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Abstract

Distributed energy resources are being progressively deployed by industry. The penetra-
tion of distributed generation in low voltage (LV) networks can position traditional con-
sumers as market participants. With the improvements in communication networks and the
introduction of new energy markets, these prosumers are incentivized to sell their excess
production to other industries by participating in peer-to-peer (P2P) energy markets. This
market paves the way for developing new technologies such as a shared battery energy stor-
age system (SBESS). In this paper, a central storage unit rents its capacity for the prosumers
to reduce the overall peak-load of the microgrid. Each user requests the required SBESS
capacity and calculates the best charging and discharging times to reduce their cost. To this
end, this paper organized a P2P energy trading paradigm with the presence of SBESS. The
optimization problem was simulated and solved using the alternating direction method
of multipliers (ADMM) algorithm. Results demonstrate how combining features of P2P
energy trading and SBESS can save up to 29% for the industrial town.

1 INTRODUCTION

Conventional power systems have undergone fundamental
changes mainly driven by the penetration of new technologies
such as distributed energy resources (DERs) and energy stor-
age systems (ESS) [1]. In modern power systems, photovoltaics
(PV) energy is one of the most low-cost energy resources
among various types of DERs. It is generally perceived that PVs
will become the most economical form of electric energy across
the world [2, 3]. Furthermore, some government supporting
programs make a suitable opportunity for the industrial and res-
idential units to install PV systems. With the presence of this
local generation, new markets are emerging. Consumers with
PV generation become a prosumer that can be both a consumer
and a producer. Hence, these prosumers can sell their surplus
production to the upstream grid or to other units. Subsequently,
the conventional market should be upgraded and organized to
manage this kind of energy transaction. It is expected that the
smart home market size will reach $53.45 billion by 2022 [4].
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A conventional energy market is a platform that allows con-
sumers, on the one side, and producers, on the other side, to
trade electricity. In this traditional market, energy flows from
large producers to micro and macro consumers [5]. However,
in the new energy market with prosumers, energy flow can
change frequently. Advances in the communication technolo-
gies between prosumers have enabled peer-to-peer (P2P) energy
trading among interconnected peers [6]. In this paper, units
that participate in a P2P market are named peers. The feasi-
bility of employing P2P trading in a microgrid empowers the
peers to increase income for DER producers and reduce the
cost for consumers due to the difference between the selling
and buying price of the grid and the P2P market [7]. In the
P2P market, similar to other market architecture, several types
of energy technologies such as rooftop PV and battery energy
storage system (BESS) can be employed [8]. Furthermore,
peers can participate in demand response (DR) programs which
are an effective tool to limit electricity consumption at peak
times [9].

IET Renew. Power Gener. 2022;1–11. wileyonlinelibrary.com/iet-rpg 1

https://orcid.org/0000-0001-8437-6539
https://orcid.org/0000-0002-0255-8353
https://orcid.org/0000-0003-4729-1741
mailto:Mohammadi@ieee.org
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-rpg


2 AMINLOU ET AL.

One of the most effective technologies to facilitate energy
trading in a local energy market is the ESS. The presence of
ESS allows prosumers to take full advantage of renewable
energy resources (RESs) [10]. Also, using the ESS in industrial
premises helps to reduce the peak demand and participate in the
DR programs. And this possibility reduces the electrical bill of
the customers [11]. Batteries are one of the best storage devices
in terms of cost and safety in industrial environments. But,
besides their advantages, all kinds of ESS, including batteries,
can generate noise and heat [12], which can limit their applica-
tion in particular industry sites. As a solution, using a central
shared ESS has been proposed recently. A central shared battery
energy storage (SBESS) is a relatively large facility that contains
a considerable number of batteries that are integrated into a
specific location. This equipment is established with an initial
investment of microgrid. The initial investment returns with
the revenue that is received by capacity allocation. SBESS can
allocate its capacity for participants in the P2P market by receiv-
ing a rental fee. This integrated facility allows the customers to
remove the small-size storage from their sites. These integrated
facilities can reduce the overall cost of maintenance and invest-
ment [12–15]. The authors in [16] prove that employing shared
energy storage can save the participant cost up to 13.82% rather
than using individual energy storage. This facility is located
next to industrial towns and rents its capacity to industrial units
under conditions that will be examined in this paper.

P2P energy trading schemes at the distribution level offer
promising potential to reduce transmission losses, improve sys-
tem reliability, decrease the backup electric infrastructure and
reduce the overall cost of peers. Also, in this concept, DERs can
perfectly be restrained while reducing the total peak demand.
But individual peer’s behaviour affected the performance of
the P2P market and increased the complexity. Accordingly,
many optimization frameworks and market architectures have
emerged to manage energy transactions of multiple peers [17,
18]. In this paper, a decentralized architecture is proposed for
P2P trading. In a decentralized architecture, peers can take con-
trol actions to manage their storage, energy production and con-
sumption. However, in centralized architectures, some entities
can take direct control of some appliances [19]. The P2P mar-
ket description that is proposed in this paper is based on the
cooperative behaviour of peers within a microgrid. All peers
cooperate with each other without any competitive strategy for
the goal of minimizing the costs of the microgrid [20]. Nowa-
days, new communication technologies like blockchain and dis-
tributed ledger make decentralized approaches available, trans-
parent, and secure [21]. Due to the consensus mechanism in
blockchain, the honesty of the P2P transactions data record can
be ensured without a third party [22]. But this innovation brings
new challenges to the power system to solve the optimization
problem.

Recent studies have employed several approaches to solve
a P2P problem. These algorithms should be flexible enough
to solve a decentralized P2P market problem. The game the-
ory approach is one of the methods that used in several papers
for modelling the P2P market. For example, [23–25] employed
the framework of a cooperative game to obtain energy trans-

actions in a centralized optimization problem. Furthermore,
the authors in [26] presented a model of cooperative game to
maximize social welfare. In this study, prosumers are consid-
ered as followers, and the retailer is placed as a leader in a bi-
level framework. In [27], the upstream grid controls the peak
demand period price under the Stackelberg game to reduce
the total demand of the participants. In [28], a stochastic day-
ahead scheduling model is proposed with full clean energy gen-
eration to maximize economic benefits. In [29], an informa-
tion gap decision theory (IGDT)/stochastic hybrid technique
is employed to model the uncertainties. This paper proposed a
model of the transactive energy market with 100% RESs. The
authors of [30, 31] addressed the continuous double auction
(CDA) as a market mechanism to enable interactions among
the P2P energy trading. There are several ways to encourage
peers to cooperate with the upstream network and participate
in programs like peak-shifting. For example, [32] employed a
hierarchical incentive mechanism to encourage peers to follow
the smart contracts. In [33], the authors used parametric opti-
mization in cooperative multi-microgrids to consider the will-
ingness of other peers for trading in the P2P market. In [34],
the authors presented a competitive decentralized P2P market
in the presence of prosumers and retailers. This study employed
a primal-dual sub-gradient method to clear the market. Fur-
thermore, the multi-objective framework can be employed for
minimizing the overall cost in the P2P market [35]. But, in
the multi-objective framework, the system operator has direct
control over the peers and decides how to participate in the
P2P market. This paper employed the ADMM algorithm for
solving P2P optimization problems in a microgrid of intercon-
nected peers. Recently, the ADMM algorithm has been exten-
sively used to solve distributed optimization problems [36–39].
ADMM algorithm devised as an iterative method in which, large
global problem decomposed to the sub-problems and solution
find with coordination of local sub-problems. It is a form of
a decomposition-coordination procedure in which the coor-
dination and iterations of sub-problem provide a global opti-
mal solution [40]. As described above, a centralized approach
requires the peer’s information to solve the P2P market. How-
ever, employing the ADMM algorithm limits the information
exchange between peers. Hence, the energy exchange informa-
tion is enough for updating the algorithm multipliers [41, 42].
Furthermore, in a centralized market, the power system (leader)
decides on a price of energy [27], but in a decentralized mar-
ket, peers solve a separate optimization problem for obtaining
their own energy management pattern. Therefore, in decentral-
ized market peers decide on the energy selling price in the P2P
market.

The recent studies in this matter prove the effectiveness
of the ADMM algorithm in P2P markets. For example, [43]
presented a cooperative P2P market framework by using the
ADMM algorithm, and this paper also considered the costs of
the reactive power for participants. In the following, [44] ana-
lyzed the strategic bidding of market participants in ADMM-
based P2P market-clearing to maximize social welfare. Also,
[45] used the ADMM algorithm for the dynamic pricing strat-
egy in the P2P market that, in this case, no central coordinator
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exists. The authors in [46] employed the ADMM algorithm in
day-ahead scheduling of multi-energy microgrids under a robust
optimization model. This paper also used power-to-hydrogen
technology to refuel fuel cell vehicles.

This paper proposes an interconnected network of peers in
a large industrial town that are participating in a P2P market.
Every peer can participate in this P2P market and sell surplus
energy to other peers or meet the demand by buying energy
from other peers. It should be noted that peers can exchange
energy with the upstream grid despite participating in the P2P
market. Various units with different load profiles like industrial
and office buildings can participate in the P2P market. Peers can
have PV systems and can shift a part of their load from peak
to off-peak times to save money or sell it in the P2P market.
Also, this paper focuses on peers transactions and does not con-
sider the role of network constraints in P2P energy trading. The
ADMM algorithm is compatible with the proposed model of
the P2P market. In this market, participants decide and act indi-
vidually. In the ADMM algorithm, decomposed sub-problems
are solved individually. Also, this algorithm needs a limited
amount of information about other sub-problems, which can
preserve the participants’ privacy. Furthermore, the dual vari-
able in the algorithm can be interpreted as the price of energy in
each iteration.

The main contributions of this paper are as follows:

∙ An ADMM algorithm is employed in which each peer locally
solves a sub-problem and optimizes its own energy trades.
Then, peers iteratively exchange a limited amount of infor-
mation with each other to cooperate in cost minimization of
the whole microgrid.

∙ SBESS facilities are considered for industrial towns to maxi-
mize the utilization of RESs.

∙ The capacity allocation problem has been solved with the
ADMM algorithm. In this method, data exchange between
peers is minimum. In each iteration, the storage allocation
price is calculated by the storage manager and the results
enounce to the peers that are participating in the market.

∙ Shiftable loads are enabled in this market to give more flexi-
bility to the peers to participate in the market.

The organization of this paper is the following: ADMM-
based optimal scheduling of P2P energy trading and SBESS
model with related objective function (OF) and constraints are
illustrated in Section 2. Section 3 is dedicated to demonstrat-
ing the ability of the proposed method and simulation results.
Finally, this paper’s conclusion is brought in Section 4.

2 PROBLEM FORMULATION

Figure 1 illustrates the conceptual scheme of the P2P market
studied in this paper. In this model, if two prosumers are inter-
connected with the energy and communication network infras-
tructure, they can make P2P energy exchange between each
other. By growing the number of participants, the P2P energy

trading market will emerge. Most of the time, the P2P selling
price is lower than the upstream grid price. Therefore, peers
can save money by joining the P2P market and buying energy
from other customers. Producers can share their excess energy
in the P2P market and earn extra revenue because the purchase
price in this market is often higher than the upstream network
price.

In this work, all customers are equipped with bidirectional
meters that measure the energy exchange between a peer and
the upstream grid or other peers. Some of the customers are
equipped with a rooftop solar system. Moreover, in this indus-
trial town, SBESS are installed to increase the utilization of
renewable generation and to help prosumers with shifting their
loads. This paper develops an optimization model for P2P
energy trading by employing the ADMM algorithm. The OF of
this paper is to minimize the overall cost of an industrial town
by finding the optimal energy trading decision. This paper con-
siders the selling and purchase prices of the upstream grid are
predetermined and prices scheduled based on the time of use
(TOU). The billing process for every individual customer can
be explained as follows. Billing of each customer is calculated
individually at every time interval, in such a way that the cus-
tomer is responsible for the scheduling of their own account.
Every peer, while trying to reduce the total cost of microgrid,
also consider their own cost and decide to meet the demand
from which kind of several energy sources. Every peer in every
time period has complete freedom to participate in the P2P mar-
ket. The ADMM algorithm and its decomposability let to solve
the optimization problem individually for each peer. Therefore,
each peer can decide based on the condition, which consists of
price, load, and PV generation, to participate in the market or
not. Also, they decide about charging and discharging the ESS
that is allocated from the shared energy storage. Finally, every
peer shares the energy exchange information to update the mul-
tiplier of the ADMM algorithm.

This study considers T = {1, 2, … , tend} the set of time inter-
vals with each duration of Δ t = 1 h and N = {1, 2, … , nend} the
set of P2P market participants. As described above, the decen-
tralized procedure employed the ADMM algorithm to solve the
distributed problem. This algorithm iteratively solves the opti-
mization problem. After the problem is solved at each iteration,
the energy exchange between the peers is considered a param-
eter. In the following, this energy exchange report is dispensed
into the P2P market. Then, the data is used for updating the
multiplier of the ADMM algorithm in the next iteration.

2.1 Objective function

Ob j = min
∑
t∈T

∑
i∈N

(
Pt

BEt
B_Grid i − Pt

S Et
S_Grid i

)
(1)

The OF (1) minimizes the energy exchange cost between the
microgrid and upstream grid. So, all peers participating in the
P2P market are cooperating to achieve this goal.
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FIGURE 1 The scheme of interconnected distributed P2P energy trading network in an industrial town with the presence of PV and SBESS. P2P, peer-to-peer;
PV, photovoltaics; SBESS, shared battery energy storage system

2.2 Constraints

Et
Buy_P2Pi, j = Et

Sell_P2P j ,i ∀t ∈ T , i ≠ j , i, j ∈ N (2)

Et
DERi + Et

B_Gridi +
∑
j∈N
j≠i

Et
Buy_P2Pi, j + Et

SBES_Dchi + Et
SLi

= Et
Loadi + Et

S_Gridi +
∑
j∈N
j≠i

Et
Sell_P2Pi, j

+Et
SBES_Chi ∀t ∈ T , i ∈ N (3)

Et
B_Gridi ≥ 0,Et

S_Gridi ≥ 0 ∀t ∈ T , i ∈ N (4)

Et
Buy_P2Pi, j ≥ 0,Et

Sell_P2Pi, j ≥ 0 ∀t ∈ T , i ≠ j , i, j ∈ N
(5)

Et
B_Gridi +

∑
j∈N
j≠i

Et
Buy_P2Pi, j ≤ ut

BiE
max
Buyi ∀t ∈ T , i ∈ N (6)

Et
S_Gridi +

∑
j∈N
j≠i

Et
Sell_P2Pi, j ≤ ut

SiE
max
Selli ∀t ∈ T , i ∈ N (7)

ut
Si + ut

Bi ≤ 1ut
Si , u

t
Bi ∈ {0, 1} ∀t ∈ T , i ∈ N (8)

SOC t
i = SOC t−1

i + 𝜂ChEt
SBES_Chi −

(
1

𝜂Dch

)
Et

SBES_Dchi

∀t ∈ T , i ∈ N
(9)

SOC Min
i ≤ SOC t

i ≤ SOC
req
i ∀t ∈ T , i ∈ N (10)

∑
i∈N

SOC
req
i ≤ SOC Max

SES (11)

SOC t
SBES = SOC ini

SBESif t = 0 (12)

0 ≤ Et
SBES_Chi ≤ I t

ChiE
Max
SBES_Chi ∀t ∈ T , i ∈ N (13)

0 ≤ Et
SBES_Dchi ≤ I t

DchiE
Max
SBES_Dchi ∀t ∈ T , i ∈ N (14)

I t
Dchi+I t

chi ≤ 1I t
Dchi ,I

t
chi ∈ {0, 1} ∀t ∈ T , i ∈ N j (15)

0 ≤ Et
SLi ≤ EMin

SLi ∀t ∈ T , i ∈ N (16)

∑
t∈T

Et
SLi = 0 ∀i ∈ N (17)

Constraint (2) shows the balance between the energy that the
customer j sold to i and the energy that customer i bought
from. In fact, this constraint is an energy transaction bridge that
enables the P2P energy trading between the peers.

Constraints (3)–(5) show that energy trading variables are
non-negative and ensure the energy balance for the ith pro-
sumer at each time interval. Constraints (6)–(8) are utilized to
limit energy transactions and prevent arbitrage. So, peers can-
not benefit from buying and selling energy at the same time.
The SBESS model is described by (9)–(15). In this model, cen-
tral SBESS facilities do not participate in the market. They just
sell the capacity to the prosumers. The central SBESS decides
about the capacity price. The customer’s sent capacity demand
to the SBESS facilities depends on the price. After the cus-
tomers have purchased their capacity, in other words, it can be
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said that the customers have installed a virtual capacity in their
unit. Customers can send their charging and discharging profiles
to central storage. The stored virtual energy at each time inter-
val is shown in (9) and it is obtained by applying changes due
to charging and discharging to the stored energy at the previ-
ous time interval. It should be noted that every peer’s charging
and discharging profile is different from others, and this kind
of energy storage sharing can help to reduce the congestion in
the distribution grid. In the following, the constraint (10) lim-
its the SOC of virtual capacity between the requested capacity
and the minimum limit of SOC. Constraint (11) ensures that
the sum of all requested capacities does not exceed the installed
central range. Also constraints (12)–(15) specify the initial SOC
of central shared storage and prevent simultaneous charge and
discharge by each peer. As shown in (16)–(17), peers can partic-
ipate in DR programs and transfer their specific load like dish-
washers in the scheduling period to reduce the energy cost. This
paper assumes that customers can shift 30% of the forecasted
load from the peak time to off-peak.

2.3 ADMM implementation on P2P energy
trading

The ADMM algorithm is a distributed approach to solve decen-
tralized optimization iteratively. At any iteration, energy transac-
tion data in the previous iteration is shared between the peers.
This data includes P2P trading and upstream grid transactions.
We consider the calculated energy transaction data in each itera-
tion as a parameter that is not included in decision variables and
they are signified by a hat in the formulation. The aforemen-
tioned data updates the ADMM multipliers.

By employing the ADMM algorithm on this model, the OF
(1) is decomposed by the augmented Lagrangian methods for
each prosumer i. The augmented Lagrangian includes the OF
(1) and constraint (2) that it makes peers interdependent. As
shown in (18), the augmented OF for each customer i at each
iteration v is obtained by adding the squared norm of the afore-
mentioned interconnecting constraint multiplied by the penalty
parameter 𝜌P2P.

Objvi = min
∑

t∈T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt
BEv,t

B_Gridi − Pt
S Ev,t

S_Gridi

+
∑
j∈N

j≠i

𝜆v,t
j ,i E

v,t
Buy_P2Pi, j − 𝜆v,t

i, j

∑
j∈N

j≠i

E v,t
Sell_P2Pi, j

+
𝜌v,t

P2P,i

2

⎡⎢⎢⎢⎣
∑
j∈N

j≠i

(
Et

Buy_P2Pi, j − Ê t
Sell_P2P j ,i

)2

+
∑
j∈N

j≠i

(
Et

Sell_P2Pi, j − Ê t
Buy_P2P j ,i

)2
⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∀i ∈ N

(18)

The second part of the decomposed OF is named the penalty
value. As the process converges, the penalty value decreases to
zero, so the final OF for the entire system is expressed as fol-
lows:

Obj =
∑
i∈N

Objvi (19)

𝜆
v+1,t
i, j = 𝜆

v,t
i, j + 𝜌

v,t
P2P,i

⎡⎢⎢⎢⎣
∑
j∈N
j≠i

Ev,t
Buy_P2P j ,i −

∑
j∈N
j≠i

Ev,t
Sell_P2Pi, j

⎤⎥⎥⎥⎦
∀t ∈ T , i ∈ N

(20)

Constraint (3)–(17) that is described above is involved in
the distributed optimization problem. Consequently, all peers
solve their optimization problem and they get the outcomes,
then they update the ADMM multiplier via (20). So, in the
incoming iteration, the optimization problem is solved with
new ADMM multipliers. To show the convergence rate, a new
remaining parameter (r v,t

P2P,i ) is defined for each iteration. This
procedure iteratively continues until the remaining parameters
r v,t
P2P,i become less than 𝜀P2P.

r v,t
P2P,i =

∑
j∈N
j≠i

Ev,t
Buy_P2P j ,i −

∑
j∈N
j≠i

Ev,t
Sell_P2Pi, j∀t ∈ T , i ∈ N

(21)

This paper also updates the penalty multiplier for reducing
the influence of the initial choice on the performance of the
algorithm. So updating the penalty parameter in each iteration
by (22), (23) can improve the convergence [20, 40].

sv,t
P2P,i = 𝜌

v,t
P2P,i

⎡⎢⎢⎢⎣
∑
j∈N
j≠i

Ev,t
Buy_P2Pi, j +

∑
j∈N
j≠i

Ev,t
Sell_P2Pi, j

⎤⎥⎥⎥⎦
−

⎡⎢⎢⎢⎣
∑
j∈N
j≠i

Ev−1,t
Buy_P2Pi, j +

∑
j∈N
j≠i

Ev−1,t
Sell_P2Pi, j

⎤⎥⎥⎥⎦∀t ∈ T , i ∈ N

(22)

𝜌
v+1,t
P2P,i =

⎧⎪⎪⎨⎪⎪⎩

𝜏inc∕dec𝜌
v,t
P2P,i if

‖‖‖r v,t
i
‖‖‖2
> 𝜇

‖‖‖sv,t
i
‖‖‖2

𝜌
v,t
P2P,i∕𝜏

inc∕dec if‖‖‖sv,t
i
‖‖‖2
> 𝜇

‖‖‖r v,t
i
‖‖‖2

𝜌
v,t
P2P,i Otherwise

∀t ∈ T , i ∈ N

(23)

In the numerical test of this paper, we assume the 𝜏inc∕dec and
𝜇 to be equal to 2 and 10, respectively. Also, this paper considers
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the initial value of the ADMM multiplier (𝜆0,t
i ) as follows:

𝜆
0,t
i, j = (Pt

B + Pt
S )
/

2∀i, j ∈ N , t ∈ T (24)

2.4 ADMM implementation on the shared
battery storage model

As shown in Figure 1, shared battery storage facilities put their
daily capacity at the disposal of others for a fee. Market par-
ticipants decide the amount of capacity to offer based on the
price of the shared storage. Participants have limited access
to information from other peers. Therefore, they should make
decisions only based on the capacity price and their own situ-
ation. In such a way that the storage unit collects bids before
the start of the day and manages its capacity by updating the
dual price variable in each iteration. In this paper, SBESS and
independent peers have a separate role in the P2P market. In
other words, the central SBESS employs the economic model
of supply and demand to determine the market price. SBESS
tries to sell whatever it can to the P2P market. Therefore, a
decrease/increase in the prices of shared capacity is based on
excess storage supply/demand. By applying the ADMM algo-
rithm for the shared energy storage allocation problem, the aug-
mented OF is updated using constraint (11).

As shown in (25), the new augmented OF for each customer i
at each iteration v is obtained by adding the squared norm of the
shared storage constraint multiplied by the new penalty param-
eter 𝜌v

SBES.

Objvi = min
∑
t∈T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pt
BEv,t

B_Gridi − Pt
S Ev,t

S_Gridi +
∑
j∈N

j≠i

𝜆v,t
j ,i E

v,t
Buy_P2Pi, j

−𝜆v,t
i, j

∑
j∈N

j≠i

E v,t
Sell_P2Pi, j + 𝜆v,t

SBESSOC req
i

+
𝜌v,t

P2P,i

2

⎡⎢⎢⎢⎢⎢⎣

∑
j∈N

j≠i

(Et
Buy_P2Pi, j − Ê t

Sell_P2P j ,i )
2
+

∑
j∈N

j≠i

(Et
Sell_P2Pi, j − Ê t

Buy_P2P j ,i )
2

⎤⎥⎥⎥⎥⎥⎦
+
𝜌v

SBES

2

[
(
∑
i∈N

SOC req
i − SOC Max

SBES)2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∀i ∈ N

(25)

As described above, SBESS collects the bids and updates the
ADMM multiplier by (26), and also we have a similar remaining
parameter (27) for SBESS to show the convergence rate. Fur-
thermore, (28) and (29) update the penalty multiplier for reduc-
ing the influence of the initial choice on the performance of the
algorithm.

𝜆v+1
SBES = 𝜆v

SBES + 𝜌SBES

[∑
i∈N

SOC
req
i − SOC Max

SBES

]
(26)

FIGURE 2 Solving process of the P2P energy trading with the presence
of SBESS

r v
SBES =

∑
i∈N

SOC
req,v
i − SOC Max

SBES (27)

sv
SBES = 𝜌v

SBES

[∑
i∈N

SOC
req,v
i −

∑
i∈N

SOC
req,v−1
i

]
(28)

𝜌v+1
SBES =

⎧⎪⎪⎨⎪⎪⎩

𝜏inc∕dec𝜌v
SBESif‖‖‖r v

SBES
‖‖‖2
> 𝜇

‖‖‖sv
SBES

‖‖‖2

𝜌v
SBES∕𝜏

inc∕dec if‖‖‖sv
SBES

‖‖‖2
> 𝜇

‖‖‖r v
SBES

‖‖‖2

𝜌v
SBES otherwise

(29)

Figure 2 presents the whole solving process. Firstly, the ini-
tial value of the updating parameters like 𝜆0,t

i and 𝜆0
SES are fixed.

Secondly, optimization problem solves for each customer. Then
transaction data, which include the P2P energy trading infor-
mation, grid energy exchanges, and storage capacity requests,
reveal. In the following, the multiplier of the ADMM algo-
rithm is updated for both P2P and shared storage allocation
problems. Finally, the procedure is iteratively repeated until the
conditions r v,t

P2P,i ≤ 𝜀P2P and r v
SES,i ≤ 𝜀SES are met. This paper
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TABLE 1 Prosumers PV panel and load detail

Parameters Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6

Number of panels N/A 38 100 52 93 24

Panel max power N/A 325 W 167 W 275 W 275 W 275 W

System size N/A 12,350 W 16,700 W 14,300 W 25,575 W 6600 W

Inverter size N/A 8200 W 10 × 2000 W 2 × 6000 W 25,000 W 5000 W

Maximum demand 5.4 kW 6 kW 44 kW 42 kW 390 kW 20 kW

Maximum flexible demand 1.62 kW 1.8 kW 13.2 kW 12.6 kW 117 kW 6 kW

assumed r v,t
P2P,i and r v

SES,i to be equal to 20 W in all the test
results.

3 RESULTS AND ANALYSIS

The numerical analysis evaluates the P2P energy trading in
industrial town. The results demonstrate how decentralized
energy management can decrease the overall cost by develop-
ing energy sharing between peers. Next, the analysis examines
the effectiveness of SBESS. Finally, the results of the central-
ized and decentralized study are compared.

3.1 Model implementation and data

As shown in Figure 1, this paper assumed a microgrid with six
prosumers for the case study. The test system is composed of
one LV feeder that consists of six peers and shared battery stor-
age, which is connected with seven lines to the main feeder.
Every customer that is interconnected to the other peers is
equipped with a smart meter to measure the energy transactions.
As shown in Figure 4, all peers have a photovoltaic power gener-
ation unit with various sizes and generation profiles, except Peer
1. This paper uses real numerical detail of the installed PV and
load profile from [47]. Details of the installed PV system capac-
ity and shiftable load are given in Table 1. As shown in Figure 3,
the industries located in the industrial town do not have a similar
load profile. For example, customer 5 has a larger and relatively
constant load throughout the day and therefore has a greater
impact on the market.

Customers also have two types of flexible and non-flexible
industrial demands on their premises. So they can participate in
a DR program with 30% of their load.

This paper assumes that the shared storage capacity is equal
to 80 kWh and the inverter connected to it can charge or dis-
charge the entire capacity of the unit within 4 h.

The ADMM model was implemented on GAMS software
(V24.9.1) and solved with MIQCP (Mixed Integer Quadratically
Constrained Program) solver. Simulation runs for 24 h that is
divided into one-hour time slots. In this test, the effect of P2P
energy trading on several characteristics of the microgrid evalu-
ates. First, the centralized calculation is carried out by a central
coordinator with no P2P trading.

FIGURE 3 Load profile for each peer

FIGURE 4 Profile of photovoltaic production

Secondly, units cooperate with each other and the decen-
tralized calculation is carried out by P2P energy trading
activation. Also, the shared storage effect was investigated
similarly.

In the initial iteration, the dual value P2P energy exchange
price is set to the average of grid selling and the grid buying
price. At the next iteration with employing the ADMM algo-
rithm, each peer selling price updates in order to reduce the
energy unbalance.
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TABLE 2 Comparison between the overall cost of centralized and decentralized approach with and without the presence of P2P exchange and SBESS

With P2P exchange

and shared storage

With P2P exchange

without shared storage

With Shared storage

without P2P exchange

Without shared storage

without P2P exchange

Centralized 46.79 $ 53.45 $ 51.34 $ 58.81 $

Decentralized 51.52 $ 58.74 $ 72.28 $ N/A

FIGURE 5 Profile of energy transactions between the peers participating in the P2P market (e.g. P2 sells 124 W in T = 7 to P3)

3.2 Simulation results

Without considering the limitation in the communication net-
work and any delays in solving the optimization problem, find-
ing an optimal solution for each iteration requires about 5 s. This
paper solves the overall problem in 14 iterations. And reaching
the final answer requires about 76 s.

As shown in Table 2, the problem is solved centrally and the
impact of P2P is examined separately. Then the same prob-
lem is solved with a decentralized approach. Due to the oper-
ator’s complete access to all subscriber data, the problem is
solved more accurately and quickly in a centralized way. How-
ever, as mentioned in the introduction, the purpose of this paper
is to make energy exchange more realistic, reduce information
exchange, and solve the problem in a decentralized manner.

Therefore, the volume of information exchanged is limited
compared to the centralized state. Due to the limited informa-
tion of many customers, we see a slight difference between the
cost function in the centralized and decentralized approaches.
As table 2 shows, facilitating the industrial town with SBESS
and P2P market decrease the overall cost and P2P activation
has a greater impact on the decentralized model. The compari-
son of the results shows that equipping the industrial town with
SBESS and P2P reduces the overall cost by 20.4% in centralized
and 28.7% in decentralized approach.

Figure 5 shows the energy exchange between customers at
different hours. For example, peer 2 sells 127 W to peer 3 at
7 o’clock. Load profile, PV generation, and other factors influ-
ence customer behaviour in the P2P market. So, we expect peer

FIGURE 6 Convergence profile of ADMM algorithm for the average
value of residuals of P2P energy trading and the residual value of shared
storage capacity allocation. ADMM, alternating direction method of multipliers

5 to become a buyer most of the time and customer 2 to sell the
overproduction to other peers. Also, Figure 5 emphasizes that
most P2P energy trading happens between 6 and 18 o’clock.
Indeed, it is the PV surplus energy that is sold in the P2P market.

This paper shows the convergence rate of the ADMM algo-
rithm in Figure 6. As mentioned in (21) residual value (r v,t

P2P,i )
for peer i is the difference between the total energy pur-
chased and energy sold. The ideal value for this parameter,
which is obtained in the centralized state, is zero. However,
in the decentralized method, values less than 𝜀P2P are also
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TABLE 3 SBESS capacity allocation results

Peer 1 Peer 2 Peer 3 Peer 4 Peer 5 Peer 6

Capacity (kWh) 2.32 0.22 13.52 0.29 63.31 0.27

FIGURE 7 The total energy stored in SBESS

acceptable. A similar method has already been considered for
shared stored energy. In this method, the difference between
the total purchased capacity and the total capacity is considered
the residual value of SBESS (r v

SES,i ).
As described in Figure 2, this paper suggests a termination

criterion for residual values that must be smaller than 𝜀P2P and
𝜀SES. Figure 6 shows how the decentralized optimization con-
verges with decreasing the residuals values. Iteration number 3
confirms the convergence condition for SBESS allocation, but
the P2P market does not achieve the convergence condition.
This procedure iteratively continues until both residual param-
eters confirm the convergence condition. Figure 6 declares that
this termination condition is established in the 14th iteration.

In the following, Table 3 illustrates the allocated capacity for
each unit. Also, simulation results show that the SBESS rent-
ing fee is 0.05 $ for 1 kWh in the final iteration. In practice,
peers with higher demands receive higher capacity. The energy
storage management system located in each peer controlled the
virtual capacity depending on the conditions and sent a non-
peak charge order and a peak discharge order. Figure 7 presents
the SOC profile of central SBESS in a day. This paper separates
the centralized and decentralized results and shows a slight dif-
ference between them. As shown in Figure 7, by implement-
ing the technologies described above, the load profile is formed
into two curves that show the grid exchange in a centralized
and decentralized approach. Indeed, the demand shifts from
peak hours to off-peak and partial peak hours. In Figure 7, blue
lines and red lines correspond to the decentralized and central-
ized approach. The slight difference between them is due to the
inability of each customer to predict the load of others. Further-
more, the overall load data of microgrid and energy exchange

FIGURE 8 Total power exchange with upstream grid

profile with the upstream grid in the centralized and decentral-
ized approach is shown in Figure 8.

4 CONCLUSION

This paper proposes a distributed optimization problem in an
industrial town consisting of RES, SBESS, and a local energy
community. This paper analyzes the impact of P2P and SBESS
energy exchange in a centralized and decentralized approach.
The centralized design requires all the information of mar-
ket participants. Therefore, participants must transfer all data,
including load forecast data and equipment details. But in the
decentralized approach, peers just need the energy exchange
data in the P2P market and upstream grid to calculate their own
energy transaction pattern. In this paper, the day-ahead schedul-
ing of the P2P energy market and SBESS allocation is solved by
the ADMM algorithm. The results of the SBESS capacity allo-
cation process indicate that units with larger loads or more dis-
tributed generation have more capacity. The values of the OF
for both different approaches and conditions were compared.
The P2P activation has a greater impact on the decentralized
model compared to the centralized model. Finally, it can be
concluded that the cooperation of the participants in the form
of P2P market reduces the power received from the grid, cre-
ates new sources of energy supply, and reduces the total cost of
the industrial town. The utilization of a central storage unit also
improves the shortcomings of small-scale type storage and helps
peers to optimize their load profile. This work can be extended
by considering the role of distribution network constraints in
peer’s transactions. Also, the electric vehicles charging system
and multi-class energy systems can be considered in the com-
munity of the industrial towns.
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NOMENCLATURE

T set of time slot in 1 day
t index of time slot
v index of iterations

ut
Bi binary variable that points to customer

i participating in the market as a buyer
ut

Si binary variable that points customer i
participating in the market as a seller

I t
Chi binary variable that indicates peer i is

charging energy in the time slot t
I t
Dchi binary variable that indicates peer i is

discharging in the time slot t
Pt

B prices of the energy that the customers
buy from the utility grid ($/kWh)

Pt
S prices of the energy that the customers

sell to the utility grid ($/kWh)
Et

B_Gridi energy that customer i bought from the
utility grid in the time slot t (kWh)

Et
S_Gridi energy that customer i sold to the utility

grid in the time slot t (kWh)
Et

Buy_P2Pi, j energy that customer i bought from the
customer j in the time slot t (kWh)

Et
Sell_P2P j ,i energy that customer i sold to the cus-

tomer j in P2P market in the time slot
t (kWh)

Et
DERi generated energy by the customer i

from DER (kWh)
Et

SBES_Dchi discharging rate of allocated virtual
SBESS (kWh)

Et
SBES_Chi charging rate of allocated virtual SBESS

(kWh)
Et

SLi shifted load demand of unit i in the
time slot t (kWh)

Et
Loadi forecasted load demand of unit i in the

time slot t (kWh)
SOC t

i state-of-charge of SBESS that allocated
to the unit i in the time slot t (kWh)

SOC Max
SBES overall installed capacity of central

SBESS (kWh)
SOC Min

i the minimum amount of state of charge
(SOC) that the unit i allowed to have
(kWh)

SOC
req
i the requested capacity of each customer

i from central SBESS (kWh)
SOC ini

SBES the initial charge of central SBESS
(kWh)

EMax
SLi the maximum amount of shiftable load

of customer i
Ob j v

i the objective function (OF) of the cus-
tomer i in the iteration v

𝜌
v,t
P2P,i positive penalty parameter of P2P

energy trading

𝜌v
SBES positive penalty parameter of SBESS

allocation
r v,t
P2P,i residual value of P2P energy trading

problem in ADMM algorithm
r v
SBES residual value of storage allocation

problem in ADMM algorithm
i, j index of P2P energy trading partici-

pants
Emax

Buyi , Emax
Selli the maximum energy that customer i

can buy from/sell to the other peers or
grid (kWh)

𝜆
v,t
i, j , 𝜆

v
SBES Lagrange multiplier of P2P energy trad-

ing/storage allocation problem
𝜂Ch, 𝜂Dch charge/discharge efficiency of SBESS

EMax
SBES_Dchi, EMax

SBES_Chi maximum discharging/charging rate
that allowed for the unit i (kWh)

sv,t
P2P,i , sv

SBES dual residual parameter of ADMM
algorithm

N set of P2P energy trading market par-
ticipants
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