or anecdotally reported
on several occasions, but confirmed on few [19]. However, the taxonomic subdivision of
the genus was recently questioned again, since female philopatry might bias mitochondrial-
based phylogenies and the extremely low variation of nuclear markers observed suggests
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a single species [9]. Further studies based on multiple markers, and possibly including
archeological remains, are thus needed to solve the controversy.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/
article/10.3390/ani11041065/s1, Figure S1: Structural organization of Rupicapra mitochondrial
genome; Table S1: List of sequences and accession codes; Table S2: Variability among Rupicapra
subspecies for each gene.
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