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Abstract: The inference of ancestry has become a part of the services many forensic genetic labora-
tories provide. Interest in ancestry may be to provide investigative leads or identify the region of
origin in cases of unidentified missing persons. There exist many biostatistical methods developed
for the study of population structure in the area of population genetics. However, the challenges
and questions are slightly different in the context of forensic genetics, where the origin of a specific
sample is of interest compared to the understanding of population histories and genealogies. In this
paper, the methodologies for modelling population admixture and inferring ancestral populations
are reviewed with a focus on their strengths and weaknesses in relation to ancestry inference in the
forensic context.

Keywords: ancestry; biostatistics; clustering; classification; distance based; likehood; hypothesis tests

1. Ancestry Informative Markers

The increased availability of whole human genome sequences in the public domain is
an invaluable data resource in many genomics, biomedical, and anthropological research
areas. In particular, the data repositories focusing on the genomic diversity among human
populations (e.g., HapMap Project [1], 1000 Genomes Project [2], Simons Genome Diversity
Project [3], and more recently curated in the Genome Aggregation Database Project, gno-
mAD [4]) have contributed to the understanding of human evolution, migration histories,
waves, and patterns.

Typically, genetic samples from populations with different geographical locations,
cultural backgrounds, tribal memberships, and linguistic groups constitute the data used
to identify genomic differences among the derived populations. These genomic differences
are the result of a mixture of causes: mutations, recombination, genetic drift, selection, and
migration [5]. The variations in the human genome can be observed both in tandemly
repeated DNA sequences (e.g., short tandem repeats, STRs) and in single-nucleotide poly-
morphisms (SNPs) but are also manifested in sequence variations in lineage markers (e.g.,
Y-chromosome and mitochondrial DNA) and structural variations (e.g., copy-number
variation) [6].

The geography of human populations (ancestry) and genetic polymorphisms are
closely related [7–12]. Hence, identifying ancestry informative markers (AIMs) can be
accomplished by analysing the publicly available genome sequences. Several measures of
informativeness has been derived in order to rank candidate markers [13,14].

In forensic genetics, STRs are presently the standard markers used for identification
and relationship testing. Furthermore, variation in allele frequencies may be used to infer
an individual’s ancestry [15,16]. Other types of AIMs are microhaplotypes [17], which are
groups of closely located SNPs (often positioned within 500 bp), and insertion–deletion
polymorphisms (indels) [18,19]. However, SNPs are more commonly used for ancestry
analysis [20,21], where several commercial assays have been developed for ancestry inves-
tigations. The selection of SNPs to be included in commercial kits depends both on their
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biochemical properties (e.g., allele balances and primer site location) and their informa-
tiveness regarding specific continental and regional populations. Hence, the companies
focused on specific population structures (e.g., intracontinental differences) may result in
poor resolution in other regions and among populations of close proximity. Consequently,
all results obtained from the genotyping and subsequent analysis are conditioned on the
specific SNPs included in the analysis. This is important to bear in mind when interpreting
the results of an analysis, as general patterns and expectations to population variability
may not be contained on a narrowly selected set of markers.

2. Biostatistical Methods

The study of population structure from genomic data has a long history within the
genetic and statistical literature. The increasing complexity and availability of data from
ancestry informative markers on multiple populations have required the development
of appropriate methodologies to model and capture the subtle genetic structures in the
data: from the first studies of a few hundred markers and individuals to more recent
studies with thousands of individuals genotyped on highly dense assays or from whole
genome sequences.

This progress, driven by biotechnological advances, has been challenging not only
from a methodological point of view but increasingly so from a computational perspective.
Where independence between the markers was ensured by their genetic distance, the closer
proximity of genetic markers results in statistical dependence (e.g., due to linkage disequi-
librium, LD). This increases the complexity of the analysis since such dependencies must be
adequately modelled and their dependence structure learned from the data. Some methods
incorporate the structure into their modelling framework, either by identifying stretches
supposedly inherited as a complete block (e.g., [22]) or attempts to learn the association
structure using graphical models [23]. Others operate by removing the dependence among
markers by pruning or thinning the data based on LD (e.g., [24]) or using the residual signal
after successively regressing the markers on each other (e.g., [25]).

The most widely used methodologies for analysing genetic structure can broadly be
divided into four different groups: principal components analysis, model-based clustering,
classification and likelihood-based, and hypothesis test-based methods. In addition, tree-
based and distance/dissimilarity clustering methods are used but not included in this
review. Most of the development in the study of population structures is driven by interests
in medical genetics or population genetics, where controlling for population stratification
may be vital for some applications or where the study of population dynamics on its own
is the main purpose. Hence, few methods have been developed with the applications
of forensic genetics in mind. In the subsequent sections, the various methodologies are
discussed with references to key publications in their domain.

To demonstrate and visualise the results from the various methods, data from [26] are
used in the following sections. The data consist of samples from six reference metapop-
ulations (comprised by a total of nref = 3453 samples) and ntest = 517 test samples all
genotyped on the 164 ancestry informative SNPs included in the Precision ID Ancestry
Panel (excluding marker rs10954737 due to a high degree of missingness). The reference
samples are known to originate from the indicated metapopulation, are of high sequencing
quality, and used to estimate the metapopulation’s allele frequencies. The 517 test samples
were harvested online, where their alleged metapopulation of origin was derived from the
sampling location and other available meta information [26]. Both the reference and test
samples originated from six regional areas, where the regional specific nref/ntest counts
are: Sub-Saharan Africa (668/37), North Africa (283/49), Europe (1014/173), Middle East
(377/52), South/Central Asia (489/85), and East Asia (622/121).

2.1. Principal Components Analysis

Principal components analysis (PCA) has a long history of application in the study
of population structure. The usage of PCA in the analysis of population structure was
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pioneered by [27], as an efficient way to capture the underlying structure for visualisation
purposes. PCA is able to capture continuous admixture between populations, implying that
admixed populations typically falls on the lines between its parental populations. More
recent PCA-based methods for inference include SMARTPCA [25] and EIGENSTRAT [28].
These methodologies provide further insight as to how many PCs are required to capture
detectable population structures by the use of hypothesis testing on the magnitude of the
PCA’s eigenvalues. For the reference samples (cf. above) from [26], there are four significant
PCs according to EIGENSTRAT. The first three PCs are plotted in Figure 1 (plots including
the fourth PC do not visually separate the metapopulations). The often detected triangle
spanned by Sub-Saharan Africa, Europe, and East Asia is cleary visible in the plot of PC1
and PC2.
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Figure 1. Plot of the first three PCs from the PCA of the reference samples.

Besides being an efficient tool for visualising high-dimensional (genetic) data, PCA
also yields the best linear low-dimensional approximation of the data in terms of Euclidean
distance. This, together with the orthogonality of the principal components (PCs), implies
that population substructures can be detected by the discriminant analysis of the PCs,
DAPC [29]. Primarily relying on linear algebra, DAPCis computationally much faster than
STRUCTURE and gives comparable results. However, several papers discuss some of the
known pitfalls when using PCA [30–33]. The most important issue to be aware of is PCA’s
sensitivity to the sampling of individuals and populations. An unbalanced sampling of
some populations forces the PCs to account for the variation caused by the majority groups.
Since most models and methods try to minimise a loss function, this implies that in the
estimation of the unknown quantities (e.g., model parameters, here, the PCs) emphasis is
given to the majority groups in the data [30,31]. The loss function is typically proportional
to the deviation between the observed data and the model’s predictions (or expectation),
e.g., measured by the model’s likelihood or squared distance of the residuals. For PCA, the
loss function is inversely proportional to the fraction of explained variance of the first PCs,
with DAPC’s loss also depending on the intracluster variances as a function of the numbers
of cluster K (measured by a Bayesian Information Criterion, BIC). Another property shared
by several methods and statistical models is that they provide a compression of the data,
in the sense that the methods are trying to retrieve as much information from the data as
possible and discard a nonsignal as noise. Taken a bit further, one may interpret the model
output and parameter estimates as data summaries (some more informative, advanced,
and interpretable than others). Consequently, some of these summaries (e.g., the PCs
and STRUCTURE as discussed next) are similar or even identical for different population
genealogies [31].
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2.2. Model-Based Clustering Methods

The seminal STRUCTURE paper [34] introduced a population genetics methodology
based on a statistical finite mixture model. Using a Bayesian approach, the posterior proba-
bilities for cluster memberships and cluster-specific allele frequencies are estimated using
an MCMC-algorithm (MCMC: Markov chain Monte Carlo). STRUCTURE has been used
in numerous studies and has, according to Google Scholar, more than 30,000 citations,
which indicates its enormous influence in the field of population genetics [35]. Forensic
applications were mentioned as one of motivations for STRUCTURE ([34], p. 945) in order
to identify cryptic population structures and assess their influence on the detection of im-
migrants and calculation of match probabilities [36–38]. In essence, the initial STRUCTURE
model is a simple Hardy–Weinberg model with the relaxation that subpopulations have
different allele frequencies and individuals may inherit alleles from several subpopulations,
i.e., being admixed [35]. Following the initial publication, several modifications both on
the population genetic model (allowing for, e.g., linked markers and null alleles) [22,39]
and computational aspects (faster and more efficient algorithmic schemes) [40–42] have
been suggested. See [35,43] for further references and remarks.

Despite the many successful applications of STRUCTURE (including variants and
similar methodologies, e.g., FRAPPE [40] and ADMIXTURE [41]), to population genetic data
and research questions, no model is better or more general than its underlying assumptions.
Similar stories apply to simple linear regression models, where the assessment and evalua-
tion of the residuals is part of any analysis. However, because of STRUCTURE’s complexity,
it is harder to conduct the assessment of the model fit. A recently published instructive
tutorial [44] provides a critical view on how to assess the outcome of STRUCTURE analysis
using the tools badMIXTURE [45], GLOBETROTTER [46], fineSTRUCTURE, and CHRO-
MOPAINTER [47]. In particular, the authors highlighted the fact that different population
scenarios (e.g., recent admixture, bottleneck, and admixture contribution from untyped
populations) result in similar STRUCTURE barplots [7,48] (the typical data summary from
a STRUCTURE analysis). Supplementing the STRUCTURE analysis by residual plots based
on badMIXTURE, patterns were detected enabling these scenarios to be distinguished [44].
Similar to PCA, STRUCTURE is sensitive toward biased sampling and population sample
sizes. Specifically, imbalances between the analysed populations may influence how and
which of the sampled populations that exhibit patterns of population admixture ([44], Case
Study 3, pp. 5–8). However, choosing the appropriate (or in a sense, correct ) value for K, the
number of population clusters, is not a well-defined problem, i.e., only heuristic methods
exist for guiding the specification of K [34,35,43,44]. Different choices of K may result in
rather different results and interpretations of the population stratification and history.

In Figure 2, the estimated STRUCTURE admixture components, q = (q(1) , . . . , q(K)), for
the reference samples (cf. above) are shown for K = 4. There is a clear visual distinction in
the distribution of qi across the 3453 reference samples.

Figure 2. Barplots of the STRUCTURE admixture components (K = 4) for the reference samples from
six metapopulations. There is a clear visual difference between the admixture components for the
six metapopulations

The four clusters of Figure 2, K = 4, may be associated with Sub-Saharan African,
European, South/Central Asian, and East Asian components. The samples from North
African and Middle Eastern regions show the strongest admixture of these four components.
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2.3. Classification and Likelihood-Based Methods

The statistical problem solved by STRUCTURE [34] and the related methodologies
(e.g., ADMIXTURE [41]) is a rather complex one: Assign individuals to populations while
estimating the unknown populations’ unknown allele frequencies. As discussed above
(Section 2.2), this is performed by finite mixture models, where the assignment of indi-
viduals and updating of population allele frequencies are conducted iteratively (either
by Bayesian MCMC methods [34] or using efficient variants of expectation–maximisation
algorithms [41]). However, if analysis of population structure is not the purpose and
the allele frequencies are known for a set of populations, the assignment of individuals
is simpler.

In this case, the assignment of nonadmixed individuals can be conducted by a Bayes
classifier, where the individual is assigned to the most probable population among the
ones included in the reference database. As such, the population assignment problem can
be solved by several types of classification algorithms known from the machine learning
literature (e.g., classification trees, random forest, support vector machines, multinomial
regression, partial least squares, discriminant analysis, nearest neighbours, gradient boost-
ing, and other ensemble learners). Common to most of these methods is their ability to
account for interaction effects between the explanatory variables on the outcome (here,
the marker interactions when predicting the population of origin). Furthermore, similar
to the methods of Sections 2.1 and 2.2 (e.g., PCA and STRUCTURE), sample sizes and
imbalanced training data typically influence the tuning and therefore performance of the
machine learning methods. When training a classification algorithm on a specific dataset,
the objective is to drive the overall loss function downwards. Typically, the loss function in
classification contexts decreases with more samples being accurately classified (e.g., the
misclassification rate or smooth functions, thereof). However, if some populations have low
proportions in the sample, the classifier gains little from classifying these correct compared
to the frequently occurring populations. Hence, the relative composition of the populations
in the data may impact the trained classifier quite substantially. In the context of forensic
genetics, the risk of incomplete AIMs profiles obtained from, e.g., crime scenes, makes some
methods less applicable to samples with some or more untyped markers (e.g., due to low
signals or marker drop-out). Some methods (e.g., naïve Bayes classifiers and classification
trees using surrogate splits) may readily deal with partial profiles, whereas in particular
regression, models are susceptible to missing data.

From a forensic perspective evaluating the weight of the evidence is typically con-
ducted using the likelihood ratio principle. For multiple propositions (in this case, multiple
populations), this approach generalises to several ratios assessing the pairwise agree-
ment between data and the alleged populations of origin. The predicted population
of origin is the population where the profile is most probable. The likelihood function
typically assumes a specific population genetic model, e.g., within each population assum-
ing Hardy–Weinberg equilibrium and independent genetic markers. This corresponds
to a naïve Bayes classifier assuming a Binomial distribution for each marker given the
population specific allele frequencies. Two forensically relevant implementations includ-
ing several reference populations and AIMs panels are freely available online (FROG-kb
(http://frog.med.yale.edu/FrogKB/, accessed on 13 December 2021) [49,50] and Snipper
(http://mathgene.usc.es/snipper, accessed on 13 December 2021) [51]). Other approaches
toward classification have been considered and compared (e.g., multinomial regression
and genetic distances) [52]. These methods are in particular relevant in the case of admixed
individuals, where the single population likelihoods do not suffice [53,54].

2.4. Hypothesis Test-Based Methods

An underlying and important assumption for both clustering and classification is that
of exhaustive populations. This means that for clustering the admixture components must
sum to one, indicating that all the genetic admixture of an individual can be explained
by contributions from the K clusters. However, the Ghost admixture example of ([44],

http://frog.med.yale.edu/FrogKB/
http://mathgene.usc.es/snipper
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p. 3) shows that the noninclusion of important branches of a genealogy may result in
misleading results. In that case, the contribution from the unsampled reference population
to the admixture was replaced by the reference population most similar to the unsampled
one. This scenario may easily occur in the forensic setting, where only major popula-
tions are included in the reference material, but where conclusions are wanted on a finer
(sub)population scale.

For classifications, an underlying assumption is that an observation belongs to exactly
one class (i.e., one and only one). Hence, this forced classification means that even when
all the possible classes are (highly) unlikely, the DNA profile under classification must be
assigned to precisely one of the populations (typically the least unlikely population).

This issue was the main motivation for the derivation of the GenoGeographer method-
ology [55,56]. Rather than forcing an observation to be classified to any of the prespecified
populations in the reference material, it was assessed whether the sample could originate
from each of the reference populations. Logically, this implied that the sample was tested
for being an outlier in each of the possible populations, and this was formally conducted by
testing the hypothesis of the DNA profile sample and database sample originated from the
same underlying population or not [55]. This outlier test is equivalent to a Fisher’s exact
test and thus enjoys many of the same statistical properties, e.g., increasing power with in-
creasing sample size and robustness toward missing observations. Other hypothesis-based
methodologies include a likelihood ratio test for recent admixture [57].

For each reference sample i = 1, . . . , 3453, STRUCTURE estimates the admixture
components, qi = (q(1)

i , . . . , q(K)
i ), where ∑K

k=1 q(k)
i = 1 by definition. From these, the

average admixture component is calculated for each of the reference metapopulations,
by the average over the admixture components for reference samples belonging to this
metapopulation:

q̄j = (q̄(1)
j , . . . , q̄(K)

j ), with q̄(k)
j = n−1

j ∑i∈Rj
q(k)

i , k = 1, . . . , K,

where Rj is the set of the nj samples from metapopulation j.
As for the training samples STRUCTURE admixture components ql was calculated for

the test samples, l = 1, . . . , 517. The closer ql is to q̄j for some test sample l and referece
metapopulation j, the more likely it is to assume l to originate from metapopulation j.
However, how (dis)similar should these admixture components be to declare l (not) to
originate from j? Moreover, how should this similarity be measured? One possible measure
of proximity could be to use a Brier-like score, Bl j, which is the sum of squared admixture
components differences between test sample l and reference metapopulation j:

Bl j =
1
K

K

∑
k=1

(q(k)
l − q̄(k)

j )2.

The closer Bl j is 0, the more similar is sample l to metapopulation j in terms of STRUCTURE
admixture components [Supplementary materials of 26]. The maximal value of Bl j is 2/K,

which happens if q(k)
l = 1 and q̄(k′)

j = 1 for k 6= k′. In Figure 3, the boxplots of the Brier scores
for each of six metapopulations are grouped according to the test samples’ status inferred
by the GenoGeographer methodology (in colours) [55]. Added to plot in grey boxplots
are the Brier scores for the reference samples, which are the samples used to compute q̄j.
Thus, the grey boxplots are expected to show lower Brier scores compared to those of the
coloured boxplots.
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Figure 3. Boxplots of the Brier scores, Bij, with K = 4 in the STRUCTURE analysis and j running
through the metapopulations of [58]. Reference: Samples constituting the metapopulations (and used
to calculate q̄j). Concordant: A sample is accepted in the metapopulation coinciding with its sampling
region (with a likelihood value significantly larger than any other metapopulation). Discordant: A
sample is accepted in a metapopulation different than its sampling region (with a likelihood value
significantly larger than any other metapopulation). Ambiguous: A sample’s likelihood value is not
significantly different in two or more of the accepted metapopulations. Rejected: A sample is rejected
in all metapopulations. The concordant test samples (green) have similar Brier scores as those of the
reference samples (grey). Discordant samples (red) tend to have the largest Brier scores, followed by
the rejected samples (blue) with the ambiguous (yellow) in between (see text for definitions). The
horizontal dashed and dotted lines in the top of the plot indicates Bij = 0.5 and 0.25, respectively
([26], inspired by Supplementary Figure 8).

The Brier scores, Bij, in Figure 3, tend to be larger for discordant, ambiguous, and
rejected samples (see definitions in caption of Figure 3). However, from the visual inspection
of the STRUCTURE barplots (data not shown), it is often rather hard to judge when a sample
deviates substantially from a given metapopulation to declare it extreme compared to the
other samples. The advantage of GenoGeographer is that such visual inspections or ad
hoc defined thresholds for dissimilarity (e.g., using a Brier score) are not required. The
conclusions are based solely on a hypothesis test and a predefined significance level.

The model formulation of STRUCTURE implies that any spurious and complex type
of admixture can be modelled. For the GenoGeographer framework, however, only specific
admixtures can be assessed. Currently, first-order admixtures can be accounted for [56],
but the admixture approach can be generalised to handle outlier tests for higher-order
admixtures (e.g., second-order where the parents themselves may be admixed). However,
the ancestry SNPs may not be sufficiently informative to distinguish between certain
admixture configurations (e.g., two pedigrees with different founder populations may be
equally likely).

One solution to this may be to use linked markers as these typically are more infor-
mative for pedigree analyses [59]. In order to handle linked markers in the framework
of hypothesis tests, e.g., microhaplotypes [17], the interactions between the markers was
modelled using decomposable graphical models, where association structures between the
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SNPs could be different among the reference populations [23] (e.g., the linkage between
SNPs was allowed to be different between continental regions). For a microhaplotype with
K biallelic SNPs, there exist 2K different alleles, implying that many samples are needed
to obtain accurate allele frequency estimates for moderate values of K. By exploiting the
conditional independence structures, the framework of graphical models provides a more
data efficient modelling of the microhaplotype frequencies and thus requires fewer samples.

3. Discussion

STRUCTURE remains to be a valuable methodology and approach for analysing
population structure in forensic genetics. There exist several guides and tutorials for how to
prepare the population data and choosing parameter settings for STRUCTURE (e.g., [60,61],
with some emphasis on forensic applications). However, as warned by [44], the resulting
barplots should not be overinterpreted. The badMIXTURE approach [45] provides the
means to reduce the risk of being mislead by the summaries provided by STRUCTURE and
supporting software (e.g., [7,48]).

However, STRUCTURE’s popularity in the field of population genetics to study popu-
lation structure is well deserved. It complemented PCA with a quantitative method that
assigns sample specific weights to each of the K populations specified in the study. This is
a powerful way to summarise the data in terms of cluster membership probabilities and
the estimated allele frequencies for the identified populations. Both PCA and STRUCTURE
are valuable for exploratory analysis, where encoding errors (e.g., of missing data) and
warnings about misspecification of origin may be detected by visual inspections of the
results. From a forensic point of view, the results from both PCA and STRUCTURE are
hard to report in terms of a weight of evidence calculation. The similarity (or dissimilarity)
between the sample and reference materials can be reported but typically only in terms of
their visual appearance. By contrast, classification and likelihood-based methods are able
to give weight to the evidence. This may be in terms of a posterior probability or likelihood
ratio, where the assignment would be to the most probable population. However, none of
these methods take into account the risk of assigning the profile to the least unlikely popu-
lation in the case where none of the populations are representative for the true population
of origin.

Inferring a DNA profile’s geographic region or population of origin has been an active
field of research in forensic genetics for several years. The vast collections of publicly
available databases of whole-genome sequences provide a unique resource for researchers.
Rather than spending time and consumables on collecting samples, these DNA profiles
can now be harvested online. However, in doing so, one relies on the quality of the
data provided by others, which includes the genetic typing and base calling but also the
metadata regarding sampling location and ethnic information.

In the case of forensic genetics, the finer resolutions are often of interest. In order to
increase the specificity, it may be necessary to supplement the selected AIMs with more
locally informative markers, specific to separating the local and often related populations
of interest. In the search for such markers, the publicly available datasets are of immense
importance as they can be used to screen for candidate AIMs. In particular, the sam-
ples from regions close to the specific populations of interest are essential for selecting
potential markers.

Combining the flexibility of STRUCTURE with the appealing visual features of PCA
(e.g., using EIGENSTRAT to determine the number of significant components) is essential
in the exploratory phase of ancestry inference. However, the forensic questions related to
ancestry is typically different from those of population genetics, where the focus may be
on population specific patterns (e.g., bottleneck and expansion events or migration). The
typical forensic use case focuses on a specific individual (or human remains), for which the
most likely population of origin needs to be identified. In such cases, likelihood ratio or
classification methods can be used. However, the fundamental assumption of the existence
of an appropriate population in the reference material may very often be violated. Hence,
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DNA profiles are assigned to the population that is most similar to the sample, which due
to human evolution and history may geographically and culturally be very far away from
the true population. The GenoGeographer methodology attempts to overcomes this logical
problem by using statistically based outlier tests.
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