Aalborg Universitet #### The Importance of Taxonomic Classification Software and Machine Learning Algorithms for the Prediction of Colorectal Cancer | | Mølvang Dall, | Sebastian: | Yssing Michaelse | n, Thomas | : Albertsen | . Mads | |--|---------------|------------|------------------|-----------|-------------|--------| |--|---------------|------------|------------------|-----------|-------------|--------| Publication date: 2021 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Mølvang Dall, S., Yssing Michaelsen, T., & Albertsen, M. (2021). *The Importance of Taxonomic Classification Software and Machine Learning Algorithms for the Prediction of Colorectal Cancer*. Poster presented at Danish Microbiological Society congress 2021, Copenhagen, Denmark. Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. - Users may download and print one copy of any publication from the public portal for the purpose of private study or research. - You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal - Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim. # The Importance of Taxonomic Classification Software and Machine Learning Algorithms for the Prediction of Colorectal Metagenomics **Machine Learning** CRC Cancer ## Introduction Colorectal Cancer (CRC) represents a rising global burden ranking 3rd and 2nd in terms of cancer incidence and mortality, respectively. In recent years strong associations have been revealed between the human gut microbiome and CRC. Metagenomics and machine learning represent a new diagnostic tool for CRC, however the effect of taxonomic classification software and machine learning algorithms on CRC prediction have not been investigated. ## **Findings** ✓ Kraken2 output results in the average best CRC prediction. Tree-based algorithms produce the best models for CRC prediction. ✓ CRC prediction can be achieved with just 100,000 reads with Kraken2. ### Methods | Study (Year) | Country | CRC | CTR | |--------------------|---------------------|-----|-----| | Zeller, G (2014) | FR (114)
DE (38) | 91 | 61 | | Yu, J (2015) | CN | 74 | 54 | | Feng, Q (2015) | AT | 46 | 63 | | Vogtmann, E (2016) | US | 52 | 52 | | Thomas, A (2019) | IT | 61 | 52 | | Yachida, S (2019) | JP | 258 | 251 | | Wirbel, J (2019) | DE | 22 | 60 | | Gupta, A (2019) | IN | 30 | 30 | 1. DNA sequences from fecal were downloaded from the studies. Sequences went through quality check and human DNA was removed. - 2. Kaiju, Kraken2, and MetaPhlAn3 were used to make taxonomic profiles. - 3. Logistic LASSO regression, Random Forest, XGBoost, and MLP neural network models were build on the taxonomic profiles. Models were trained on 7 out of 8 studies using repeated 5-fold cross-validation. The leftout study was used to evaluate performance of the model. Healthy #### Results - The best model produced was built with the Kraken2 output six out of eight times. - The best model for a given study was most often a XGBoost or random forest model (Tree-based algorithm). - Average performance for LASSO models built on subsampled samples. Full CRC detection could be achieved with 100,000 reads with Kraken2. - MetaPhlan3 is more affected by subsampling than Kaiju and Kraken2.