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On information modeling in structural
integrity management

Kashif Ali1 , Jianjun Qin1,2 and Michael Havbro Faber1

Abstract
Value of information analyses in structural integrity management has gained significant interest over especially the last
decade. The concept of value of information analysis provides a methodical framework facilitating for the optimization of
strategies for information collection through inspections and structural health monitoring. The information, which is col-
lected, represents indications of the condition and performance of the structure and is generally subject to significant
uncertainties. An important part of this uncertainty is directly related to the quality of the techniques that are utilized
for collecting information. Whereas such uncertainties are generally appreciated and accounted for in the research liter-
ature, it is generally assumed that information of relevance of integrity management, collected over space and time, is
unbiased and independent. In the present contribution, we investigate the possible consequences of such assumptions.
To this end, we model the value of information associated with information collection and evaluate the effect of introdu-
cing biases and dependencies on the value of information. Two different probabilistic models are introduced to represent
and study the effect of possible biases corresponding to the case where biases in information collected at different times
are independent or fully dependent, respectively. The study is supported by the address of two different integrity man-
agement problems considering (1) an oil well tubing system subject to scaling and (2) a welded detail in steel structures
subject to fatigue degradation.
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Introduction

Value of information (VoI) in support of risk informed
structural integrity management (SIM) has attracted
significant interest in the civil engineering research com-
munity over the last decade, see, for example, COST
Action TU1402.1

The theoretical and methodical basis for VoI analy-
sis in the context of risk informed SIM was developed
already some 50 years ago through modern methods of
structural reliability analysis by Freudenthal2 and
Bayesian decision analysis by Raiffa and Schlaifer.3

Since then, important further developments of meth-
ods, techniques, and tools have been established for
application related to especially to civil infrastructures
such as offshore structures and bridges.

Original ideas on how to utilize Bayes’ theorem as
basis for accounting for information collected by inspec-
tions in support of integrity management are presented
by Tang4 and Yang and Trapp.5 These ideas were soon
after adopted for applications in the offshore oil and gas
industry for optimization of risk informed inspection and
maintenance planning. First applications to this end are

reported by Skjong6 and Madsen,7 considering integrity
management of individual welded details in fixed steel
jacket structures subject to fatigue crack growth.
Adaptation of formulations for systems, considering mul-
tiple welded details in structural systems, is developed by
Faber et al.,8 Moan and Song,9 Faber and Sørensen,11

and Straub and Faber.12 In Faber,13 a comprehensive
account is provided on the major developments in the
field of risk and reliability informed integrity manage-
ment for offshore and marine oil and gas facilities.
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A central issue in VoI analysis and system modeling
in more general terms concerns the probabilistic repre-
sentation of the information upon which the analysis
and modeling is based.14 In the context of risk, informed
SIM information may be modeled by means of
indicators—observable condition states of the structure.
Within the framework of Bayesian prior/posterior and
pre-posterior decision analysis in the context of SIM,
indicators are generally utilized for either (1) updating
of probabilistic representations of relevant condition
states of the structure or (2) for updating of the prob-
abilistic representation of individual random variables.

In SIM, monitoring and inspections serve to identify
possible damage states and to provide information con-
cerning the extent—or size of damages. In the probabilis-
tic modeling of the quality of monitoring and inspections
quality of monitoring, these two aspects are addressed
through the probability of detection (PoD) and the uncer-
tainty associated with sizing. An overview on probabilis-
tic modeling of the quality of inspections is provided by
Straub and Faber.15 SIM for pipeline systems subject to
corrosion-induced damages is developed by Xie and
Tian.16 As a means for detecting and sizing corrosions
damages in such systems so-called in-line inspections
(ILIs) may be applied. Probabilistic models for errors
associated with detections and sizing are reported by, for
example, Dann and Maes,17 Dann and Huyse,18 and
Zhang and Zhou.19 VoI analysis and associated probabil-
istic modeling in the context inspection planning for pipe-
line systems are addressed by Haladuick and Dann.20

In the present contribution, closely following the
framework for the representation of information in
decision analysis,14 we address the probabilistic model-
ing of information in the context of SIM with a focus
on (1) the significance of biases associated with inspec-
tion results and (2) the effect dependencies between
results of consecutive inspections—measured in terms
of the VoI they facilitate. To this end, two different
probabilistic models are introduced to represent and
study the effect of possible biases corresponding to the
case where biases in information collected at different
times are independent or fully dependent, respectively.
The study is supported by an example considering two
different integrity management problems, that is, (1) an
oil well tubing system subject to scaling and (2) a
welded detail in steel structures subject to fatigue
degradation.

Methodical framework for VoI-supported
SIM

Integrity management of structures aims to maximize
the service life benefits and/or to minimize the opera-
tional expenditure (OPEX). Information, which may be

collected from, for example, inspections and monitor-
ing may adequately be utilized to improve the under-
standing of the structural condition and general
performances—and essentially forms the basis for SIM.
However, due to a range of reasons, the collected infor-
mation is generally not perfect and this may, in turn,
result in SIM decisions, which are far less than optimal.
Decision-making is fundamentally challenged by the
fact that the available decision alternatives are associ-
ated with uncertainties. The optimality of SIM deci-
sions critically depends upon the quality of the
collected information and the potential and relevance
for improving the quality of collected information
should ultimately be quantified using VoI analysis.

The introduction to VoI analysis is provided by
Raiffa and Schlaifer.3 VoI analysis in the context of
SIM again takes the framework of Bayesian prior/pos-
terior and pre-posterior decision analysis as the basis
together with the axioms of utility theory,21 where the
expected value of benefits is the criteria to measure the
value of the information. Following the engineering
practice of SIM, the idea hereby is to analyze the differ-
ence among the expected values of the benefits (and/or
reduce the OPEX) over the service life with or without
different strategies for collecting additional informa-
tion, even before it is collected. Uncertainties associated
with different perspectives—including the strategy for
collecting information, the collected information,
actions, and the state of the structure—would be con-
sidered in the analysis of the benefits.

The decision event tree considered in SIM is illu-
strated in Figure 1. The information is collected
through different strategies e where outcome is repre-
sented by information Z concerning different states of
the structure (performance characteristics), modeled by
the random vector X. The information Z can be mod-
eled probabilistically as the function of the quality of
the different strategies e (measurement errors). Based
on the information Z, an action a defined as decision
rule, taken to change the state of structure X. The deci-
sion tree used to quantify the particular strategy e for
the VoI analysis. VoI is the difference between the

Figure 1. Illustration of the decision event tree considered in
SIM of engineered structures.
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expected value of the benefit associated with the infor-
mation Z collected through e, EX,Z½b(e,Z(e), a(Z),X)�
and the expected value of the benefit without the collec-
tion of information EX½b(a,X)�

VoI eð Þ=EX,Z b e,Z eð Þ, a Zð Þ,Xð Þ½ � � EX b a,Xð Þ½ �

=

ð

Dx

xT
ð

Dz

zT fbb e, z eð Þ, a zð Þ, xð Þdzdx

�
ð

Dx

xT fbb a, xð Þdx

ð1Þ

where fb represents the probability distribution function
of the benefit b in the domain of state of structure (Dx)
and information (Dz). The VoI analysis

13,22,23 as shown
in equation (1) ranks the actions (decision alternatives)
represented by a enhanced by means of the information
Z collected through the strategy e. The ranking of a is
informed through the uncertain future realizations of Z
corresponding to the uncertain state X.

VoI analysis provides identification of the steps in
the SIM value chain for the uncertainties involved in
additional information that has been added across the
different types of systems such as structures and wells,
and of offshore oil and gas production facilities for the
reduction in OPEX. VoI may ensure that the general
approach and applied modeling across the different
types of systems are consistent with respect to the rep-
resentation of uncertainties related to information and
accounted for the optimization of SIM strategies.

Information modeling in SIM

The basis for SIM is the information concerning the
states of engineered structures and the knowledge
synthesized on the basis of the information. Therefore,
we need to collect relevant information to update our
knowledge about the states of the structures to facili-
tate SIM. In accordance with Nielsen et al.,14 five
classes to represent the information are proposed as
follows:

Class 1: the information is relevant and precise.
Class 2: the information is relevant but imprecise.
Class 3: the information is irrelevant.
Class 4: the information is relevant but incorrect.
Class 5: the flow of information is disrupted or delayed.

In the following, the information Z collected (by dif-
ferent means of inspection and monitoring) is assumed
to be relevant to SIM, and we further assume that the
events of disrupted or delayed information are
neglected. In some cases, the information collected
might be irrelevant to the SIM. An example of this in

the context of inspection and maintenance planning for
structures subject to fatigue crack growth concerns
inspection findings of slag inclusions from the welding
process, which may be wrongly interpreted as the indi-
cations of fatigue crack growth and lead to suboptimal
maintenance actions.14 Such irrelevance is out of the
scope of this article. Also in the practice of engineering,
the information Z collected is normally associated with
uncertainties that tend to be significant for the ranking
of decision alternatives, that is, possible actions and
correspondingly the effects of these uncertainties must
be accounted for in SIM. In the following discussion,
the focus is directed on Classes 2 and 4 as shown
above.

There are normally two types of strategies e applied
to collect information relevant to the SIM during the
service life of engineered structures, namely, (1) struc-
tural health monitoring (SHM) and (2) inspections.
The information Z collected from both of the two types
of strategies e is generally modeled through what is
referred to as condition indicators. The information
obtained from indicators in the context of SIM is pre-
sented for SHM by Moan and Song9 and for inspec-
tions of concrete structures by, for example, Faber and
Sørensen11 and Qin and Faber.24

To facilitate SIM, both SHM and inspections may
be implemented to observe the indicators relevant to
the unknown state X through the collection of the infor-
mation at different locations of the structure and at dif-
ferent times during the service life. Despite the different
locations and times, there are, however, two sources of
important dependencies between the observed indica-
tors, which must be accounted for, see Figure 2 for
illustration. On the one side, all the observations (no
matter where and when) depend on the state of the

Figure 2. Illustration of two types of dependency models of
errors in the collected information at different times.
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expected value of the benefit associated with the infor-
mation Z collected through e, EX,Z½b(e,Z(e), a(Z),X)�
and the expected value of the benefit without the collec-
tion of information EX½b(a,X)�

VoI eð Þ=EX,Z b e,Z eð Þ, a Zð Þ,Xð Þ½ � � EX b a,Xð Þ½ �
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xT fbb a, xð Þdx
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where fb represents the probability distribution function
of the benefit b in the domain of state of structure (Dx)
and information (Dz). The VoI analysis

13,22,23 as shown
in equation (1) ranks the actions (decision alternatives)
represented by a enhanced by means of the information
Z collected through the strategy e. The ranking of a is
informed through the uncertain future realizations of Z
corresponding to the uncertain state X.

VoI analysis provides identification of the steps in
the SIM value chain for the uncertainties involved in
additional information that has been added across the
different types of systems such as structures and wells,
and of offshore oil and gas production facilities for the
reduction in OPEX. VoI may ensure that the general
approach and applied modeling across the different
types of systems are consistent with respect to the rep-
resentation of uncertainties related to information and
accounted for the optimization of SIM strategies.

Information modeling in SIM

The basis for SIM is the information concerning the
states of engineered structures and the knowledge
synthesized on the basis of the information. Therefore,
we need to collect relevant information to update our
knowledge about the states of the structures to facili-
tate SIM. In accordance with Nielsen et al.,14 five
classes to represent the information are proposed as
follows:

Class 1: the information is relevant and precise.
Class 2: the information is relevant but imprecise.
Class 3: the information is irrelevant.
Class 4: the information is relevant but incorrect.
Class 5: the flow of information is disrupted or delayed.

In the following, the information Z collected (by dif-
ferent means of inspection and monitoring) is assumed
to be relevant to SIM, and we further assume that the
events of disrupted or delayed information are
neglected. In some cases, the information collected
might be irrelevant to the SIM. An example of this in

the context of inspection and maintenance planning for
structures subject to fatigue crack growth concerns
inspection findings of slag inclusions from the welding
process, which may be wrongly interpreted as the indi-
cations of fatigue crack growth and lead to suboptimal
maintenance actions.14 Such irrelevance is out of the
scope of this article. Also in the practice of engineering,
the information Z collected is normally associated with
uncertainties that tend to be significant for the ranking
of decision alternatives, that is, possible actions and
correspondingly the effects of these uncertainties must
be accounted for in SIM. In the following discussion,
the focus is directed on Classes 2 and 4 as shown
above.

There are normally two types of strategies e applied
to collect information relevant to the SIM during the
service life of engineered structures, namely, (1) struc-
tural health monitoring (SHM) and (2) inspections.
The information Z collected from both of the two types
of strategies e is generally modeled through what is
referred to as condition indicators. The information
obtained from indicators in the context of SIM is pre-
sented for SHM by Moan and Song9 and for inspec-
tions of concrete structures by, for example, Faber and
Sørensen11 and Qin and Faber.24

To facilitate SIM, both SHM and inspections may
be implemented to observe the indicators relevant to
the unknown state X through the collection of the infor-
mation at different locations of the structure and at dif-
ferent times during the service life. Despite the different
locations and times, there are, however, two sources of
important dependencies between the observed indica-
tors, which must be accounted for, see Figure 2 for
illustration. On the one side, all the observations (no
matter where and when) depend on the state of the

Figure 2. Illustration of two types of dependency models of
errors in the collected information at different times.
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structure; on the other side, the observations them-
selves, for example, through SHM and/or inspections,
are associated with uncertainties as presented above. In
general, uncertainties are represented by measurement
errors (note that here the term error is general and
includes bias) and the observed indicators are influ-
enced by common uncertainties, that is, measurement
errors. An illustration of the two sources of depen-
dences is provided in Figure 2.

This article presents two different models to describe
errors in the collected information z (observed indica-
tors) at different times probabilistically taking the
dependency between the observations into account, see
Figure 3 for illustration. Note that there are two types
of errors as introduced by Rothman,10 that is, random
errors and bias (systematic errors), both of which are
considered in the two models. The random errors may
be reduced by the increasing number of observations.
However, increasing the number of observations does
not affect the bias. In the proposed probabilistic model-
ing, the uncertainty associated with measurements is
represented by the expected value of e, that is, me and
its standard deviation se. If me is different from zero,
there is a bias, and otherwise there is no bias. In Model
1, it is assumed that the measurement error e is realized
only once and thus identical for all future inspections.

Model 1 might be relevant in the case where a mea-
surement device is installed imperfectly such that mea-
surements are systematically shifted from the true
value; an example of this concerns strain gages installed
at an incorrect angle. In Model 2, it is assumed that the
realizations of the systematic errors might differ at dif-
ferent inspections times. The time indices t1, t2, t3 . . .
shown in Figures 2 and 3 represent the times at which
measurements are made. An example where of Model 2

would be relevant concerns inspections of different
welded details using one measurement device that is
calibrated only one time—and where biased may occur
due to differences in actual weld geometries compared
to the weld geometry on which the measurement device
is calibrated. In engineering practice, the characteristics
of the probabilistic models presented here could be
identified through statistical analysis of relevant data,
and further, statistical tests could be implemented to
determine which dependency model (Model 1 or Model
2) is most appropriate.

The VoI analysis for the scenarios with these two dif-
ferent models of measurement errors e may be simply
expressed as

VoI1 eð Þ =EX,Z b e,Z e, e(me),Xð Þ, a Zð Þ,Xð Þ½ � � EX b a,Xð Þ½ �

=

ð

Dx

xT
ð

Dz

zT fbb e, z e, e(me), xð Þ, a zð Þ, xð Þdzdx

�
ð

x

xT fbb a, xð Þdx

ð2Þ

VoI2 eð Þ=EX,Z b e,Z e, e með Þ,Xð Þ, a Zð Þ,Xð Þ½ � � EX b a,Xð Þ½ �

=

ð

Dx

xT
ð

Dz

zT fbb e, z e, e með Þ, xð Þ, a zð Þ, xð Þdzdx

�
ð

x

xT fbb a, xð Þdx

ð3Þ

Equations (2) and (3) represent VoI analysis for the
scenarios with Model 1 and Model 2, respectively. Note
that in VoI analysis for the scenarios with Model 1, the

Figure 3. Illustration of two sources of dependencies between the observed indicators given the choice e.
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measurement error e is a function of the random vari-
able me, that is, the uncertain expected value; while in
the VoI analysis for the scenarios with Model 2, the
measurement errors e are the function of all the uncer-
tain expected values included in the vector me.

In the next sections, the two dependency models are
addressed and investigated in two different contexts of
VoI analysis–supported SIM. The first example con-
cerns the modeling and assessment of VoI in the con-
text of integrity management of an oil production well
system subject to scale degradation. In the second
example, VoI is analyzed considering the life cycle cost
minimization for a welded detail in a steel structure
subject to fatigue crack growth.

Example: VoI analysis for measurements
of scale degradation of subsurface wells in
the context of SIM

Introduction

In this example, the VoI associated with measurements
of scale degradation is investigated in the context of
SIM of subsurface wells, accounting for the influence
of systematic errors (bias) of the measurements and
considering the two different models for the representa-
tions of dependencies between those errors at different
times. The oil production from subsurface wells during
their service life may be reduced or even lost due to a
reduction of the inner diameter of the production tub-
ing. The reduction considered here is assumed caused
by inorganic depositions of salts—called scaling—
including the formation of hard deposits of calcium
carbonate (CaCO3) and barium sulfate (BaSO4) as
shown in Figure 4. The industrial practice shows that
scale such as barium sulfate is formed mainly along the
horizontal tubing, at the depth of the reservoir, while
calcium carbonate deposits normally are formed at
lower depths in the vertical part of the tubing. To gain
knowledge about the level of scaling and to facilitate
optimization of SIM, inspections are performed to
measure the scale propagation using, for example,
multi-finger caliper measurements. However, the results
from those measurements—at any given location—are
generally associated with uncertainties and possible
biases. Moreover, measurements at different times are
subject to stochastic dependencies. In this section, the
value of the information from measurements of scale
propagation of one subsurface well is investigated—
accounting for the uncertainties and the bias together
with the stochastic dependency between the measure-
ment results at different times, to support SIM.

The subsurface well considered here for illustrational
purposes is assumed to have a 30-year service life.
Inspections are assumed performed with equidistant

time intervals to support the decision of maintenance
actions and further SIM decision optimization. Three
different inspection intervals are considered here, that
is, 2, 6, and 10 years. The accumulated scale growth at
year t, D0(t) is taken as the sum of the annual scale
growth rate Si (mm/year), (i= 1, 2, . . . , t), given that no
repair is performed

D0 tð Þ=
Xt
i= 1

Si ð4Þ

Scale formation is complex and complicated phe-
nomena, and the scale rate varies for different environ-
mental conditions provided. Previous studies25,26 show
that the annual scale growth rate Si depends upon dif-
ferent factors, that is, pressure, temperature, and solubi-
lity of ions. In addition, it is assumed that the random
variables Si representing the scale growth rate at time ti
follow a lognormal distribution.25

In addition, measurements from inspections might
not necessarily be perfect and could be associated with
systematic errors, that is, biases. The biases associated
with measurements of accumulated scaling thickness e
are modeled through random variables with the
expected values me and standard deviation se. In the
present example, the effect of the two types of temporal
dependencies (from inspection to inspection), modeled
as shown in Figure 2, is investigated. Four deterministic
values of the expected value of me are considered here
with the purpose to investigate the influence of the mea-
surement bias on the VoI, that is, mej j= 0, 2, 6, 10mm.
In the cases where me attains non-zero expected values,
it is assumed that the expected value of me has equal
probability to be either positive or negative. In Model 1
(see Figure 2), the outcome of the expected value of me

is either positive or negative throughout the entire

Figure 4. Illustration of scale deposits in a subsurface well.
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service life; while for Model 2 (see Figure 2), the realiza-
tions of the expected value of me may shift from nega-
tive to positive over consecutive inspections. All the
possible combinations of me for each inspection interval
are considered for Model 2. The summary of the
applied probabilistic model of the measurement uncer-
tainties and biases is presented in Table 1.

In the investigations, it is assumed that the charac-
teristics of the probability distribution function of the
absolute value of the expect value of me and the deter-
ministic value of standard deviation (0:2me) do not
change over time. The measurements of accumulated
scale growth at year t, Dm(t) accounting for the mod-
eled errors is thus

Dm tð Þ=
Xt
i= 1

Si

 !
+ e ð5Þ

The probability density functions for the case of e
with mean value mej j= 2mm=year and standard devia-
tion (Std) = 0:2me are assumed to follow normal distri-
bution, and it has equal probability to be either positive
or negative mean values as illustrated in Figure 5.

The accumulation of scale growth is assumed to
reduce oil production due to a decrease in the inner
radius of the well tubing. The unit oil price per barrel
Voil is assumed constant over time and equal to 65 per
bbl. For illustrational purposes, rate is modeled as
Prate = k(Rt � D(t)), where k is a constant (unit: bbl/day/
mm) and calibrated such that Prate = 1000 bbl=day for
the case of no scale development. In reality, the rela-
tionship between the production rate and the inner dia-
meter is more complex due to fact that the produce oil
has complex non-Newtonian characteristics.

The annual income or benefit B(t) from the produc-
tion at year t is calculated as

B tð Þ =Voilk Rt � D tð Þð Þ 1

1+ rð Þt
365 ð6Þ

where Voil is the unit price of the oil, Rt is the radius of
the pipeline, r is the annual discount rate, and D(t) is the

accumulated scale growth (scale thickness) at year t. It is
further assumed that ‘‘repairs’’ are performed to remove
the scale, when the measured accumulated scale growth
Dm(t) exceeds a predefined scale accumulation thickness
Dr (repair criteria). Three different values of Dr are con-
sidered here to investigate the influence of the repair cri-
teria on the VoI, that is, Dr = 10, 15, and 20 mm.
Considered repair options can be chemical cleaning or
mechanical cleaning, and, in general, the repair cost
depends on the options together with the extent of scale
propagation. However, here for simplicity, the repair
costs are assumed deterministic for each action.

The expected value of total benefit Bk from the pro-
duction is E½Bk �

E Bk½ �=E
X30
t = 1

B tð Þ
" #

ð7Þ

In the following investigation, the expected value of
the total benefit, the total inspection cost, and the total
repair cost for the whole service life together with the
VoI are analyzed. The scenarios considered include all

Figure 5. Illustration of the probability density functions of
normal distribution for measurement errors e with mej j= 2mm
and Std= 0:2me.

Table 1. Summary of the definition of the random variables.

Variable Distribution Mean Standard deviation

Oil price (Voil) Deterministic 65 per bbl
Production rate (Prate) Deterministic 1000 bbl/day
Radius of the tubing (Rt) Deterministic 40 mm
Annual degradation (Si), mm/year Lognormal 1:96 0.5
Bias (e) Normal me 0:2me
Discount rate (r) Deterministic 5%
Repair cost (CR) Deterministic 13105

Inspection cost (CI) Deterministic 13104

6 Structural Health Monitoring 00(0)
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combinations of different inspection intervals (after 2,
6, and 10 years), different absolute values of the
expected value of measurement errors (2, 6, and
10 mm), and the three different repair criteria together
with the two dependency models. The probabilistic
analyses are undertaken through 105 Monte Carlo
simulations. The expected value of the net benefit with-
out any inspection and repair, E½B0� is also estimated.

The expected value of the inspection costs for differ-
ent time interval–based inspection strategies is esti-
mated as27

E CI½ �=
Xninsp
i= 1

Cinsp

1

1+ rð Þti
ð8Þ

where Cinsp is the fixed inspection cost, r is the annual
discount rate, and ninsp is the total number of
inspections.

The expected value of the repair cost depending
upon the repair criteria is estimated as27

E CR½ �=
Xninsp
i= 1

CRpR tið Þ 1

1+ rð Þti
ð9Þ

where CR is the fixed repair cost, and pR(ti) is the prob-
ability that the repair criteria are reached at year ti.

Given the inspection intervals, the expected values of
the total inspection cost, the total repair cost, the total
production benefit, and the VoI are analyzed for the
scenarios corresponding to the different combinations
of absolute values of the expected value of measure-
ment errors and different repair criteria. For example,
for the scenario where the expected value of the bias is
me = 6mm, the criteria for repair are Dr ø 10mm, and
the time interval between inspections is 2 years, the
individual components of the service life benefits
together with the VoI are shown in Figure 6. The
unbiased scenario corresponds to the case me = 0mm,
that is, no bias in the measurements.

The expected (VoI) is calculated as

VoI=E Bk½ � � E CI½ � � E CR½ � � E B0½ � ð10Þ

VoI=E Bk½ � � E
Xninsp
i= 1

Cinsp

1

1+ rð Þti

" #

� E
Xninsp
i= 1

CinsppR tið Þ 1

1+ rð Þti

" #
� E B0½ �

ð11Þ

Results

The VoI for the scenarios with the combinations of dif-
ferent inspection intervals and different absolute values
of the expected value of both measurement errors and
different repair criteria together with the two

dependency models is shown in Figure 7. From Figure
7, it can be seen that the value of the unbiased informa-
tion is generally higher than that of biased information,
while the value of the biased information with the
dependency following Model 2 is higher than that of
the information with the dependency following Model
1. However, it is not always the case especially when
the repair criteria are low (the value of Dr is high) or
the inspection interval is long, both of which cases
make the influence of bias negligible. Another reason is
that biased information might result in preventive
repair and such actions sometimes would increase the
benefit if the repair is cheap but the loss of production
is expensive. The difference between the value of the
information from two different dependency models and
the value of the unbiased information is small as the
bias represented by the value of mej j is small (equal to
2 mm here), that is, the effect of bias is insignificant as
mej j is small. If the value of mej j is quite high (equal to
10 mm here) but the inspection interval is short and the
repair criteria are strict (the value of Dr is high), the
probability to have the irrational decision (unnecessary
repair) would become high and the value of such infor-
mation could even be negative or close to zero.

Example: VoI of integrity management for
steel structures subject to fatigue

Introduction

In this example, we consider a steel structure with a 20-
year service life subject to fatigue crack growth. The
information regarding the development of fatigue crack
growth is collected during the service life by means of
inspections. The VoI associated with inspections is ana-
lyzed accounting for possible biases.

Figure 6. The expected values of the total inspection cost, the
total repair cost, the total production benefit, and the VoI given
that the inspection interval is 2 years (me = 6mm and
Dr = 10mm) for biased (Models 1 and 2) and unbiased
measurement (me = 0).

Ali et al. 7



66 Structural Health Monitoring 21(1)

To model the evolution of crack growth, a simple
one-dimensional crack growth model is considered
here,28,29 where the crack growth a(t) at year t

a tð Þ= a0 exp Cpss
2nt

� �
ð12Þ

where n is the number of stress cycles per year, a0 is the
initial crack size, C is a material constant, and ss is a
constant (or equivalent constant) stress range repre-
senting the characteristics of the fatigue loading. Note
that the condition of the structure is assumed to be ‘‘as
new’’ after repair action. A summary of the probabilis-
tic model for parameters relevant to fatigue loading
and crack growth parameters is given in Table 2.

Fatigue crack growth might result in a structural
failure, if the crack size exceeds a critical threshold ac.

The limit state function g(t) representing the fatigue
failure at year t can be written as

g tð Þ= ac � a tð Þ ð13Þ

The crack size a(t) is a function of the realizations of
the random variables and the deterministic parameters
provided in Table 2. The fatigue performance of the
considered structure, represented by g(t), is therefore
not deterministic. When g(t) is negative, it is
assumed that an event of structural failure occurs. The
probability of structural failure in a particular year
(annual failure probability DpF) or accumulated up
until a given year (pF) can be easily assessed using the
Monte Carlo simulation or first-order reliability

Figure 7. The VoI for the scenarios with the combinations of different inspection intervals and different absolute values of the
expected value of both measurement errors and different repair criteria together with the two dependency models.

Table 2. Definition of parameters relevant to fatigue loading and crack growth parameters.

Variable Distribution Mean Standard deviation

Stress range (ss) Normal 30 MPa 5 MPa
Stress cycle rate (n) Deterministic 13105year�1

Initial crack (a0) Exponential 1 mm 1 mm
Critical crack (ac) Deterministic 40 mm
Material constant (C) Deterministic 53105

8 Structural Health Monitoring 00(0)
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method (FORM)/second-order reliability method
(SORM) analysis.28

Depending upon the maximum acceptable threshold
for the annual probability of failure, for the considered
structure (generally defined by code or regulation),
inspections are planned such that they take place at the
latest time (year) for which the annual probability of
failure is not exceeded. For example, in the case that
the maximum acceptable annual probability of failure
is set to 10�4, the first inspection takes place in year 6,
see also Figure 8.

If a crack is detected at an inspection, the structure
will be repaired immediately. The probability of detecting
a crack is modeled as a function of the size of cracks
through the PoD. The PoD is modeled here by an expo-
nentially distributed random variable with expected value
mPoD = 2:5. Given that the structure is inspected at year
tinsp and no crack is found; the probability of failure pF
at year t may be determined through event updating28

pF tð Þ=P g tð Þ<0ja tinsp
� �

� PoD<0
� �

=
P g tð Þ<0 \ a tinsp

� �
� PoD<0

� �

P a tinsp
� �

� PoD<0
� � ð14Þ

The annual probability DpF of failure at year t can
be estimated as

DpF tð Þ= pF tð Þ � pF t � 1ð Þ
1� pF t � 1ð Þ ð15Þ

where DpF is updated assuming that no indication of a
crack is identified at the times of the inspections at
inspection is estimated using the constant threshold
approach.13 It means that whenever DpF exceeds, the

threshold and inspection is performed and the annual
probability of failure from that point in time is updated
on the event of no detection. In Figure 8, the evolution
of the annual probability of failure (updated at the time
of inspections), together with inspection times, is shown
for three different thresholds for the maximum allow-
able annual probability of failure, that is,
10�4, 10�3, and 10�2.

In the same manner as in the foregoing example, the
inspection information is considered associated with
errors together with biases. In this example, it is
assumed that there are errors (together with biases) e
associated with the mean value of the PoD, that is,
mPoD = 2:5+ e. Four different values of e are considered
here. If there is no bias, e is equal to zero. If there is
bias, e could be 150%, 200%, and 250% of 2.5. The
dependency of the biases at different inspection times
follows one of the two models discussed in section
‘‘Information modeling in SIM.’’ In the case of Model
1, the non-zero value of e will remain the same for all
the inspections throughout the service life. In case of
Model 2, the non-zero value of e will be selected with
equal probability among 150%, 200%, and 250% of
2.5 for each inspection during the service life. Note that
in either case Model 1 or Model 2, the inspection year
and the number of inspections will be different com-
pared to the case of unbiased inspection for the same
annual probability of failure threshold as illustrated in
Figure 9.

The expected total life cycle cost E½CT � is considered
for VoI analysis that is expressed as the sum of the
expected value of failure cost E½CF �, the expected value
of inspection cost E½CI �, and the expected value of
repair cost E½CR� defined as27

Figure 8. Prior and updated DpF for different thresholds of
DpF .

Figure 9. Effect of bias and unbiased in PoD on inspection
planning.
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E CI½ �=
Xninsp
i= 1

Cinsp

1

1+ rð Þti
ð16Þ

where Cinsp is the fixed inspection cost, r is the annual
discount rate, and ninsp is the total number of
inspections

E CR½ �=
Xninsp
i= 1

CRpR tið Þ 1

1+ rð Þti
ð17Þ

where CR is the fixed repair cost, and pR is the probabil-
ity of repair

E CF½ �=
XTSL
t = 1

CFDpF
1

1+ rð Þt
ð18Þ

where CF is the fixed failure cost, and DpF is the annual
probability of failure.

Thus, the total cost would be

E CT½ �=
XTSL
t = 1

CFDpF
1

1+ rð Þt
+
Xninsp
i= 1

Cinsp

1

1+ rð Þti

+
Xninsp
i= 1

CRpR tið Þ 1

1+ rð Þti

ð19Þ

The cost terms are defined as Cinsp = 1310�3,
CR = 1310�2, and CF = 1, while the interest rate r is set
to 5% and the service life is 20 years. It is assumed that
all detected cracks are repaired. The expected value of
the total cost E½CT � is estimated for all the combina-
tions of the three different values of e together with
the two models of dependency and the six values of
thresholds, that is, DpF = 5310�5, 10�4, 5310�4, 10�3,
5310�3 and 10�2.

For the case of unbiased information, that is, e= 0
and mPoD = 2:5, 13108 Monte Carlo simulations are
performed to assess E½CT � for each value of DpF thresh-
old. For the case with biased information, 103 random
realizations are generated, each of which is simulated
by 108 Monte Carlo simulations for each value of DpF
threshold.

Results

The expected values of the service life cycle costs of
integrity management of the structure with unbiased
information are presented in Figure 10 as function of
the threshold DpF ; for the case with biased inspection
results, the results resulting from the two bias depen-
dency models are shown in Figure 11 (for Model 1)
and Figure 12 (for Model 2). The expected values of
both the inspection cost and the repair cost, E½CI � and
E½CR�, gradually decrease with the increase of the DpF
threshold; while the expected value of the failure cost,

E½CF �, increases simultaneously. When the threshold
DpF is small, the expected value of the repair cost,
E½CR�, dominates in the sum of the three cost items; but
when DpF threshold is large, the expected value of the
failure cost, E½CF �, becomes dominant instead of E½CR�.
As the sum of the expected values of all the three costs,
the expected value of the total service life cost, E½CT �,
decreases with increasing threshold DpF but increases
again as DpF threshold becomes large. As shown
in Figure 10, the minimal value of E½CT � in the case
of unbiased inspection results corresponds to
DpFthreshold = 1310�3; while the minimal value of
E½CT � of the structure for the case of biased inspections
corresponds to DpFthreshold = 5310�3 for both Model
1 and Model 2 as shown in Figures 11 and 12,

Figure 10. Expected life cycle costs with unbiased information.

Figure 11. Expected life cycle costs with bias information from
inspection together following Model 1.

10 Structural Health Monitoring 00(0)



Ali et al. 69

respectively. The variation of the costs in Figures 11
and 12 are similar to each other, and the effect of the
dependency model is insignificant. The service life is set
as 20 years for the structure, and there are few inspec-
tions during the service life especially when the thresh-
old DpF is high, which makes the influence of
dependency model little.

In Figure 13, a comparison of the expected values
E½CT � corresponding to the two dependency models for
the inspection information with biases as well as for the
case of no bias, respectively, is provided. The general
variation of the expected value of the life cycle costs as
function of the threshold value for the annual

probability of failure is similar; however, the expected
value of the life cycle costs for the case of no bias is the
smallest for all the thresholds. As the threshold
increases, the difference between the three curves is
diminishing. This is due to fact that with higher thresh-
olds, there are fewer inspections, and thus less impact
of biased information.

The results of VoI analysis as the function of the
threshold DpF are illustrated in Figure 14. The value of
the information without bias is always the highest for
all the DpF thresholds; while the value of the informa-
tion with bias together with the dependency following
two models is close to each other. Only for the case
where the threshold is 53103, the VoI for all the three
curves is similar. This is due to fact that fewer inspec-
tions due to high threshold level do not make difference
in total cost. It is noted that the difference in VoI
between the two considered dependency model is insig-
nificant compared to the difference between the cases
of no bias and bias.

Conclusion

In this contribution, we analyze to what extent the
value associated with the information collected during
the service life of engineered structures, for example,
inspections, in the context of integrity management, is
affected by not only measurement random errors but
also biases (systematic errors), taking the dependency
between the collections into account. This is novel since
in general the effect of possible biases together with the
dependency is not accounted for in integrity manage-
ment optimization—implicitly assuming that SHM and
inspection techniques are always calibrated and free of

Figure 12. Expected value of the life cycle costs with bias
information from inspection together following Model 2.

Figure 13. Comparison of the expected value of the total life
cycle cost considering biased inspection results with two
different dependency models as well as for the case of unbiased
inspection results.

Figure 14. VoI associated with unbiased and biased inspection
information in accordance with the two dependency models, as
a function of DpF thresholds:

Ali et al. 11
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bias. To cast light on the effect of possible biases on the
VoI, two different models for the representation of the
possible dependency in biases from inspection time to
inspection time are proposed. Their implications on the
VoI are studied by means of two principal examples
that are representative for integrity management of well
systems subject to scale and fatigue crack growth for
welded steel structures, respectively.

The examples show how VoI analysis may be applied
accounting for possible biases and provide important
insight on the significance of the dependency effect,
which facilitate for the identification of measures and
strategies to improve the beneficial effect of monitoring
and inspections in the context of SIM.

From both of the two examples, it is apparent that
when the number of instances over the service life where
information is collected, for example, through inspec-
tions, the VoI is not significantly affected by biases.
However, for the cases where the information collected
by means of inspections is essential for the integrity
management, the effect of biases is a significant reduc-
tion of the VoI, caused by wrong information triggering
either unnecessary maintenance and repair or wrong
information suggesting that no maintenance or repair is
required despite actually needed. Based on the exam-
ples, it is seen that biases generally reduce the VoI.
Moreover, dependencies in biases associated with infor-
mation collected for integrity management at different
times have a negative effect on the VoI.

The present contribution has put focus on the effects
of biases and dependencies associated with information
collected in support of integrity management optimiza-
tion. It has been shown that these effects indeed should
be accounted for explicitly, and ignoring them may lead
to rather suboptimal integrity management decisions.
Future studies should be directed to develop more spe-
cific models of uncertainties, biases, and dependencies,
for different information collection techniques.

It should be noted here that the two models for the
probabilistic representation of the bias presented in sec-
tion ‘‘Information modeling in SIM’’ are introduced for
improving the understanding of the effect of biases asso-
ciated with measurements, on the VoI offered by inspec-
tion. The two models represent the extreme cases where
there is either full or no dependency between the realiza-
tions of performed measurements. In the examples, and
the outlines of the models, we explicitly address collec-
tion of information over time. However, it should be
noted that dependencies in systematic error (bias) may
also have a spatial component. Spatial dependencies
may be investigated in principally the same manner as
the temporal dependencies investigated within this arti-
cle. The effects of the temporal and spatial variability
should be taken into account in the future study.
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