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d Department of Energy (AAU Energy), Aalborg University, 9220 Aalborg, Denmark   

A R T I C L E  I N F O   

Keywords: 
Transmission System Resilience 
Natural Phenomenon 
Microgrids 
Network Hardening 

A B S T R A C T   

This paper aims to develop a linear two-stage optimization problem based on an attacker-defender resilient 
planning (AD-RP) model to improve the power system’s operational and infrastructural resilience in the face of 
low-probability high-impact events. In the developed model, attackers are natural phenomena that can cause the 
most severe damage to system performance, and defenders are actions that minimize system vulnerabilities. In 
the first stage, a stochastic model depending on Monte-Carlo simulation is developed to present a new index for 
selecting the most vulnerable transmission system components. This index is designed based on combining the 
worst possible case of attack, disaster statistical analysis, system structure and fragility curves. In the second 
stage, as defense operations, the hardening of vulnerable lines and microgrids placement in the proper places are 
carried out considering investment budget constraints. Minimizing load shedding and ensuring the resilience of 
the transmission network are the main objectives behind the second stage. In this regard, a comprehensive metric 
for the evaluation of the transmission system resilience is introduced. Thanks to a mixed-integer programming 
problem, the effectiveness of the proposed AD-RP model in increasing system resilience is demonstrated in the 
IEEE 30-bus and 118-bus test systems.   

1. Introduction 

Following technical problems, man-made outages, and natural di-
sasters, a power system may encounter a critical situation or a blackout. 
Among them all, the role of natural disasters in creating power outages is 
more significant. The occurrence of natural disasters such as hurricanes, 
floods, earthquakes, and low-probability high-impact (LPHI) events can 
raise extreme damages to power systems, the number and severity of 
which have been increasing in recent years [1,2]. In case of a disaster, 
restricting the range and duration of the outage is a crucial action. 
Considering the many consequences of power outages, the resilience of a 
power grid to natural hazards is essential [3]. Resilience in power grids 
is defined as the ability to mitigate the vulnerability of a system faced 
with LPHI events [4]. Resilience is a time-dependent concept that must 
be considered before, during, and after a severe disaster to enhance it. 
The risk and vulnerability evaluation of customers affected by the 
disruption is required to assess power systems’ resilience. Previous 

studies have addressed the impact of natural disasters on the risk of 
power outages and response to these events by one of statistical, 
structure-based, and fragility curves-based models [5]. 

Statistical-based models are widely used by utilizing historical data 
of atmospheric factors and system damages [6]. However, these models 
are sometimes not easily generalizable due to a lack of information. On 
the other hand, structure-based models require the accurate imple-
mentation, complex simulations and modelling of generators, load 
points, substations, and transmission and distribution lines [7]. This 
model is very time-consuming as it relies on conducting complex power 
flow studies with high calculation burdens. Besides, the fragility 
curves-based models can estimate the probability and extent of damage 
to a power grid exposed to physical attacks [8]. But this model also 
requires a proper understanding of the intensity and type of natural 
events. Investigating severe weather events such as hurricanes for which 
historical data is available and using a simple structure-based model can 
determine the severity of the disaster for each point of the electrical 
system. Hence, with the help of fragility curves, the probability of 
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network components outage is calculated. This means that the models 
based on statistical, structure, and fragility curves complement each 
other. In the present study, a stochastic approach using a combination of 
these three models is developed to calculate the failure priority of 
transmission system components against hurricanes. 

Power systems typically use the N – 1 criterion as a security measure 
to reflect the concerns of a system for day-to-day operations, with N 
representing the total number of system components. This criterion 

states that the system should be designed in such a way that in a failure 
case of any individual component at any time, the system will provide 
the required capacities without interruption [9]. However, this security 
measure cannot cover the possible conditions for a case when different 
system components are damaged simultaneously; thus, it cannot guar-
antee the desired performance. To address the issue described above 
suitably, this paper uses a more accurate measure known as N – k cri-
terion to consider the simultaneous outage of k electrical components 

Nomenclature 

Sets 
ΩB Set of system buses. 
ΩG Set of generators. 
ΩI Set of Monte-Carlo iterations. 
Ωℓ Set of system lines. 
ΩS Set of generated scenarios in each Monte-Carlo iteration. 

Indices and Symbols 
g Index of generation units (1 to ΩG). 
i, j Index of system buses (1 to ΩB). 
ij Index of system lines (1 to Ωℓ). 
τ Index of Monte-Carlo iterations (1 to ΩI). 
ς Index of generated scenarios in each Monte-Carlo iteration 

(1 to ΩS). 
ς′ Index of selected scenario in each Monte-Carlo iteration. 
ς′ Feasible power flow set under natural disasters. 
ς′ Uncertainty set of damaged components. 
ς′ Feasible set for budget planning decisions. 
, Symbols for the upper and lower bounds of variables. 

Parameters 
BTotal Total network planning budget (M$). 
CNH

ij Hardening cost of line ij ($/km). 
CMG

i MG installation cost in bus i ($/MW). 
M Large positive constant value. 
PD

i Load demand at bus i (MW). 
PG

g /PG
g Upper and lower generation power limits of unit g (MW). 

Pℓ,critical
ij Ultimate power of line ij. 

Pℓ,normal
ij Rated power of line ij. 

PM
i Upper power limit of a MG at bus i (MW). 

RG Number of generators attacked. 
Rℓ Number of lines attacked. 
T Hurricane return period (year). 
ZNH Number of defender’s lines for hardening. 
ZMG Number of defender’s buses for MG placement. 
n Shape parameter for adjusting wind speed distribution. 
r Radial distance from the hurricane center (km). 
xij Reactance of line ij (Ohm). 
z Load ratio supplied by MGs. 
δij Matrix connecting lines to buses. 
α,μ Weibull distribution function parameters. 

Variables 
f The fraction of load affected by the severe disaster. 
Ig Commitment status of generator g. 
N(y) Normalization function in terms of y. 

N
⌢WpC

ς,τ Criterion for selecting scenario ς′ as the WpC of attack. 

N
⌢G

g,ς,τ Impact of normalized wind speed on generator outage g in 

scenarioςof iteration τ. 

N
⌢ℓ

ij,ς,τ Impact of wind speed and changes of power flow on the 
line outage ij in scenarioςof iteration τ. 

N
⌢LS

ς,τ Normalized load shedding in scenarioςof iteration τ. 
PD,Hardened

i Hardened load at bus i through resilience strategies (MW). 
PD,Connected

i Connected load to non-faulted bus i (MW). 
PG

g Generated power of unit g (MW). 
Pℓ

ij Power flow of line ij (MW). 
PLS

i Load shedding at bus i (MW). 
PLS

i,ς,τ Load shedding at bus i and in scenarioςof iteration τ(MW). 
PM

i Generated power of MG at bus i (MW). 
PrPF

ij Failure probability of line ij caused by changes of power 
flow. 

PrWS
ij Failure probability of line ij caused by wind speed. 

RM Resilience metric. 
R Maximum wind radius per moment (km). 
VI Vulnerability index. 
v Wind speed (m/s). 
v Maximum wind speed per moment (m/s). 
θi Bus phase angle (rad). 
χg Binary variable for status of damaged generator g. 
χg,ς/ς′ ,τ Binary variable for status of damaged generator g in 

scenarioς/ς′of iteration τ. 
γA

ij Binary variable for status of damaged line ij. 
γA

ij,ς/ς′ ,τ Binary variable for status of damaged line ij in 

scenarioς/ς′of iteration τ. 
γSNH

ij Binary variable for status of line ij hardening based on 
existing strategies. 

γij Binary variable general status of line ij in terms of 
hardening and disconnection or connection. 

σSMG
i Binary variable status of MG placement in bus i based on 

existing strategies. 
ωi Status of MG islanding in bus i. 

Abbreviations 
AD Attacker-defender. 
AD-RP AD resilient planning. 
DER Distributed energy resource. 
RES Renewable Energy Source. 
GAMS General Algebraic Modeling System. 
LPHI Low-probability high-impact. 
MG Microgrid. 
MIP Mixed-integer programming. 
NH Network hardening. 
RM Resilience metric. 
VI Vulnerability index. 
WpC Worst possible case.  
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[10]. Utilizing this criterion and its effect on system load shedding can 
make the vulnerability model richer. 

In the existing literature, some studies on power systems’ resilience 
can be found. In [11], a bi-level model based on Monte-Carlo simulation 
is developed to assess the system vulnerability in response to extreme 
weather events and prioritize vulnerable lines of a distribution network. 
In [12], an indicator based on rated load shedding is used to select the 
worst-case scenario of the hurricane based on the probability of outage 
of each line and the resulting load shedding. The proposed model in [13] 
considers components’ vulnerability due to windstorms based on the 
fragility curve. The main objective is to create a day-ahead unit 
commitment precautionary plan to reduce load shedding caused by the 
outage of transmission lines due to storms. A three-level model is pre-
sented in [14] to increase system resilience through network hardening 
(NH) to maximize hurricane severity and worst-case lines interruption. 
The NH is one of the most effective ways to protect power systems from 
LPHI events [8]. There are various NH strategies such as upgrading the 
overhead structure, vegetation management, and a hybrid strategy 
based on integrating these two strategies. Reinforcement of the over-
head structure is an initial NH strategy that involves upgrading the 
transmission poles to the higher class and renewing the power flow path. 
Extensive vegetation management can also help to harden the trans-
mission system, as falling and breaking trees can cause power outages in 
severe storms [15]. In [16], an optimal NH operation is proposed to 
increase the strength of power systems. In that study, the pre-event 
resilience optimization measures are conducted to reduce the possibil-
ity of failure of distribution systems and load shedding. 

In [17], microgrids (MGs) are introduced as promising solutions for 
improving the resilience of power systems. Moreover, the importance of 
installation and determining the boundaries of MGs in the occurrence of 
LPHI events is mentioned. Once a fault occurs, the MGs are separated 
from the upstream grid and operated independently. In this case, 
distributed energy resources (DERs) integrated into the MGs provide the 
required power for loads and prevent load shedding [18]. Various DERs, 
such as wind turbines, photovoltaic cells, controllable distributed gen-
erators, and energy storage systems can be integrated into MGs [19]. 
With the recent innovations in power system modernization, DERs are 
becoming more feasible to supply system demand in times of crisis. For 
instance, the energy storage system facilitates the use of distributed 
renewable generations. Also, it reduces the dependence of MG on the 
upstream grid by discharging the stored energy during power shortages 
[20]. In [21], a comprehensive review is provided of the use of MGs in 
providing network energy support. 

Assessment of the resilience concept in power systems in dealing 

with LPHI events is time-dependent [22]. An appropriate metric should 
evaluate the impact of the resilience improvement strategies. Most ar-
ticles use reliability indicators such as energy not supplied and the value 
of lost load to assess the resilience of electricity networks [11,17]. In 
contrast, there is a big difference between the concepts of resilience and 
reliability, which is fully addressed in [23]. In [24], the system infra-
structure resilience is evaluated, and an indicator for operational resil-
ience is presented in [25]. An appropriate resilience metric (RM) should 
be risk-based and able to take into account system vulnerabilities and 
the consequences of threats [26]. Spatio-temporal characteristics of a 
natural disaster are also crucial for resilience measurement in power 
systems [27]. A comprehensive criterion for assessing the power grid 
resilience should include the time dimension for operational and infra-
structural measures. The classification of studies in terms of the system 
vulnerability and grid protection to improve resilience is given in 
Table 1. 

In the reviewed studies, providing a comprehensive vulnerability 
model based on the available tools has received little attention. It means 
there are no proposed vulnerability models that include all items of 
attacker statistical assessment, topological and electrical system evalu-
ation, and observation of threat consequences. Besides, existing studies 
have mainly used reliability indexes such as expected energy not being 
used to assess resilience. Also, the articles that used the RM have not 
included joint operational and infrastructural resilience in the metric. 
Therefore, a new RM should be considered in evaluating resilience, 
given this existing gap. According to the literature review, it can be 
concluded that a considerable part of the investigations on the power 
system resilience has concentrated only on vulnerability assessment or 
resilience enhancement strategies. In contrast, the effectiveness of a 
vulnerability evaluation and resilience improvement strategies are 
determined together. Also, it is worth noting that the previous studies 
have utilized one of the operational or infrastructure-related strategies 
to improve resilience. 

This paper considers two measures of vulnerability analysis and 
system protection against an attacker to fill the gap above. Simultaneous 
consideration of these two approaches requires a correct and accurate 
understanding of how the threat affects the performance and efficiency 
of the transmission system. In this way, a linear two-stage model based 
on attacker-defender (AD) strategies (called AD-RP hereafter) is pre-
sented to model network vulnerability and outage mitigation. Attackers 
are natural disasters that can cause extreme damage to the power sys-
tem. In contrast, defenders are actions that minimize the system’s 
vulnerability against attacks. In the first stage, a novel vulnerability 
index (VI) is introduced by a stochastic model based on Monte-Carlo 

Table 1 
The taxonomy of references based on the assessment of vulnerability and resilience.  

Section Description Reference 
Number              
[4] [7] [25] [10] [11] [12] [13] [14] [15] [16] [23] This 

paper 

Vulnerability 
Assessment 

Vulnerability index  ✓   ✓ ✓ ✓     ✓  

Statistical features of the 
disasters  

✓ ✓   ✓ ✓   ✓  ✓  

Length and loading of power 
lines   

✓  ✓       ✓  

Fragility curve-based  ✓ ✓  ✓ ✓ ✓     ✓  
Worst case ✓   ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

Resilience Assessment Prior to an Event     ✓   ✓   ✓ ✓  
During an Event ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  
After an Event  ✓ ✓      ✓  ✓ ✓  
System infrastructure            ✓  
Load shedding ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  
Resilience metric ✓  ✓         ✓ 

Resilience 
Improvement 

Operational strategy ✓   ✓ ✓ ✓ ✓  ✓  ✓ ✓  

Infrastructural strategy  ✓ ✓ ✓    ✓ ✓ ✓  ✓  
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simulation in such a way the worst possible case (WpC) of components 
failure is presented. In the stochastic model, the impact of attack severity 
on the vulnerability of system components, length and loading of power 
lines, and load shedding are considered to model the worst possible 
attacker. In the second (defense) stage, the system resilience is improved 
using optimal MG placement (as an operational strategy) and NH (as an 
infrastructural strategy) based on the VI and considering budget con-
straints. Eventually, an innovative RM is presented to evaluate the 
proposed AD-RP model performance against the hurricane. This new 
metric involves the main properties of the resilience concept in electrical 
power systems. The major contributions of this paper are presented 
below.  

• Developing an AD optimization model for vulnerability assessment 
and resilient planning in transmission power systems.  

• Introducing a novel VI for selecting the WpC of electrical components 
outage.  

• Considering the natural phenomenon severity, the length and 
loading of power lines, and load shedding in vulnerability analysis to 
model the worst possible attacker.  

• Introducing a unique RM for evaluating the system performance, 
including all resilience concept attributes.  

• Presenting an efficient defense planning for joint the operational and 
infrastructure-related strategies to cope with the transmission system 
requirement in an LPHI condition. 

This paper is organized as follows: Section 2 describes the vulnera-
bility assessment of the AD-RP model. The resilience assessment and 
presentation of the novel RM is presented in Section 3. The linear two- 
stage model mathematical formulations are given in Section 4. Sec-
tion 5 provides simulations and numerical results. Finally, concluding 
remarks are presented in Section 6. 

2. Vulnerability assessment 

One aspect of resilience studies is the evaluation of system damage 
against the maximum severity of a threat. Severe weather events can 
make a significant impact on power grid components. In this paper, to 
model the outages caused by the occurrence of the natural phenomenon, 
a VI for selecting the critical components is presented. The proposed VI 
is calculated based on combining the WpC of attack, disaster statistical 

analysis, system structure, and fragility curves, as shown in Fig. 1. 

2.1. Worst possible case 

The vulnerability assessment model uses the N – k criterion to 
determine the priority order of damage to electrical components. A 
stochastic model is used to determine the extent of components’ 
vulnerability, and a probabilistic method is also assumed for the natural 
disaster. The N – k criterion guarantees the system’s resilience to the 
outage of k components from the set of elements within the affected 
area. It is also noteworthy that if k components are damaged, there will 
be a lot of possible failure scenarios (N choose k). Since evaluating all 
possible scenarios is a challenging issue, it is required to consider the 
worst possible scenario. Accordingly, the scenarios of components 
outage must be chosen that lead to the WpC of attack. In this approach, 
the factors, including the impact of the hurricane on the power equip-
ment outages and load curtailment, are used to determine the WpC of 
the disaster. Consequently, a scenario of outages must be selected, 
including the most amount of wind speed on the damaged lines and 
generators and leading to the most load shedding. The method of 
calculating the VI and selecting the WpC of outages has been developed 
in Section 4. 

2.2. Disaster statistical analysis 

In this paper, a model based on statistical analysis is developed to 
figure out the spatial and temporal dynamics of natural disasters. Here, 
resilience studies are carried out against the hurricane threat. A critical 
value theory is used as a suitable technique to calculate the maximum 
wind speed values. Critical value theory presents the occurrence of a 
hurricane in the form of probabilistic distributions by studying the trend 
of historical data occurrence and repeating maximum values (and 
minimum values in some natural phenomena). In other words, the 
critical value theory states that in a return period T, the occurrence of a 
hurricane with an estimated speed v is expected [11]. 

Hurricanes research and simulation confirm that the Weibull distri-
bution is appropriate for predicting hurricane wind speeds. The two- 
parameter Weibull cumulative distribution function is given by Eqn (1): 

Fv(v) = 1 − exp
[

−

(
v
μ

)α]

(1)  

where the dispersion and scale parameters, α and μ, are site-specific. 
These two parameters define the relationship between the wind speed 
and return period in Eqn (2): 

v = u
[

− ln
(

1
T

)]1
α

(2) 

The authors in [28] have shown the peak wind speeds at the return 
periods of 50, 100 and 1000 years are 132, 150 and 182 mph (58, 67 and 
85 m/s), respectively. These values are obtained based on the Weibull 
parameters μ=61.07 and α=1.769 for south Florida. This means that as 
the return period grows, the hurricane velocity increases. Therefore, 
estimating wind speed according to the critical value theory is necessary 
to assess the risk of electrical equipment. 

Based on a hurricane’s spatial and temporal dynamics, it is assumed 
that when a hurricane enters an area, floods and strong winds make a 
greater impact on power system components close to the shoreline. A 
hurricane as one of the most well-known natural disasters decreases in 
intensity and speed when it lands on its path [29]. As Fig. 2 implies, after 
the hurricane landed and entered the land area, the wind speed is 
gradually decreased over time, and at the same time, its impact radius is 
increased. Due to the fragility curve, the probability of component 
failure also becomes smaller as wind speed decreases. Hence, the hur-
ricane has little effect on distant power lines based on geographical 
locations. Fig. 1. The considered elements for VI calculating.  
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The vortex model has been widely used to simulate hurricane 
occurrence. The modified vortex model assumes that concentric circles 
represent the wind flow in a fixed and ideal tropical hurricane. In this 
model, the wind speed in the centre is equal to zero. The wind speed 
reaches steeply to its topmost value at the maximum radius and then 
decreases to zero by increasing the radius [30]. The wind speed distri-
bution in the modified vortex model is expressed by Eqn (3): 

vijorvg =

⎧
⎪⎪⎨

⎪⎪⎩

v
(r

R

)n
r ≤ R v

(
R
r

)n

R ≤ r (3)  

Where r is the radial distance from the storm centre, Ris the maximum 
wind radius, vis the maximum wind speed at that moment, and n is the 
shape parameter adjusting the wind speed distribution [31]. 

2.3. System structure 

To analyze the vulnerability of power systems, the structure and 
topology of the network need to be considered. The network compo-
nents can be disconnected (damaged) or connected, and the location of 
their exposure to the hurricane is given in Fig. 2. It is shown in[11] that 
longer lines are more vulnerable among the power system lines. Thus, to 
determine the efficient VI, the distance between the components and the 
length of the transmission lines must be taken into account. 

Moreover, components damaged by the attacker include generators 
and transmission lines. So disconnected network components cause load 
curtailment. That is, load shedding is one of the major factors to select 
the WpC of the disaster. Historical records demonstrate that the number 
of transmission lines and generators disconnected simultaneously does 
not exceed the number of lines attacked (Rℓ) and the number of gen-
erators attacked (RG), respectively [14]. Therefore, a stochastic set of 
uncertainties is introduced in Eqns (4), (5). 

R =

{
∑

ij∈Ωℓ

γA
ij ≤ Rℓ,

∑

g∈ΩB

χg ≤ RG.

}

, ∀ij ∈ Ωℓ, g ∈ ΩG,
{

γA
ij , χg

}
∈ {0, 1}

(4-5)  

where two binary variables γA
ij and χg are used for the outage state of 

lines and generators, respectively. In these equations, A,ℓand g stand for 
attack, line and generator, respectively. It should be noted that if the 
lines and generators are disconnected, the value of both variables is 1; 
otherwise, the value is zero. 

2.4. Fragility curves 

In the traditional approach, the system outage and repair rate after 
an event is usually independent of the circumstances and time. While in 
the new approach, the components’ vulnerability depends on weather 
conditions and loading [32]. The failure probability of transmission 
lines for varying wind speeds is shown in Fig. 3 (a). The failure proba-
bility of lines is different depending on weather parameters. Once some 
components are damaged in a disaster, the power flow through some 
lines may be changed or disrupted due to a significant change in the 
power supply. Similarly, the loading failure probability is obtained by 
mapping line load on the loading fragility curve. Fig. 3 (b) illustrates the 
linear relationship between the transmission line loading and the failure 
probability. 

Strong winds can cause electrical poles to break, trees to fall on 
power lines, and other damage that affects and disables line perfor-
mance. As shown in (3), the wind speed at the transmission line is ob-
tained by its radial distance from the hurricane center. Each 
transmission line, based on its length, is divided into equal parts that the 
wind speed of each part is equal to its central wind speed. Hence the 
failure probability of part k in line ij due to the hurricane is expressed by 
Eqn (6): 

PrWS,k
ij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 0 < vk
ij < Vdes

exp

[
0.6931

(
vk

ij − Vdes

)

Vdes

]

− 1 Vdes < vk
ij < 2Vdes

1 2Vdes < vk
ij

(6)  

where Vdesis the design wind speed of the transmission line, and vk
ijis the 

wind speed of the center of part k in line ij [31]. 
The failure probability of the transmission line ij caused by wind 

speed consisting of K parts in a series is calculated by Eqn (7): 

PrWS
ij = 1 −

∏K

k=1

(
1 − PrWS,k

ij
)

(7) 

In case of damage to the transmission lines due to strong winds, the 
system topology changes and power is redistributed. Therefore, once the 
current of a line exceeds its rated capacity, its failure probability in-
creases [31]. The failure probability due to power flow change is rep-
resented by Eqn (8): 

PrPF
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

PrPF0
ij 0 < Pℓ

ij < Pℓ,normal
ij

(
1 − PrPF0

ij
)(

Pℓ
ij − Pℓ,normal

ij

)

Pℓ,critical
ij − Pℓ,normal

ij

Pℓ,normal
ij < Pℓ

ij < Pℓ,critical
ij

1 Pℓ,critical
ij < Pℓ

ij

(8)  

where PrPF0
ij denotes the probability of failure of line ij in normal weather 

conditions. In this paper, it is assumed that PrPF0
ij = 0. In other words, 

Fig. 2. The model of hurricane occurrence in the IEEE 30-bus trans-
mission system. 
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there is no failure probability in normal operating conditions. In addi-

tion, Pℓ
ij represents the power of line ij, and Pℓ,normal

ij and Pℓ,critical
ij are rated 

and ultimate powers of line ij, respectively. The explanation how to 
combine the wind speed and the power flow changes together in the 
model is provided in Section 4. 

To analyze the simultaneous effect of the system elements (such as 
the samples of wind speed and load shedding) on the VI of transmission 
network components, it is needed that the parameters be on a standard 
basis. The min-max normalization method is used to normalize the pa-
rameters to classify and compare these parameters fairly. Hence, the 
min-max normalization method is applied to normalize the parameters 
by Eqn (9): 

N(y) =
y − y
y − y

(9)  

where y can be wind speed or load shedding for instance. By using (9), 
the system parameters are normalized in a range of [0, 1]. In this model, 
to assess the vulnerability of lines, the severity of the hurricane, the 
length of the lines, and their loading are considered. Similarly, the 
severity of the hurricane for evaluating the vulnerability of generators is 
also assessed. 

3. Resilience assessment 

Assessing and determining the resilience of power systems is not a 

simple process, as resilience is a multidimensional concept with inherent 
complexities. Resilience indices are not standardized in the power sys-
tem literature, and there is no general agreement on their capabilities 
and measurement methods. In this regard, there are countless indicators 
to assess resilience, but many of them examine only one or more aspects 
of the resilience concept. For instance, resilience is sometimes defined as 
the strength of a system’s infrastructure against an attack. In some cases, 
it is interpreted as the operational activities required after a disaster or 
the grid recovery time after an LPHI fault. 

According to Fig. 4 (a), the conceptual curve of resilience consists of 
five phases:  

1) Pre-event: Disaster prediction and absorption.  
2) Event progress: Breaking the grid resistance and increasing damages.  
3) Post-event degraded: Self-organization considering resourcefulness.  
4) Restoration: Getting back to the normal state through infrastructure 

recovery.  
5) Post-restoration: Understanding new lessons from the event. 

In order to assess resilience, Fig 4 (a) is considered. As can be seen, 
the ideal performance of the system is denoted byRMideal, which is a 
straight line here. When a disaster occurs in the network, the ideal 
performance level is reduced to a minimum resilience level RMMinwith a 
slope of RMideal − RMMin. Finally, this performance index returns to the 
initial level assuming a linear recovery process. Thus, the system per-
formance in the study period can be calculated by Eqn (10): 

Fig. 3. Fragility curve: (a) related to transmission lines against varying wind speeds, (b) related to loading of power lines.  

Fig. 4. The main features of (a) resilience curve and (b) RM.  
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Performance =

∫

tRM(t)dt
∫

tRMidealdt
(10)  

where RM(t)indicates the actual performance of the system at any given 
time. 

It should be noted that the performance index always takes a value in 
the range [0, 1]. Using Eqn (10), the performance of the power system 
can be measured at different time intervals. The system performance 
index (vertical axis in Fig. 4 (a)) can be indicated by parameters such as 
the amount of loads shedding, the number of customers fed, the number 
of damaged components, and so on. 

A unique RM is required to calculate the performance of the power 
system against severe weather events. In the context of resilience, a 
fraction of load affected by the LPHI events in Eqn (11) is considered. 
Where f is the ratio of the supplied loads (connected loads to non-faulted 
buses and hardened loads against the hurricane) to total the system 
loads (whether interrupted or non-interrupted). In this equation, 
PD,Connected

i and PD,Hardened
i indicate not-interrupted load against the hurri-

cane before applying the resilience improvement strategies, and sup-
plied load through the presented strategies, respectively. An appropriate 
RM should include all the attributes listed in Fig 4 (b) [33]. In addition to 
the affected loads, the proposed RM given in Eqn (12) includes both 
disconnected electrical components and the affected loads. That is, even 
if the equipment outages do not cause any load shedding, network 
resilience is still reduced. As the number of damaged components grows, 
the network’s vulnerability and resilience decrease. Eventually, based 
on the obtained RM during the time, the power system performance is 
calculated by Eqn (10). To make the numerical answers tangible in 
evaluating the system’s resilience and to facilitate the comparison of 
resilience levels of different cases, this metric is normalized between 
0 and 1. 

f =

∑

i∈ΩB

(
PD,Connected

i + PD,Hardened
i

)

∑

i∈ΩB

PD
i

(11)  

RM = N
(

f
e− f + log(Rℓ + Rg)

)

, ∀Rℓ,Rg > 0 (12) 

The system has sufficient power to supply the system loads in normal 
operation. If a natural disaster occurs, the affected area is disconnected 
from the main network. Under such circumstances, the affected area 
should be supplied with some alternative sources. Due to the limited 
budget, the NH and MG installation can be considered alternative op-
erations to provide sufficient capacity to the affected area. It is assumed 
that sufficient funding is available to study the effectiveness of these 
infrastructural and operational strategies on system resilience during the 
hurricane. Hence, the budget set for the decision-maker can be adjusted 
by Eqns (13), (14): 

Z =

{
∑

ij∈Ωℓ

γSNH
ij ≤ ZNH ,

∑

i∈ΩB

σSMG
i ≤ ZMG.

}

, ∀i ∈ ΩB, ij ∈ Ωℓ,
{

γSNH
ij , σSMG

i
}
∈ {0, 1}

(13-14) 

The equations show that the limited investment budget restricts the 
number of hardened lines and the installed MGs. The two binary vari-
ables γSNH

ij and σSMG
i are used for states of NH and MG placement in each 

bus, respectively. Once NH and/or MG placement is conducted, the 
value of both variables is equal to 1; otherwise, the value is zero. To 
show the number of defender’s lines for hardening and the number of 
defender’s buses for MG placement, ZNH and ZMG are used. According to 
the analysis of transmission line vulnerability and area type in terms of 
vegetation, two strategies are considered to increase resilience for NH. 
In the first one, the transmission poles are replaced with a higher class, 

and in the second one, in addition to upgrading the steel electric poles, 
the trees close to the transmission lines are trimmed. Besides, two 
strategies for the placement of MGs are also adopted. Both strategies are 
based on the suitability of the vulnerable areas for utilizing renewable 
energy sources (RESs). The area in the first one is not suitable for 
installing RESs, and diesel generators are used. In the second one, 
renewable distributed sources are mainly used to provide the required 
energy. Hence, in Eqns (13), (14), SNHand SMGare determined according 
to the aforementioned strategies. 

In summary, the general framework of the proposed AD-RP model is 
shown in Fig. 5. Based on the vulnerability analysis performed for the 
probable event, the system planner decides which strategy to use to 
improve the system resilience. After applying each strategy on the power 
grid, feedback is taken from the information obtained to achieve the 
most optimal choice. Also, in this figure, the essential electrical and 
topological variables of the AD-RP model are presented. 

4. Problem formulation 

This section provides the mathematical formulation for optimal 
hardening of lines and optimal sizing and location of MGs. Minimizing 
load shedding for ensuring the resilience of the transmission network is 
the main objective behind the proposed model. According to the AD 
strategy, the proposed optimization problem is considered a linear two- 
stage model, shown in Fig. 6. In the first stage, known as the attack 
actions, the VI of system components is determined based on the most 
vulnerability of the transmission system against the hurricane. At this 
stage, a Monte-Carlo simulation based on a stochastic model for specific 
iterations is used to obtain the WpC for components outage due to the 
hurricane. In the second stage, as the defense operations, the operator 
minimizes load shedding caused by physical damage to network com-
ponents while considering the budget constraints. The purpose is to 
obtain the optimal hardening of lines and optimal placement of MGs 
against WpC of hurricane events. Given that the proposed AD-RP model 
is a long-term and gradual planning model for the network, it must be 
constantly updated over time according to new standards and 
conditions. 

The objective function associated with the first stage is formulated as 
Eqn (15). In each Monte-Carlo iterationτ, some scenarios (shown byς) 
are generated as attacks on the network equipment. After performing the 
power flow by minimizing the load shedding, the acceptable scenario in 
each iteration should be the most vulnerable attack. Eqn (16) is used as a 
criterion for selecting the worst attack among the scenarios generated in 
each iteration based on the normalized parameters. The load shedding 
parameter is normalized by Eqn (17). It states that the load curtailment 
at each bus can be within the range (0, 1). The effect of the normalized 
wind speed on the generator outage g is given by Eqn (18). Similarly, the 
impact of wind speed and changes of power flow on the line outage ij is 
given by Eqn (19). In this equation, it is assumed that the probability of 
the lines outages caused by the hurricane and changes of power flow are 
independent of each other. 

Min
q∈Q(r)

∑

i∈ΩB

PLS
i,ς,τ (15)  

N
⌢WpC

ς,τ = N
⌢LS

ς,τ + N
⌢G

g,ς,τ + N
⌢ℓ

ij,ς,τ,∀ς ∈ ΩS, τ ∈ ΩI (16)  

N
⌢LS

ς,τ =
∑

i∈ΩB

N
(

PLS
i,ς,τ), ∀i ∈ ΩB , ς ∈ ΩS, τ ∈ ΩI (17)  

N
⌢G

ς,τ =
∑

g∈ΩG

N
(
vg
)
.χg,ς,τ, ∀g ∈ ΩG, ς ∈ ΩS, τ ∈ ΩI , χg,ς,τ ∈ {0, 1} (18)  
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N
⌢ℓ

ς,τ =
∑

ij∈Ωℓ

(
1 −

[(
1 − PrWS

ij

)
.
(

1 − PrPF
ij

)])
.γA

ij,ς,τ,∀ij ∈ Ωℓ, ς ∈ ΩS, τ

∈ ΩI , γA
ij,ς,τ ∈ {0, 1} (19) 

The two binary variables γA
ij,ς,τ and χg,ς,τare for the outage state of lines 

and generators that are randomly generatedςtimes per each Monte-Carlo 
iteration. For binary values obtained from the components outage from 

all scenarios of each iteration, acceptable scenario lead to the maximi-
zation of normalized parameters. This means that if Eqn (16) bears the 
highest value in the scenarioς′ , this scenario is chosen to calculate the VI. 
The process of choosing the selected scenario of equipment outage 
continues in all τ iterations. As Eqn (20), the VI indicates that each 
transmission network component is damaged how many times in all 
repetitions performed. 

Fig. 5. The AD-RP model schematic for vulnerability analysis and improvement of transmission network resilience.  

Fig. 6. The linear two-stage optimization problem based on the AD-RP model.  
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VI =

⎧
⎪⎪⎨

⎪⎪⎩

∑

τ∈ΩI

∑

ij∈Ωℓ

γA
ij,ς′ ,τ, ∀ij ∈ Ωℓ, ς′

∈ ΩS, τ ∈ ΩI

∑

τ∈ΩI

∑

g∈ΩG

χg,ς′ ,τ, ∀g ∈ ΩG, ς
′

∈ ΩS, τ ∈ ΩI

(20) 

The calculation steps of this index based on the WpCs are shown in 
Algorithm 1. 

After determining the VI of the network, the transmission system 
planner responds to the outages to get the minimum load interruption by 
considering the budget constraints and feasible power flow decisions 
defined byq ∈ Q(z, r). The mathematical formula of the objective func-
tion associated with the second stage is given by Eqn (21), and there are 
different constraints in the optimization process of the AD-RP model that 
should be satisfied. The constraints are expressed in Eqns (22)-(32). 

Min
z∈Z

Max
r∈R

Min
q∈Q(z,r)

∑

i∈ΩB

PLS
i (21)  

∑

ij∈Ωℓ

CNH
ij γSNH

ij +
∑

i∈ΩB

CMG
i σSMG

i ≤ BTotal, ∀ij ∈ Ωℓ, i ∈ ΩB ,
{

γSNH
ij , σSMG

i
}
∈ {0, 1}

(22)  
∑

g∈Ωi
G

PG
g + PM

i + PLS
i − PD

i =
∑

j∈Ωi
ℓ

Pℓ
ij, ∀ij ∈ Ωℓ, i ∈ ΩB , g ∈ ΩG (23)  

PG
g

(
1 − χg

)
Ig ≤ PG

g ≤ PG
g

(
1 − χg

)
Ig, ∀ g ∈ ΩG, χg ∈ {0, 1} (24)  

⃒
⃒
⃒
⃒P

ℓ
ij −

(
θi − θj

xij

)

δij

⃒
⃒
⃒
⃒ ≤ MγA

ij , ∀ij ∈ Ωℓ, γA
ij ∈ {0, 1} (25)  

⃒
⃒
⃒Pℓ

ij

⃒
⃒
⃒ ≤ Pℓ

ij

(
1 − γij

)
, ∀ij ∈ Ωℓ , γij ∈ {0, 1} (26)  

γij =
[
1 − γA

ij

(
1 − γSNH

ij
)]
, ∀ ij ∈ Ωℓ,

{
γA

ij , γ
SNH
ij

}
∈ {0, 1} (27)  

ωi =
∏

j∈Ωi
ℓ

⃒
⃒δij

⃒
⃒
(
1 − γij

)
, ∀ i ∈ ΩB, ij ∈ Ωℓ, γij ∈ {0, 1} (28)  

σSMG
i ≥ ωi, ∀ i ∈ ΩB,

{
ωi, σSMG

i
}
∈ {0, 1} (29)  

0 ≤ PLS
i ≤

(
1 − z

(
1 − σSMG

i
))

PD
i , ∀ i ∈ ΩB, σSMG

i ∈ {0, 1} (30)  

PM
i ≤ zPD

i , ∀ i ∈ ΩB (31)  

0 ≤ PM
i ≤ PM

i

(
1 − σSMG

i
)
, ∀ i ∈ ΩB, σSMG

i ∈ {0, 1} (32) 

Eqn (22) illustrates that the total cost invested in the system cannot 
exceed the budget planned by the planner. Eqn (23) ensures that the sum 
of the total energy produced by the generators, MGs, and the injectable 
power from neighbouring nodes to each bus equals the load value in that 

bus. The production capacity of generation units is limited by Eqn (24), 
which can be zero depending on the state of commitment (Ig) and outage 
(χg). The line current is calculated in Eqn (25), and the line flow limit is 
given in Eqn (26) according to the line capacity and its outage state. In 
these equations, θi shows the phase angle of bus i, M is a large positive 
constant value andPℓ

ijrepresents the upper power flow limit of line ij. The 
general condition of line ij in terms of hardening and vulnerability is 
presented in Eqn (27). In this problem, in response to the network 
outage, the MG switches to the islanded mode. If any of the lines con-
nected to the MG bus are damaged due to the hurricane, the MG will be 
disconnected from the network. Thus, the MG operation status is defined 
as the result of the line outage connected to the MG bus. Once the MG 
switches to islanded mode, the MG load will be zero from the operator’s 
point of view. This means that the MG feeds the local load. As shown in 
Eqn (28), the MG installation possibility in each bus is defined by the 
outage state of the lines connected to that bus. ωi illustrates the status of 
MG i (if MG i operates in an islanding model, the value is equal to zero; 
otherwise, it is 1) and δijis the matrix connecting lines to buses. Eqn (29) 
shows that the buses for MG installation should be selected among the 
permissible buses obtained from Eqn (28). Status of MG installation is 
demonstrated by σSMG

i (if the MG is installed in bus i, the value is equal to 
1; otherwise, it is 0). It is worth noting that the load shedding variable 
PLS

i is set to zero in normal operation, and in critical operation, the 
amount of load shedding in bus i is limited by the load value, which the 
MG in that bus cannot supply. If the MG is not installed in bus i, the load 
shedding can be equal to the total load on bus i. Eqn (30) states that if the 
MG is not connected to bus i, the load shedding is limited to the total 
load value of that bus. Load ratio supplied by MGs is illustrated with z. 
As Eqn (31) implies, the power capacity of the MG installed in each bus 
is limited by the predetermined maximum load ratio in that bus. If any of 
the lines connected to the MG bus are damaged, the MG operation mode 
is set to zero. This means that the MG operates in an islanded mode. 
Given Eqn (32), by switching to islanded mode, the MG load will be zero 
from the viewpoint of the system operator, so the MG has to supply its 
own predicted load as zPD

i . 

5. Numerical Results 

This section applies the proposed AD-RP model to the IEEE 30-bus 
transmission system, and the simulation results are provided and dis-
cussed. Fig. 2 depicts the test system, which comprises 6 generators and 
41 lines. The length of transmission lines of the test system is shown in 
Fig. 7 [34]. The parameters of the Weibull distribution in a 50 year re-
turn period under climatic conditions given in [11] are chosen as 
μ=61.07 and α=1.769. Therefore, the wind speed is obtained as 60 m/s 
at the moment of entering the land and it is assumed that after landing 
the speed is reduced to 30 m/s. The wind speed interpolates between the 
points based on Eqn (3). The hurricane-force wind can extend outward 
from 185 to 555 km [35]. For modelling the failure probability of 
transmission lines, every 10 km is divided into one part. Also, Vdesis 
assumed 30 m/s for all transmission lines. The shape parameter 
adjusting the wind speed distribution is often set within the 
range0.4 < n < 0.6. The load ratio provided by the MGs as z is consid-
ered to be 30%. The parameters related to the capacity of lines as 

Pℓ,normal
ij and Pℓ,critical

ij are considered as 1.170 and 0.87, respectively [31]. 
The investment budget limit is regarded as 70 $M [36]. The distance 
between the poles is assumed to be 350 m, and each transmission line 
contains several steel poles according to the length of that line. As 
mentioned earlier, for both NH and MGs placement, two strategies are 
considered. The input information to the proposed problem for IEEE 
30-bus test system based on the resilience improvement strategies is 
shown in Table 2. After hardening the lines based on the strategies of 
upgrading the pole class and vegetation management, it is assumed that 
the hardened lines are resistant to wind speeds of 0 to 60 m/s. It is 

Algorithm 1 
Calculation steps of VI  

1: Initialization: Rℓ,RG← Set to the specified value, 

2: VIij,VIg←Set to zero for all the network components, 
3: τ, ς← Set iteration indexes to the specified value; 
4: while (τ) 
5: for (ς) 
6: Generate: γA

ij,ς,τ, χg,ς,τ←Stochastic binary in scenario ς; 
7: Solve: Objective function; 
8: end for 
9: Select: Maximum value of N

⌢WpC
ς,τ in scenario ς′ , 

10: ifγA
ij,ς′ ,τ = 1←VIij = VIij + 1, 

11: ifχg,ς′ ,τ = 1←VIg = VIg + 1; 
12: end while 
13: Output: VI  
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assumed that all components are online before the disaster occurs and 
the hurricane hits the network at 50 h from the beginning of the simu-
lation (Pre-event phase). The duration of the hurricane is 24 hours 
(Event progress phase), and the post-event degraded phase takes 50 h. It 
is assumed that the time to repair each line is 20 h and to restore each 
MW is 8 h (Restoration phase). The simulation continues up to 24 h after 
the system is fully restored to a normal state (Post-restoration phase). 
The proposed optimization model is a mixed-integer programming 
(MIP) problem, which is simulated in the well-known General Algebraic 
Modeling System (GAMS) commercial software package and solved with 
CPLEX solver. The CPLEX is a GAMS solver for solving the MIP models. 
The AD-RP model has been executed in a PC with Intel Core i7 CPU 

@3.20 CPU and 4 GBs of RAM. 
According to the vulnerability analysis and simulation of the first 

stage of the proposed AD-RP model, the results of the VI for 41 lines and 
6 generators of the transmission system from the most vulnerable to the 
most resistant component are given in Fig. 8, respectively. As can be 
seen, the vulnerability of transmission system components is reduced 
from hot colours to cool colours. The elements with the red colour are 
the most vulnerable, and the components with the purple colour have 
the highest resistance against the modelled hurricane. 

In the second stage of the AD-RP model, hardening of vulnerable 
lines and optimal placement of MGs are conducted according to the N – k 
criterion. By increasing k according to the VI, the NH process and 
installation of MGs continue until the budget condition is met. In the 
following, three cases are performed and analyzed to examine the per-
formance of the operations used in the proposed problem. The first one 
considers a case where only the NH is performed. The second one in-
vestigates a case where only the MG placement is performed. In the last 
one, both NH and MG placement are carried out simultaneously. It 
should be noted that the calculations of the RM are for the post-event 
degraded phase. 

Case1: Network resilience improvement by using NH 
This case provides the results of the hardening of transmission sys-

tem lines on disrupted loads based on component VI. It is assumed that 
18 components of the system are disconnected. This means that the NH 
is done according to the N – 18 criterion. In Table 3, a summary of the 
results related to the performance of the NH is presented. Based on this 

Fig. 7. The length of transmission lines in the IEEE 30-bus test system.  

Table 2 
The costs and corresponding lines and buses based on resilience improvement 
strategies   

Strategy Cost Proper line/bus 

Lines 1 7,500 
($/km) 

L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, 
L13, L14, L15, L16, L17, L18, L25, L40 and L41.  

2 11,000 
($/km) 

L19, L20, L21, L22, L23, L24, L26, L27, L28, L29, 
L30, L31, L32, L33, L34, L35, L36, L37, L38 and 
L39. 

Buses 1 0.6 (M 
$/MW) 

B4, B6, B7, B8, B10, B15, B17, B18, B19, B21, 
B22, B23, B24, B25, B26, B27 and B30.  

2 1.5 (M 
$/MW) 

B1, B2, B3, B5, B9, B11, B12, B13, B14, B16, 
B20, B28 and B29.  

Fig. 8. VI for the component of the IEEE 30-bus system.  
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table, when the number of damaged components increases from 1 to 18, 
the initial RM decreases. Table 3 also shows this metric after the NH 
operations. Note that for k=11, no line is hardened. This means that the 
objective function (load shedding) has reached zero, and there is no 
need to harden the lines at all. At this point, the system is in good 
operational condition, while the reason for RM=0.85 is the damaged 
infrastructure. It can be inferred that NH operations up to N – 16 are 
efficient so that by using both NH strategies, the RM is improved in 
comparison with its initial value, and it will reach 0.81. However, the 
NH operation reaches a saturation point with the outage increase of 
components up to N – 18. In other words, although the total number of 
hardened lines increases with an increase in the invested budget, the RM 
does not change much compared to its initial value. In fact, with 
increasing hurricane intensity, NH strategies alone are not able to 
improve network resilience. 

Case2: Network resilience improvement by using MG placement 
In this case, the system resilience through the placement of the MGs 

is investigated. It is assumed that, as in the previous case, 18 components 
of the system are damaged. Table 4 lists the optimized numerical results 
of the MG placement. The results include the optimal buses for installing 
MGs and the total capacity and cost of the installed MGs. As the table 
implies, more MGs should be installed by increasing the number of 
damaged components. Thus, the total capacity of the MGs increases to 
compensate for the system’s inability to supply loads properly. Since the 
MG placement possibility in each bus is dependent on the outage state of 
the lines connected to that bus, for k=3 to 5 there is no appropriate bus 
for MG installation. The table also suggests that with the outage increase 
of components, the RM decreases compared to the previous case and this 
metric value increases in the case of N – 18. In other words, although 
applying NH strategies works better in fewer outages than the MG 
placement strategies, for the case with high outages (considering N – 18 
criterion), the optimal placement of MGs with the intended budget is 
more appropriate. In addition, in the N – 18 mode, there is no longer a 
damaged bus suitable for MG installation to reduce load shedding. Thus 

the placement of MGs will be stopped before it reaches the budget 
constraint. 

Case 3: Network resilience improvement by using both NH and MG 
placement 

In this case, both infrastructural and operational strategies are con-
ducted simultaneously to improve the system’s resilience. Table 5 lists 
the comprehensive results related to the performance of the second stage 
of the AD-RP model. The results include the total length of the hardened 
lines, the total cost of NH, the optimal buses for installing MGs, and the 
total capacity and cost of the installed MGs. As can be seen, once the 
severity of the disasters is low, NH is a priority as it is much more effi-
cient than MGs and costs less to invest. However, as the severity of the 
disaster increases and the generators of the transmission system are 
damaged, the network needs higher penetration of MGs to supply part of 
the loads. In this case, no MGs are installed up to N – 16 mode, while 
afterwards, the MG allocation is preferred. Due to the budget constraint, 
the capacity of the installed MGs is also limited. Comparing the RM 
obtained here with case 2 shows that case 2 could only perform the same 
as case 3 against very severe disasters, while case 3 offers a good per-
formance for all intensities. 

According to Table 5, the required budget for the hardening of 
transmission lines is about 21M$, while the allocated budget for 
installing MGs is about 49 M$. This means that the hardening of trans-
mission lines requires less funding than installing MGs in the power grid. 
The hardened lines and installed MGs for case 3 and the N-18 contin-
gency are shown in Fig. 9. 

For results comparison, the RM obtained in different cases (without 
considering the budget constraint) after the operational recovery phase 
are compared and shown in Fig. 10. The figure also includes the value of 
the initial RM for a case where no operations (NH and MG placement) 
are carried out. As can be seen, case 1 demonstrates a more efficient 
approach toward resilience improvement than case 2 for hurricanes of 
moderate intensity. By contrast, case 2 offers better performance than 
case 1 for very severe hurricanes. However, it can be concluded that case 

Table 3 
Results of the system performance in response to components outage by optimal NH.  

k Initial RM Hardened line Strategy Total hardened line length (km) Total hardening cost (M$) Final RM 

1 to 2 1 L34 2 119 3.859 1 
3 to 5 0.93 to 0.87 L36 2 311 10.081 1 to 0.95 
6 to 8 0.84 to 0.81 L18 1 582 15.886 0.95 to 0.88 
9 to 10 0.78 to 0.77 L1 1 624 16.786 0.88 to 0.86 
11 0.75 - - 624 16.786 0.85 
12 to 13 0.72 L7 1 736 19.186 0.85 to 0.83 
14 to 15 0.69 to 0.68 L14 1 832 21.241 0.83 to 0.82 
16 0.64 - - 832 21.241 0.81 
17 to 18 0.43 … … … … 0.46 
… … … ... … … … 
… … … … … 70 …  

Table 4 
Results of the system performance in response to components outage by optimal placement of MGs.  

k Initial RM Bus with installed MG Strategy Total installed MG capacity (MW) Total MG cost (M$) Final RM 

1 to 2 1 M26 1 1.05 0.630 1 
3 to 5 0.93 to 0.87 - - - 0.630 0.93 to 0.87 
6 to 8 0.84 to 0.81 M15 1 3.51 2.106 0.85 to 0.82 
9 to 10 0.78 to 0.77 M24 1 6.12 3.672 0.79 to 0.78   

M14 2 7.98 6.462 0.79 to 0.78   
M2 2 14.49 16.227 0.79 to 0.78   
M10 1 16.23 17.271 0.79   
M23 1 17.19 17.847 0.79 

11 0.75 M7 1 24.03 21.951 0.77   
M5 2 34.29 37.341 0.78 

12 to 13 0.72 M26 1 43.29 42.741 0.76 to 0.75 
14 to 15 0.69 to 0.68 M21 1 48.54 45.891 0.71 
16 0.64 M16 2 49.59 47.466 0.67 
17 to 18 0.43 M4 1 69.87 59.634 0.62 to 0.61   

M12 2 73.23 64.674 0.62  
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3 is more resilient than others as it gets the desired performance for all 
hurricane intensities. 

In addition, the amounts of load shedding and investment budget 
after the operational recovery phase for different hurricane intensities 
are shown in Fig. 11. As the figure implies, the primary system’s load 
shedding (without any operations) is impacted by an increasing number 
of damaged components. This is because no operations, including NH 
and MG placement, are implemented. By contrast, the capability and 
importance of the proposed model for network resilience improvement 
in the face of disruption are obvious, which significantly reduces the 
system load shedding. It is clear that as the wind speed increases, the 
network vulnerability raises, and naturally, more budget will be needed 
to reduce its consequences on the system. 

5.1. The validity of the proposed model for a large-scale system 

To verify the effectiveness of the proposed AD-RP model on large- 
scale systems, the model is applied to the IEEE 118-bus test system. 
The data of this system is given in [37]. The information on wind speed 
and its parameters, MGs allocation, and NH strategies are assumed to be 
the same in both test systems. Due to the larger system size in this sec-
tion, it is assumed that the hurricane will land later and slow down along 
the way. After performing the vulnerability assessment, the hardened 
lines and installed MGs are presented in Fig. 12. The results are obtained 
for the conditions mentioned in case 3. It should be noted that opera-
tions and strategies to improve network resilience are applied based on 
vulnerable areas type in terms of vegetation and their suitability for 
utilizing RESs. 

The calculated RM for the post-operational recovery phase without 
budget constraints is presented in Fig. 13 for different cases. As shown, 
the RM decreases with the increasing number of damaged components. 
The NH strategies in case 1 are more effective for low-intensity hurri-
canes. On the other hand, using the capacity of MGs installed in case 2 is 
more suitable for wider outages. Case 3 demonstrates that combining 
these two operations effectively improves resilience for all hurricane 
intensities and enhances the RM compared to cases 1 and 2. 

5.2. Discussion 

According to the definition of new RM presented, both load shedding 
and damaged system components are involved in evaluating network 
performance. Therefore, the results show that both infrastructure and 
operational strategies are necessary to increase the transmission sys-
tem’s resilience. In case 1, the NH operation has reached saturation 
point and could not further improve the RM with increasing the number 
of damaged components. In case 2, the capacity of installed MGs has 
recovered the part of load shedding, while the network is still very 
vulnerable due to the outages. Using both strategies simultaneously in 
case 3 improves the proposed metric for all N – k criterion modes. 

The system performance diagram is calculated based on each 
equipment’s problem assumptions, recovery time, and all curve phases. 
The resilience curve associated with each case for N – 24 in the 33-bus 
test system is given in Fig. 14, in which the resilience metric is used to 
evaluate the system performance. The initial network means that no 
operations are conducted to improve the system’s resilience. The 

Table 5 
Result of the system performance in response to components outage by optimal NH and placement of MGs.  

k Initial RM Installed 
MGs  

Total installed MG 
capacity (MW) 

Hardened 
lines  

Total hardened line 
length (km) 

Total invested budget 
(M$) 

Final RM   

No. of bus Strategy  No. of line Strategy    
1 to 2 1 - - 0 L34 2 119 3.859 1 
3 to 5 0.93 to 

0.87 
- - 0 L36 2 311 10.081 1 to 0.95 

6 to 8 0.84 to 
0.81 

- - 0 L18 1 582 15.886 0.95 to 
0.88 

9 to 10 0.78 to 
0.77 

- - 0 L1 1 624 16.786 0.88 to 
0.86 

11 0.75   0 - - 624 16.786 0.85 
12 to 

13 
0.72 - - 0 L7 1 736 19.186 0.85 to 

0.83 
14 to 

15 
0.69 to 
0.68 

- - 0 L14 1 832 21.241 0.83 to 
0.82 

16 0.64 - - 0 - - 832 21.241 0.81 
17 to 

18 
0.43 M4 1 20.28 - - 832 33.409 0.54 to 

0.53   
M5 2 30.54 - - 832 48.799 0.56 to 

0.55   
M8 1 39.54 - - 832 54.199 0.58   
M7 1 46.38 - - 832 58.303 0.60   
M2 2 52.89 - - 832 68.068 0.62 to 

0.61   
M21 1 56.11 - - 832 70 0.62  

Fig. 9. Test system after NH and placement of MGs in case 3.  
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performance index of the studied system is approximately 0.63. 
Due to the vulnerable transmission lines hardening in case 1, the 

performance index is not decreased as much as the initial network after 
the disaster. Since vulnerable and strategic lines became harder in the 
WpC, the remaining infrastructure restoration takes less time, and the 
performance index rises to 0.73. Utilizing the installed MGs in case 2 
raises the performance index in the post-event degraded phase 
compared to case 1. While in the restoration phase, repairing network 
equipment in case 2 is not be as fast as case 1. The performance index in 
the second case is obtained as 0.72. Case 3, combining the strategies 
used in cases 1 and 2, yields an acceptable efficiency and improves the 
performance index to 0.83. 

There is no doubt that any academic study can have strengths in 
various aspects and limitations. Therefore, the present study is no 
exception and has some limitations. The first limitation is the assump-
tion of the linear relationship between the transmission line loading and 
the failure probability of lines. Moreover, another limitation of this 
paper is that the performance of the various parameters for calculating 
the VI is independent of each other. Also, as a proposal for future works 

and the continuation of this research, the benefits of different strategies 
can be compared, and a compromise between these measures and 
resilience improvement strategies can be established by cost-benefit 
analysis. 

6. Conclusion 

In this paper, a linear two-stage model based on AD strategies is 
proposed to improve the resilience of the electricity transmission 
network against the LPHI events such as a hurricane. In the first stage of 
the AD-RP model, a stochastic method was used to assess the vulnera-
bility of system components based on wind speed, length and loading of 
power lines, and load shedding. A novel vulnerability index has been 
calculated to select the WpC of components failure. In the second stage, 
according to the conducted vulnerability analysis, optimal hardening of 
vulnerable lines and optimal placement of MGs are performed to 
enhance the power system resilience while considering the budget 
constraints. An effective, innovative RM was also introduced to evaluate 
the system’s performance for the AD-RP model. The simulation results 

Fig. 10. RM after NH and MG placement without budget constraints.  

Fig. 11. Investment budget and load shedding for different hurricane intensities.  
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demonstrated the effectiveness of the proposed AD-RP model in 
increasing network resilience and highlighted the importance of two 
infrastructural and operational strategies for resilience improvement in 
the face of extreme natural disasters. The main conclusions of this paper 
are:  

• Vulnerability assessment of transmission system components based 
on the worst possible attacker identifies the failure priority of 
transmission system components.  

• Evaluation of system performance utilizing the proposed RM covers 
all phases of the resilience concept.  

• NH strategies are effective in improving the transmission system 
performance against moderate-intensity hurricanes. 

• The optimal placement of MGs is an essential action for the opera-
tional recovery phase of improving the system resilience.  

• Both infrastructural and operational measures are required to raise 
the system’s robustness and reduce the recovery time for the sys-
tem’s resilience enhancement. 
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