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Energy Management and Optimization of
Vehicle-to-grid Systems for Wind Power Integration

Wei Wang , Liu Liu, Jizhen Liu, and Zhe Chen, Fellow, IEEE

Abstract—An approach to smoothing the fluctuations of large-
scale wind power is investigated using vehicle-to-grid (V2G)
systems. First, an energy management and optimization system is
designed and modeled. By using the wavelet packet decomposition
method, the target grid-connected wind power, the required
electric vehicle (EV) power, and supercapacitor power are deter-
mined. The energy management model for EVs is then developed
by introducing a knapsack problem that can evaluate the needs of
an EV fleet. Furthermore, an optimized dispatch strategy for EVs
and wind power is developed by using a dynamic programming
method. A case study demonstrates that the energy management
and optimization method for V2G systems achieves noticeable
performance improvements over benchmark techniques.

Index Terms—Dynamic programming, electric vehicle,
knapsack problem, wavelet packet decomposition, wind power
integration.

NOMENCLATURE

Pwind Original wind power output.
Pw Wind power excluding wind curtailment.
Pcur Wind curtailment power.
PHESS HESS power output.
Pgrid Target grid-connected power.
PEV Output power of EV cluster.
PSC Output power of SC.
∆P Target smoothing power deviations.
∆Pgrid,1min Differences between the maximum and mini-

mum power values in 1 min.
∆Pgrid,10min Differences between the maximum and mini-

mum power values in 10 min.
Pwind,ins Installed capacity of the wind farm.
S EV SOC.
tarr EV arrival time.
tdep EV departure time.
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Sarr SOC value when EV arriving.
Sdep SOC value when EV departing.
t Sample time.
h Sample interval.
Pc EV charging power.
Pd EV discharging power.
ηEV EV operation efficiency.
ηc EV charging efficiency.
ηd EV discharging efficiency.
Erated EV rated storage capacity.
Tc2d Required minimum time interval from charg-

ing to discharging.
Td2c Required minimum time interval from dis-

charging to charging.
couc2d and Counts of two kinds of state changes, charging
coud2c to discharging and discharging to charging.
Ec Maximum charging potential.
Ed Maximum discharging potential.
tdis,max Time of EV reaching maximum discharge

level.
NEV Number of dispatchable EVs.
Nf Number of forced charging EVs.
SSC SOC value of SC.
ESC,rated SC rated energy storage capacity.
PSC,c SC charging power.
PSC,d SC discharging power.
PSC,c,rated SC rated charging power.
PSC,d,rated SC rated discharging power.
ηSC,c SC charging efficiency.
ηSC,d SC discharging efficiency.
NSC,c Number of SC in charging state.
NSC,d Number of SC in discharging state.
ci Value of EV i.
Ecd EV maximum dispatch potential.
Trem Remaining time in the power grid.
α, β and γ Weight coefficients.

SUBSCRIPTS

i Index of EV.
max Maximum value.
min Minimum value.

I. INTRODUCTION

IN recent years, the scale of global renewable energy power,
especially for wind power, has rapidly expanded under

the background of ecological deterioration and the lack of
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fossil energy [1]. However, the randomness, intermittent and
uncertainty seriously affects the reliability of the power system
and causes a great deal of problems when connected to the
power grid. So, grid-connected power is required to be within
certain limits to ensure the safety and stability of the power
system [2], [3]. And it has become a great challenge to
improve the penetration rate of wind power generation in the
power system [4].

Existing studies have shown that the applications of energy
storage technology provide great help for the integration of
fluctuant renewable energies [5]–[7]. And issues, such as the
acquisition of target grid-connected power, the energy storage
equipment selection, the energy storage capacity configuration
method, and the control of energy storage equipment, have
been widely studied. For the target grid-connected power
acquisition, wavelet packet decomposition (WPD) based meth-
ods are commonly utilized due to their advantages on multi-
scale decomposition and frequency band division in the signal,
and have been proven through good performance [8]–[10]. As
for the energy equipment selection, an active battery super-
capacitor (SC) hybrid energy storage system (HESS) [11]–
[13] has been put into use for assisting renewable energy
grid connections due to their complementary characteristics: a
battery has a relatively high energy density but a low power
density, whereas an SC has a relatively high power density but
a low energy density [14].

In order to reduce the investment costs of energy storage,
electric vehicles (EVs), as energy storage components, are
gradually being considered to replace battery cells [15], [16].
And its operability is becoming more and more satisfactory
with the increasing number of EVs [17]–[19]. However, the
mobility and uncertainty of EVs make their dispatch modes
and methods quite different from the traditional battery when
participating in smoothing the fluctuations of renewable ener-
gies [20], [21]. A highly comprehensive energy storage model
for EVs, that can calculate the output power of each EV
with high accuracy, is examined in [22]. A novel integrated
framework of EVs and wind farms (WEV) is proposed in [23]
to use the EVs charging and discharging to smooth the wind
power penalty costs that are caused by overestimating and
underestimating available wind power. In the meantime, a
new multi-objective dynamic economic emission dispatching
model based on the WEV system is developed to consider
both emission and total cost objectives. A dispatch model
considering several conflicting and competing objectives, such
as providing vehicle-to-grid (V2G) service or coordinating
with wind power, is presented in [24]. A HESS model contain-
ing EVs is built, and its comprehensive energy management
method is analyzed in [25]. Subsequently, various strategies
for EVs supporting renewable energy integration are developed
on the basis of advanced smart metering and communication
infrastructure [26], [27].

However, the problem still remains of how to dispatch and
control the power output of EVs in the grid as the dynamic
selection of optimal EV clusters for scheduling are a typical
non-deterministic polynomial (NP) hard problem [28]. And
there are still several bottleneck problems which have to be
urgently determined [29]–[31]. First, the energy storage model

of each EV varies because of its uncertainties. Second, the
dynamic changes in the EV clusters in the grid and the real-
time status of each EV are hard to evaluate. Third, EV clusters
fail to maximize the suppression of power fluctuations, based
on the fact that EV power dispatch simply follows the waiting
principle without allocating power according to the optimal
state of each EV. In addition to NP, the knapsack problem (KP)
is also taken to describe the operational optimization problem
of EVs in power systems with high wind power penetrations,
where the goal is to maximize the total value of the items in the
knapsack under some constraint conditions [32]. A dynamic
programming (DP) algorithm is commonly employed to solve
such problems, and it has been proved that DP algorithms can
deal with KP remarkably well in high and low dimensions
with different correlations [33], [34].

This study proposes a collaborative optimal dispatch method
of vehicle-to-grid (V2G) systems for wind power integration.
An appropriate DP algorithm is applied to determine the
optimal scheduling of EV clusters, thereby making the energy
exchange between EVs and the grid to work with high flexibil-
ity and efficiency. The proposed method also takes advantage
of the hybrid energy storage technology and WPD method.
The methods presented in this paper are briefly summarized
as follows:

1) A highly accurate hybrid energy storage structure, espe-
cially for a single EV, is established in this study. The EV
model becomes more complete by adding the constraint of
charging and discharging times and the parking status in the
scheduling process. The WPD method is used to calculate
the target grid-connected power, and the total demand of EVs
is estimated by removing the highest frequency layer of the
decomposition result.

2) SCs are added and a new scheduling method that can use
DP to determine the optimal scheduling cluster is designed,
because of the unique characteristics of EVs. Through veri-
fication, we determined that the aforementioned method can
make the wind power output as accurate as possible to the
target grid-connected power calculated by WPD.

The paper is organized as follows. Section II formulates
a detailed model of the wind storage hybrid system, which
includes EV and SC energy storage models. Section III applies
a V2G system dispatch method based on a DP algorithm.
Section IV presents a case study to evaluate the proposed
method. Section V presents the conclusion.

II. STRUCTURAL MODEL AND OPERATING
MODE OF HESS

A. HESS Structure

HESS, in this paper, contains EV clusters and SC. If EVs
cannot completely suppress the wind power fluctuations, an
SC will be applied for replenishment. Also, a small amount
of wind curtailment is allowable in this system. The overall
structure of HESS for wind power integration is shown in
Fig. 1.

The HESS operating mechanism is presented as follows:

Pw(t) + Pcur(t) = Pwind(t), (1)
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Fig. 1. HESS structure.

Pw(t) + PHESS(t) = Pgrid(t), (2)
PHESS(t) = PEV(t) + PSC(t), (3)

∆P (t) = Pwind(t)− Pgrid(t), (4)

where Pwind is the original wind power output; Pw is the wind
power excluding wind curtailment; Pcur is the wind curtailment
power; PHESS is the HESS power output; Pgrid is the target
grid-connected power; PEV and PSC are the output power of
the EV cluster and the supercapacitor, respectively; ∆P is the
target smoothing power deviations.

In order to maintain the power system stability, the wind
power is required to meet the grid-connected wind power
fluctuation rate standard [35]. Regarding a wind farm with the
installed capacity of 30–150 MW, its active power fluctuation
requirements for the time scale of 1 min and 10 min is
specified as follows:

∆Pgrid,1min 6
Pwind,ins

10
,

∆Pgrid,10min 6
Pwind,ins

3
,

(5)

where ∆Pgrid,1min and ∆Pgrid,10min are the differences be-
tween the maximum and minimum power values in 1 min and
10 min, respectively; Pwind, ins is the installed capacity of the
wind farm.

B. HESS Model

In the HESS, EVs and SC will cooperate to smooth the
fluctuations of wind power. Their operating mechanism and
models are presented as follows:
1) EV Model

An EV is applied as an energy storage element to participate
in power dispatch for wind power smoothing. When EVs
are connected to the grid, power dispatch can be carried out
under the constraints of the required state of charge (SOC),
including the demanded SOC value of users, and charging and
discharging time limits.

The operating mechanism and model for an EV is shown in
Fig. 2, which describes the SOC variations during the charge
or discharge process. The Y -axis (S) denotes the SOC value

Smax

Smin

Sarr,i

Sdep,i

tarr,i tdep,i

A

B C

D E

F

①
②

③

t

S

Fig. 2. Single EV energy storage model.

of an EV. The values of Smin and Smax are the minimum
and maximum allowable SOC limitations where an EV is
participating in power dispatch, respectively. tarr to tdep is
the length of time of EVs to arrive at and depart from the
grid, respectively. Sarr is the initial SOC value when plugging
into the power system. Sdep is the demanded SOC value of
users. A-B-C refers to the maximum boundary value of the
SOC when an EV participates in dispatching, indicating that
the EV is charged immediately after plugging into the grid.
When the SOC reaches Smax, EV charging is finished, and
the remaining time of SOC remains unchanged. D-E-F refers
to the minimum boundary value of the SOC, indicating that
the EV is discharged immediately. The discharge cannot be
continued when the SOC value drops to Smin. If the EV
remains in the grid for a long time, it can remain as not being
charged. When the time reaches the mandatory charging time,
the battery is recharged to ensure the travel demand of users.
In Fig. 2, EF indicates the forced charging process.

The solid line in Fig. 2 shows a feasible power dispatching
curve for EV i. Process 1© represents the dispatching action
of the EV for charging. Process 2© represents that the EV is
in a parked state without charging or discharging. Process 3©
represents the dispatching action of the EV for discharge.

Suppose the sample time is t and the sample interval is h,
we can describe the EV state through the charge-discharge
model of an EV as:

Si(t) = Si(t− 1) + h
PEV,i(t)ηEV,i

Erated
, (6)

PEV,i(t) =


Pc PEV,i(t) > 0

0 PEV,i(t) = 0

Pd PEV,i(t) < 0

, (7)

ηEV,i(t) =


ηc PEV,i(t) > 0

0 PEV,i(t) = 0

1/ηd PEV,i(t) < 0

(8)

where subscript i is the EV number; Pc and Pd are the EV
charging and discharging power, respectively; ηEV is the EV
operational efficiency; ηc and ηd are the EV charging and
discharging efficiency, respectively; Erated is the EV rated
storage capacity.

The constraints of an EV participating in energy storage
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power dispatch are as follows:

Smin 6 Si(t) 6 Smax, (9)
tarr,i 6 t 6 tdep,i, (10)

Si(t) + Pcηc(tdep,i − t)/Erated − Sdep,i > 0, (11)
t+Tc2d∑

t

couc2d,i(t) = 0, (12)

t+Td2c∑
t

coud2c,i(t) = 0, (13)

where Eq. (11) denotes that a schedulable EV is required to
maintain its SOC value meeting the demand of users when it
is off-grid; Tc2d represents the required minimum time interval
from charging to discharging; Td2c represents the required
minimum time interval from discharging to charging; couc2d
and coud2c are the counts of two types of state changes,
i.e., from charging to discharging and from discharging to
charging, respectively.

According to Eqs. (9)–(11), the maximum power dispatch-
ing potential of EV i under constraint conditions can be
described by:

Ec,i(t) = Erated(Smax,i − Si(t))

s.t.

{
Smax,i 6 1

Smax,i 6 Si(t) + Pcηc(tdep,i − t)/Erated

(14)

Ed,i(t) = Erated(Si(t)− Smin,i)

s.t.

{
Smin,i = Sdep,i − Pcηc(tdep,i − tdis,max)/Erated

Smin,i = Si(t)− Pd/ηd(tdis,max − t)/Erated

(15)

where Ec and Ed are the maximum charging and discharging
potential, respectively; tdis,max denotes the time of the EV
reaching maximum discharge level.

Commonly, the total number of EVs in a system is assured,
but the number of EVs in the grid varies at each time
point based on their randomness. Suppose the number of
dispatchable EVs is NEV, the accumulated power for EV
cluster is PEV, and the number of forced charging EV is Nf ,
we will have:

PEV(t) =

NEV∑
i=1

PEV,i(t). (16)

If the dispatching EVs are taking the action of discharging,

PEV(t) =

NEV−Nf∑
i=1

PEV,i(t) +

Nf∑
i=1

Pc,i(t). (17)

2) SC Model
The primary energy storage device in this study is the EV

battery. In addition, the EV cluster, and SC are employed
in this study to smooth the fluctuations which EVs cannot
totally eliminate on account of their mobility and uncertainty.
Referring to the EV model, the SOC of SC can be described
by:

SSC(t) = SSC(t− 1)+

h
PSC, c(t)ηSC, c

ESC, rated
NSC, c − h

PSC, d(t)/ηSC, d

ESC, rated
NSC, d (18)

Operating constraints of SC are presented as follows:

SSC,min 6 SSC(t) 6 SSC,max, (19)
0 6 PSC, c(t) 6 PSC, c, rated, (20)

PSC, d, rated 6 −PSC, d(t) 6 0, (21)
0 6 NSC, c(t) +NSC, d(t) 6 1, (22)

where SSC denotes the SOC value of SC, ESC, rated is the SC
rated energy storage capacity, SSC,min and SSC,max are the
SOC limits of SC; PSC, c and PSC, d are the SC charging and
discharging powers, respectively; PSC, c, rated and PSC, d, rated are
the SC rated charging and discharging powers, respectively;
ηSC, c and ηSC, d are the SC charging and discharging efficien-
cies, respectively; NSC, c and NSC, d represent the number of
SCs in the charging and discharging states, respectively.

C. HESS Power Distribution Based on WPD

The WPD algorithm adopted in this study is a new signal
analysis method based on wavelet analysis. It not only allows
for the defect of wavelet analysis which cannot decompose
high-frequency parts, but also it can select the frequency
band which matches the signal spectrum. Through WPD algo-
rithm [36], the target grid-connected wind power, together with
the HESS power distribution, can be obtained. The schematic
of the WPD method is shown in Fig. 3.

w0

w
(0)
1

w
(0)
2

w
(0)
n

w
(1)
n

w
(2n−1)
n

w
(1)
2

w
(2)
2

w
(3)
2

w
(1)
1

Fig. 3. Schematic of WPD.

Given the orthogonal scaling function Φ(x) and wavelet
function Ψ(x), the scale relationship is presented as follows:

Φ(x) =
∑
k∈Z

h0kΦ(2x− y), (23)

Ψ(x) =
∑
k∈Z

h1kΦ(2x− y). (24)

w(2j)
n (x) =

√
2
∑
k∈Z

h0kw
(j)
n (2x− y), (25)

w(2j+1)
n (x) =

√
2
∑
k∈Z

h1kw
(j)
n (2x− y), (26)

where h0k and h1k are the filters in the multiresolution
analysis, n is the number of WPD layers (or the number of
oscillations), n ∈ Z, and n = 0 means the signal has not been
decomposed. y is the position index, and j is the scale index.

The first branch of WPD has the largest energy proportion
and the lowest frequency in the original signal. This part is
selected as the target grid-connected power in this study. The
last branch is the highest frequency portion of the original
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signal, which is mitigated by energy storage elements that are
sensitive to frequency changes, such as SCs. The sum from
the branch of w(1)

n (x) to w
(2n−1−2)
n (x) is used to select the

amount of EVs.

III. DISPATCH MODEL AND APPROACH

A. Dispatch Model

To take full advantage of V2G systems and increase the
penetration rate of wind power in the power grid, we propose
a new scheduling model based on the balance between supply
and demand. The specific model is developed as follows:

1) Target grid-connected power and target smoothing devi-
ation are calculated on the basis of WPD.

2) The total amount of EVs in the region that can be dis-
patched and the travel parameters of users are confirmed.
The dispatchable capacities of the EVs are evaluated.

3) Charging and discharging strategies are selected on the
basis of the demand for smooth deviation.

a) When ∆P (t) > 0, dispatching action is selected for
charging, and the demand for the EV numbers is
determined as Nr(t). According to the real-time status
of EVs, NEV(t) can be obtained.

b) When ∆P (t) < 0, Nr(t) and NEV(t) can be obtained.
The forced charging EVs do not discharge in this case.

4) The EV cluster that participates in dispatching is deter-
mined on the basis of the supply and demand balance.

a) When NEV(t) 6 Nr(t), the supply cannot meet the
demand or meet the demand exactly. All EVs that can
participate in power dispatching will be operated at this
moment.

b) When NEV(t) > Nr(t), the supply can meet the
demand, and a surplus exists. KP-based DP is called
to seek the optimal strategy, and the number of the
optimal dispatch EVs Nopt(t) will be obtained.

5) The real-time output power of the EV cluster is calcu-
lated. The SC is added for replenishment when the target
deviation power cannot be suppressed as expected.

6) The next power dispatch action proceeds until the end of
the calculation cycle.

The specific scheduling flow chart is shown in Fig. 4.

B. 01 KP Description

The KP is a typical NP-hard problem. It refers to some
items that can only be taken or not be taken, each of them
has a corresponding weight and value. There is a knapsack
with a certain capacity, the requirement is to take a portion of
some of the items. This portion is sufficient to fill the knapsack
and maximize the total value of the items in the knapsack. To
apply the KP algorithm to the EV cluster power dispatch, we
define the value of each EV at time t as:

ci(t) = −αcoui(t) + βEcd,i(t) + γTrem,i, (27)

coui(t) =
t∑
tarr

(couc2d,i(t) + coud2c,i(t)), (28)

Start
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Fig. 4. Specific scheduling flow chart for dispatch.

Ecd,i(t) =

{
Ec,i(t) P (t) > 0

Ed,i(t) P (t) < 0
, (29)

where ci is the value of EV i; Ecd is the EV maximum dispatch
potential; Trem is the remaining time in the power grid, α, β
and γ are the weight coefficients.

The objective function is expressed as follows:

max f =
∑

i6Nopt(t)

ci(t)

s.t. Pe(t) =
∑

i6Nopt(t)

Pc,d(t)
(30)

where f is the total value of EVs.

C. DP Method

DP is a mathematical method used to solve the optimization
of a multistage decision process. Dynamic means that the
decisions of each period are determined by the development of
a time process. The time factor can be introduced artificially
when dealing with static problems. DP can also be transformed
into a multistage decision problem, in which the decision
process is divided into several interrelated stages, and each
stage corresponds to a group of alternative decisions. The
selection of each decision not only depends on the current
situation but also affects the overall control effect in the future.

In this study, the problem can be converted into a strategy
to find the optimal dispatching result of EVs when the demand
for EVs is greater than the demand at t. The specific solution
method is presented as follows:
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1) Segmentation Problem: ith dispatches ith EV into the
“knapsack.”

2) State Variables wK
i : the residual capacity of the knapsack

for ith EV dispatching.
3) Decision Variables Di: a decision on whether to dispatch

EV i for ith is made; yes is 1; otherwise, 0.
4) Transition Equation

f
[
i, wK

i

]
= max{

f
[
i− 1, wK

i−1
]

+ ci(w
K
i > wEV

i ), f(i− 1, wK
i )

}
. (31)

5) Optimal Power Dispatch EV Cluster Nopt.

IV. CASE STUDY

A. Results of Wind Power Analysis by WPD

Taking the data of a characteristic day of a wind power
plant as an example, the rated power is 50 MW. The sampling
period is set as 10 s, the sampling points are set as 8,640, and
the total length of time is set as 24 h.

The target grid-connected power signal Pgrid(t) is calculated
through the WPD algorithm. The minimum WPD layer in
this case is 5. When n = 5, the first branch of WPD can
satisfy the constraint of power grid incorporation. Fig. 5 shows
that the original output power has strong fluctuation, whereas
the grid-connected wind power is smoother. Fig. 6 shows the
partial graph of the first branch of different decomposition
WPD layers and the point where it does not meet the grid-
connected power constraint. When WPD is not carried out
(n = 0), the over-limit situation becomes worse. With the
increase in the number of decomposition layers, the over-limit
condition decreases significantly until n = 5 is completely
satisfied.
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Fig. 5. Comparison of the original wind power with the grid-connected
power.

B. Results of Wind Power Stabilization Strategy

1) Related Parameters of Energy Storage Equipment
In this study, the capacity of a single EV is 35 kWh, the

charging power is 6.6 kW, the discharging power is −6.6 kW,
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Fig. 6. Target grid-connected wind power and the overrun points in different
WPD layers.

and the charging and discharging efficiency is at 90%. When
EVs are in dispatch action for charging, no change from
charging to discharging occurs within 1.5 hours. When EVs are
in dispatch action for discharge, no change from discharging
to charging occurs within 1 hour (except when there is forced
charging). When the SOC of EVs is greater than 0.4, it can
participate in power dispatching. If the initial SOC is lower
than 0.4, it needs to be charged immediately. The maximum
SOC is 1, and the minimum SOC for the travel demand of
users is 0.8. EV travel parameters are shown in Table I. The
dispatching period of EVs is 5 min, the sampling points are
288, and the total time duration is 24 h.

TABLE I
SETTING OF TRAVEL PARAMETERS OF EVS

Time Number
of EVs Initial SOC Arrival time Depart time

8:30–18:00 600 N (0.65, 0.1) N (9.3, 0.15) N (17.5, 0.25)
18:00–8:30
(2nd day) 700 N (0.4, 0.1) N (18.5, 1.2) N (7.5, 0.2)

Figure 7(a) shows the sum of signals from the second branch
of WPD to the penultimate branch in one day (the sampling
interval is 5 min). If EVs are only used to suppress the above
signals, then the demanded amount is shown in Fig. 7(b). We
can see that the number of EVs required over the sample
period is volatile.

According to the above analysis, we know that the schedu-
lability of EVs is affected by multiple factors. Due to the
mobility of EVs, we found that the supply of EVs is poor
in two periods. In order to study the scheduling potential
of EVs and maximize their role, we choose as many EVs
as possible. By simulating the travel scenarios of EVs, the
number of each time point under different samples can be
obtained. Through multiple simulations, we finally selected a
sample size of 1,300. The estimated number of EVs in the
grid at each sampling point is shown in Fig. 8. We found that
due to the uncertainty of EVs, they cannot be used as the
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Fig. 8. Comparison of the actual quantity in the grid and the demand of
EVs.

only energy storage equipment, other replenishment measures
are needed to suppress wind power output fluctuations. From
the previous analysis of WPD, the frequency of the last
branch of the original output power is high. Thus, SC is
selected for additional supply in this study. The capacity of
the supercapacitor is set as 500 kWh. The rated charge and
discharge power is 3 MW. The charge and discharge efficiency
are 90%. The initial SOC is 0.6. The constraint range of SOC
is 0.2–1.
2) Analysis of Power Dispatching Results

A large amount of statistics show that the cumulative value
of the change in the number of charges and discharges of
EVs is kept between 0 and 10, the dispatching potential value
of EVs between 0 and 1, and the residual value of EVs in
the power grid is generally around 100. Satisfactory weight
coefficients can balance the three options above, and then
focus on the dispatch flexibility of EVs. Through several
simulations, we define the values of λ, α and β: 0.1, 1.5 and
0.001, respectively.

Figure 9 shows that supercapacitors have fast response
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Fig. 9. Energy storage output power and wind curtailment.

speed and a large number of deep cycles. Their smoothing
ability is good. The output power of the EV cluster is
influenced by human factors. The smooth ability is poor from
8 am to 9 am and from 6 pm to 7 pm. The appropriate
wind curtailment can be considered to obtain the target grid-
connected power. When the curtailment quantity is at 2.51%,
the actual grid-connected power can meet the constraints to the
maximum extent. Given that EVs are greatly affected by the
number of participating dispatches, we suggest the addition of
other energy storage devices in the actual process of stabilizing
fluctuations. The results may not be satisfactory when solely
relying on EVs. Fig. 10 shows the variations of SOC of five
EVs from arrival to departure in the grid. We can see that EVs
guarantee user travel requirements and minimum dispatchable
power.
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Fig. 10. The variations of EV SOCs.

The comparison between the target grid-connected power
and the actual grid-connected power is shown in Fig. 11.
The correlation coefficient between the target grid-connected
power and the actual grid-connected power is 0.998. This
result verifies the effectiveness of the proposed strategy. In
addition, we verified the target grid-connected power through
Eq. (5), and found that it completely satisfies the fluctuation
constraint conditions. Therefore, we believe that the research
method in this paper can smooth the fluctuation of wind power
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generation.
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We contrasted the output of EVs calculated by DP using
the traditional method and found that they vary. It can be seen
from Table II and Fig. 12 that the energy storage replenishment
capacity of EVs with KP is better, and the number of force
charging marks are significantly lower than that with the
traditional method. Through the above analysis, EVs with DP
are considered highly capable.

TABLE II
COMPARISON OF STRATEGIES

Method Correlation coefficient Forced charging
Method with KP 0.60 10824
Traditional method 0.46 75800
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Fig. 12. Comparison of the DP method for solving KP, the traditional method
and the target smoothing deviation.

V. CONCLUSION

Renewable energy that is directly connected to the grid
will greatly harm the grid because of its high volatility. Only
considering wind and solar curtailment to solve this problem
will decrease economic benefits. Energy storage devices, such
as EVs, have elastic power consumption time, bootable power
consumption behavior, predictable power consumption, and
intelligent power consumption patterns. We believe that a large
space for load side resources can help in grid optimization

control. Therefore, the reasonable dispatching of EVs is of
great significance. Research can be extended to study the
bidirectional control between EVs and charging piles.
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